用户名: 密码: 验证码:
Fenton氧化法去除制革废水中难降解鞣剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制革废水是典型的高污染难生物降解的废水,随着污水排放标准的提高,仅仅生物法降解制革废水已经难以满足日益提高的污水排放标准要求。动物生皮经化学药剂和机械物理加工形成皮革,这个过程中生皮中的大量的脂质、蛋白会溶于水中,为了让皮革获得光滑,耐磨等一系列优质性状,制革工艺中会大量添加纯碱、工业盐、硫化物、各种合成鞣剂、加脂剂、染料等化工原料,这些部分也会形成废物排出。这其中,皮革生产过程中采用的大量鞣剂、助鞣剂结构稳定,是主要的难生物降解物质。
     本文以单宁、β-萘磺酸钠为难降解鞣剂、助鞣剂的代表,研究了Fenton氧化法对两种物质的降解情况。首先通过单因素试验了解了Fenton氧化单宁、β-萘磺酸钠的效果,分析了初始pH值、过氧化氢投加量、亚铁投加量、曝气量、反应温度、反应时间对Fenton氧化降解单宁、β-萘磺酸钠的影响效果和原因,并对反应后加碱沉淀进一步去除COD效果进行了试验。并采用ESI-MS分析了Fenton氧化单宁、β-萘磺酸钠的产物,对Fenton氧化两种物质的机理进行了探讨。通过响应曲面试验检验了初始pH值、反应时间、过氧化氢投加量与反应物浓度的