用户名: 密码: 验证码:
嗜麦芽窄食单胞菌对水体中芘、镉的修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用嗜麦芽窄食单胞菌为实验菌株,对水体中芘、镉的微生物修复进行了研究,主要内容包括:嗜麦芽窄食单胞菌的生长条件优化、菌株对芘的降解性能、菌株对镉的吸附性能、水-沉积物中芘-镉复合污染的修复、微生物修复机理的初步探索。
     嗜麦芽窄食单胞菌能够利用芘作为唯一碳源生长,在温度25℃、pH 8.0时生长量最大。芘浓度为0.5-2mg/L的范围内,菌体生长良好,当芘浓度大于2mg/L时,芘对菌体产生毒害作用,抑制菌体的生长。在芘浓度为2mg/L,镉浓度分别为0.1-10mg/L的复合污染体系中,菌的生长受到明显抑制,菌体的生长量随着镉浓度的增大不断降低。
     在芘浓度为2mg/L时,菌体降解4d后,芘最高降解率达到65.74%。当温度为25℃和pH为8.0时,芘降解效果最好。复合污染体系中0.1-0.5mg/L镉的存在促进了菌体对芘的降解作用,而当镉浓度大于0.5mg/L后,芘的降解受到抑制。
     嗜麦芽窄食单胞菌吸附镉的最适宜菌浓度为2g/L,温度在25℃时其吸附率最高,在pH 5.0达到最大吸附率93.73%。菌体对镉的吸附较好地符合Langmuir吸附等温式。FTIR分析发现,C-H、N-H、O-H作为主要官能团参与了嗜麦芽窄食单胞菌对镉的吸附过程。
     嗜麦芽窄食单胞菌能有效地修复水-沉积物中芘-镉复合污染,在处理9d后,菌对芘的降解率为75.06%,1mg/L镉的残留浓度为0.175mg/L
     SEM观察表明,各污染体系中菌体基本能保持正常的生长状态,从而保证菌体能有效地发挥降解和吸附作用。在菌体降解芘和吸附镉的过程中,伴随着阳离子Na+、NH4+、10、Mg2+和Ca2+的释放。FTIR分析表明,复合污染体系中,菌体降解芘和吸附镉的过程主要与羟基、酰胺基团、C-H键有关。
The biodegradation of pyrene and biosorption of cadmium by a bacterial strain (Stenotrophomonas maltophilia) were studied in this research, including the characteristics of S.maltophilia growth, biodegradation and biosorption capability, the treatment of pyrene-Cd combined pollution in water-sediment systems with strain, and the interaction mechanism between strain and pyrene-Cd.
     S.maltophilia could utilize pyrene as the sole carbon source optimally at 25℃and pH 8.0. The strain grew well when pyrene concentration was 0.5 to 2mg/L. However, excess pyrene would inhibit the cultivation. The growth of bacteria was significantly affected in combined pollution system when pyrene concentration was 2mg/L and Cd concentration was 0.1 to 10mg/L, cell growth decreased with increasing cadmium concentration.
     The highest degradation efficiency was 65.74% when initial pyrene concentration, temperature and pH value were 2mg/L,25℃and 8.0, respectively. The degradation of pyrene was promoted in complex pollution system with cadmium concentration 0.1 to 0.5mg/L. Nevertheless, higher concentration cadmium would depress the degradation.
     The biosorption equilibrium conformed to the Langmuir equations. Infrared spectroscopy analysis indicated that the main functional groups participated in Cd adsorption were C-H, N-H, O-H.
     S.maltophilia treated pyrene-Cd combined pollution in water-sediment systems effectively. The degradation efficiency of pyrene was 75.06% and the concentration of cadmium in water was decreased to 0.175mg/L from initial lmg/L after nine days.
     Scanning electronic microscope (SEM) observation exhibited that S.maltophilia could maintain normal growth condition in pollution system, thus ensuring their basic capability of degradation and biosorption. The strain would release Na+, NH4+, K+, Mg2+ and Ca2+ during the process of degradation and biosorption. FTIR analysis showed that the remediation process mainly related with hydroxyl, amide groups, C-H.
引文
[1]周怀东,彭文启.水环境与水环境修复[M].北京:化学工业出版社,2005:124-138.
    [2]刘征涛,姜福欣,王婉华,等.长江河口区域有机污染物的特征分析[J].环境科学研究,2006,19(2):125.
    [3]Liu M, Yang Y, Xu S Y, et al. Persistent organic pollutants (POPs) in intertidal surface sediments from the Yangtze estuarine and coastal areas, China [J]. Journal of Coastal Research,2004(Special issue),43:162-170.
    [4]Oros D R, Ross J R M. Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments [J]. Marine Chemistry,2004,86(3-4):169-184.
    [5]Liang Y, TseM F, Young L, et al. Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes nature reserve, Hong Kong [J]. Water Research,2007,41(6): 1303-1311.
    [6]袁红明,赵广明,庞守吉,等.黄河三角洲北部湿地多环芳烃分布与来源[J].海洋地质与第四纪地质,2008,28(6):57-62.
    [7]Binelli A, Sarkar S K, Chatterjee M, et al. A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal India) [J]. Chemosphere,2008,73(7):1129-1137.
    [8]罗孝俊,陈社军,麦碧娴,等.珠江及南海北部海域表层沉积物中多环芳烃分布及来源[J].环境科学,2005,26(4):129-134.
    [9]欧冬妮,刘敏,许世远,等.长江口近岸水体悬浮颗粒物多环芳烃分布与来源辨析[J].环境科学,2008,29(9):2392-2398.
    [10]丘耀文,周俊良,Maskaoui K,等.在大亚湾海域水体和沉积物中多环芳烃分布及其生态危害评价[J].热带海洋学报,2004,23(4):72-80.
    [11]Owen R B, Sandhu N. Heavy Metal Accumulation and Anthropogenic Impacts [J].Mar Pollut Bull,2000, 40(2):174-180.
    [12]杭小帅,王火焰,周健民.电镀厂下游水体中重金属的分布特征及其风险评价[J].环境科学,2008,29(10):2736-2742.
    [13]余辉,张文斌,余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J].环境科学,2011,32(2):437-444.
    [14]张婧,王淑秋,陈吉平,等.辽河水系表层沉积物中重金属分布及污染特征研究[J].环境科学,2008,29(9):2413-2418.
    [15]盛菊江,范德江,杨东方,等.长江口及其邻近海域沉积物重金属分布特征和环境质量评价[J].环境科学,2008,29(9):2405-2412.
    [16]郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报,2001,12(3):469-473.
    [17]李小燕,杨红玉,倪进治.土壤多环芳烃、重金属及其复合污染的植物修复研究进展[J].热带水土保持,2009,21(4):40-44.
    [18]Yanzheng G, Lizhong Z. Phytoremediation for phenanthrene and pyrene contaminated soils [J]. Journal of Environmental Science,2005,17(1):14-18.
    [19]Liu T F, Wang T, Sun C, et al. Single and joint toxicity of cypermethrin and copper on Chinese cabbage (Pakchoi) seeds [J]. Journal of Hazardous Materials,2009,163(1):344-348.
    [20]金彩霞,刘军军,周启星,等.磺胺间甲氧嘧啶-镉复合污染对作物种子发芽的影响[J].中国环境科学,2010,30(6):839-844.
    [21]朱江.镉与菲复合污染对安德爱胜蚓(Eisenia andrei)溶酶体膜稳定性的影响[J].上海交通大学学报,2010,28(4):355-360.
    [22]魏俊飞,吴家强,焦文娟.多环芳烃的毒性及其治理技术研究[J].污染防治技术,2008,21(3):65-69.
    [23]霍炜洁,肖晶晶,黄亚丽,等.微生物技术修复水污染的研究进展[J].生物技术通报,2008,23(4):94-98.
    [24]A.K. Haritash, C.P. Kaushik. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):A review [J]. Journal of Hazardous Materials,2009,169 (1-3):1-15.
    [25]Bharathibai J. Basu, C. Anandan, K.S. Rajam. Study of the mechanism of degradation of pyrene-based pressure sensitive paints [J]. Sensors and Actuators B,2003,94(3):257-266.
    [26]李强,陈明,张玉臻,等.生物吸附剂ZL5-2对Cr(Ⅵ)的吸附机理[J].环境科学,2006,27(2):343-346.
    [27]Wei X Y, Sang L Z, Chen J N. The effects of LMWOAs on biodegradation of multi-component PAHs in aqueous solution using dual-wavelength fluorimetry [J]. Environmental Pollution,2009,157(11):3150-31 57.
    [28]邓军.氧化节杆菌对水体中苯并[a]芘-镉复合污染的生物处理应用及机理研究[D].广州:暨南大学,2010.
    [29]金相灿,程振华,徐南妮,等.有机化合物污染化学[M].北京:清华大学出版社,1999.
    [30]陈春云,岳珂,陈振明,等.微生物降解多环芳烃的研究进展[J].微生物学杂志,2007,27(6):100-103.
    [31]苏丹,李培军,王鑫,等.3株细菌对土壤中芘和苯并芘的降解及其动力学[J].环境科学,2007,28(4):913-917.
    [32]吴蔓莉,聂麦茜,王晓昌,等.Mn2+在黄杆菌FCN2菌株降解芘过程中的作用研究[J].环境科学,2008,29(7):1982-1985.
    [33]段学军,闵航.一株抗镉细菌的分离鉴定及其抗性基因定位的初步研究[J].环境科学学报,2004,24(1):154-158.
    [34]Yu X Z, Gao Y, Wong M H, et al. Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies [J]. Chemosphere,2006,65(9): 1500-1509.
    [35]于敏,牛晓君,魏玉芹,等.电子垃圾拆卸区域重金属污染的空间分布特征[J].环境化学,2010,29(3):553-555.
    [36]杨传平,姜颖,郑国香,等.环境生物技术原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2010:95-96.
    [37]张娜,尹华,叶锦韶,等.嗜麦芽窄食单胞菌J12对芘的降解特性[J].环境科学与技术,2010,33(4):6-9.
    [38]陆晓华,成官文.环境污染控制原理[M].武汉:华中科技大学出版社,2010:210-211.
    [39]巴迎迎,张通,吕静,等.一株碱性脱除硫酸盐细菌的筛选及其生长特性研究[J].环境工程学报,2009,3(9):1639-1642.
    [40]Johan N, Jenny E.H, Cecilia A. Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment [J]. Aquatic Toxicology,2008,90(6):223-227.
    [41]贾宝亮,范丙全,隋新华,等.两株降解芘的分枝杆菌的筛选鉴定及降解性能[J].环境科学学报,2008,28(11):2213-2220.
    [42]张汉波,郑月,曾凡,等.几株细菌的重金属抗性水平和吸附量[J].微生物通报,2005,32(3):24-29.
    [43]Oleg S. P, Gleb S. P, A.F Mazel. A Structural Study of Cadmium Interaction with Aquatic Microorganisms [J]. Environment Science & Technology,2008,42(15),5527-5533.
    [44]Robert A Copeland. Enzymes:A Practical Introduction to Structure, Mechanism, and Data Analysis [M]. John Wiley & Sons, Inc.Publication,2000:248-249.
    [45]Zang S Y, Li P J, Li W X, et al. Degradation mechanisms of benzo[a]pyrene and its accumulated metabolites by biodegradation combined with chemical oxidation [J].Chemosphere,2007,7(6):1368-1374.
    [46]杜连祥,路福平.微生物学实验技术[M].中国轻工业出版社,2008:118-119.
    [47]Shen G Q, Lu Y T. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme [J]. Chemosphere,2005,61 (8):1175-1182.
    [48]潘建华,刘瑞霞.蜡状芽孢杆菌(Bacillus cereus)吸附铅的研究[J].环境科学,2004,25(2):166-169.
    [49]Vijayaraghavan K, Yun Y S. Bacterial biosorbents and biosorption [J]. Biotechnology Advances,2008, 26 (3):266-291.
    [50]Vasudevan P, Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker's yeast [J]. Bioresource Technology,2003,89(30):281-287.
    [51]Amini M, Younesi H, Bahramifar N. Statistical modeling and optimization of the cadmium biosorption processin an aqueous solution using Aspergillus niger [J]. Colloids and Surfaces A:Physicochem.Eng.Aspects, 2009,337(1-3):67-73.
    [52]Rathinam A, Maharshi B, Janardhanan S K, et al. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass:A kinetic and thermodynamic study [J]. Bioresource Technology,2010,101(5):1466-1470.
    [53]Tsekova K, Todorova D, Dencheva V, et al. Biosorption of copper (Ⅱ) and cadmium (Ⅱ) from aqueous solutions by free and immobilized biomass of Aspergillus niger [J]. Bioresource Technology,2010,101(6): 1727-1731.
    [54]Yalcm E, Cavusoglu K, Kinahoglu K. Biosorption of Cu2+ and Zn2+ by raw and autoclaved Rocella phycopsis [J]. Journal of Environmental Sciences,2010,22 (3):367-373.
    [55]Mashitah M D, Azila Y Y, Bhatia S. Biosorption of cadmium (Ⅱ) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution [J]. Bioresource Technology,2008,99(11):4742-4748.
    [56]Lebeau T, Bagot D, Jezequel K, et al. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium:effects of Cd, pH and techniques of culture [J]. The Science of the Total Environment,2002,291 (1-3):73-83.
    [57]Vig K, Megharaj M, Sethunathan N, et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review [J]. Advances in Environmental Research,2003,8(1):121-135.
    [58]Tangaromsuk J, Pokethitiyook P, Kruatrachue M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass [J]. Bioresource Technology,2002,85(1):103-105.
    [59]Yuan H P, Zhang J H, Lu Z M, et al. Studies on biosorption equilibrium and kinetics of Cd2+ by Streptomyces sp.K33 and HL-12 [J]. Journal of Hazardous Materials,2009,164(2-3):423-431.
    [60]Goksungur Y, Uren S, Guvenc U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass [J]. Bioresource Technology,2005,96(1):103-109.
    [61]Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values [J]. Journal of Hazardous Materials,2008,151(1):185-193.
    [62]Fan T, Liu Y G, Feng B Y, et al. Biosorption of cadmium (Ⅱ), zinc (Ⅱ) and lead(Ⅱ) by Penicillium simplicissimum:Isotherms,kinetics and thermodynamics [J]. Journal of Hazardous Materials,2008,160(2-3): 655-661.
    [63]Akar T, Tunali S. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(Ⅱ) and Cu(II) ions from an aqueous solution [J]. Bioresource Technology,2006,97(15):1780-1787.
    [64]朱淮武.有机分子结构波谱解析[M].北京:化学出版社,2008:29-75.
    [65]Xiao X, Luo S L, Zeng G M, et al. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp.LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L [J]. Bioresource Technology,2010, 101(6):1668-1674.
    [66]Yahaya Y A, Don M M, Bhatia S. Biosorption of copper(Ⅱ) onto immobilized cells of Pycnoporus sanguineus from aqueous solution:Equilibrium and kinetic studies [J]. Journal of Hazardous Materials,2009, 161(1):189-195.
    [67]陶敬奇,王超英,李碧芳,等.固相微萃取-高效液相色谱联用分析环境水样中的痕量多环芳烃[J].色谱,2003,21(6):599-602.
    [68]常薇,郁翠华,周娟.单液滴微萃取-气相色谱/质谱法检测水中多环芳烃[J].环境污染与防治,2009,31(5):54-56.
    [69]麦碧娴,林峥,张干,等.珠江三角洲沉积物中毒害有机物的污染现状及评价[J].环境科学研究,2001,14(1):19-23.
    [70]K Vig, M Megharaj, N Sethunathan, R Naidu. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review [J]. Advances in Environmental Research,2003,30(8):121-135.
    [71]Sebastien Roy, Suzanne Labellel, Punita Mehta, et al. Phytoremediation of heavy metal and PAH-contaminated brownfield sites [J]. Plant and Soil,2005,272(1-2):277-290.
    [72]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004:334-335.
    [73]Shen G Q, Cao L K, Lu Y T, et al. Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth [J]. Environmental Science and Pollution Research,2005,12(5):259-263.
    [74]周启星,程云,张倩茹,等.复合污染生态毒理效应的定量关系分析[J].中国科学C辑,2003,33(6):566-573.
    [75]Baath E, Diaz R M, Frostegard A, et al. Effect of metal- rich sludge amendments on the soil microbial community [J]. Applied and Environmental Microbiology,1998,64(1):238-245.
    [76]Maliszewska K, Smreczak B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination [J]. Environment International,2003,28:719-728.
    [77]S. Gan, E.V. Lau, H.K. Ng. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) [J]. Journal of Hazardous Materials,2009,169 (2-3):1-15.
    [78]Chang F Y, Chen J C, Wey M Y. The activity of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for PAHs removal in the waste incineration processes:Effects of particulates, heavy metals, and acid gases [J]. Fuel,2009,88 (9): 1563-1571.
    [79]Oleszczuk P. Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content [J]. Chemosphere,2007,67(3):582-591.
    [80]Meyer S, Steinhart H. Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil/compost mixture [J]. Chemosphere,2000,40(4):359-367.
    [81]Lei L, Khodadoust A P, Suidan M T, et al. Biodegradation of sediment-bound PAHs in field contaminated sediment [J]. Water Research,2005,39(2-3):349-361.
    [82]Ariel M. Blanc, Larry G. Holland, Stanley D. Rice. Anthropogenically sourced low concentration PAHS: In situ bioavailability to juvenile Pacific salmon [J]. Ecotoxicology and Environmental Safety,2010,7(4):1-9.
    [83]Li P J, Li X J, et al. Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation [J]. Journal of Hazardous Materials,2010,174(1-3):859-863.
    [84]Witt G, Liehr G A, Borck D. Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea [J]. Chemosphere,2009,74(4):522-529.
    [85]Oleszczuk P. Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting [J]. Bioresource Technology,2009,100(1):413-420.
    [86]Liu X, Zhang G, Jones C K. Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS.) from the northern slope of Nanling Mountains [J]. Atmospheric Environment,2005,39(30):5490-5499.
    [87]周东美,王慎强,陈怀满.土壤中有机污染物—重金属复合污染的交互作用[J].土壤与环境,2000,9(2):143-145.
    [88]沈国清,陆贻通,洪静波,等.菲和镉复合污染对土壤微生物的生态毒理效应[J].环境化学,2005,24(6):662-665.
    [89]Bagneris C, Cammack R, Mason JR. Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida [J]. Applied and Environmental Microbiology,2005,71 (3):1570-1580.
    [90]沈锡辉,刘志培,王保军,等.苯酚降解菌红球菌PNAN5菌株(Rhodococcus sp. strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质研究[J].环境科学学报,2004,24(3):482-486.
    [91]何宝燕,尹华,叶锦韶,等.酵母菌吸附重金属铬的生理代谢机理及细胞形貌分析[J].环境科学,2007,28(1):194-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700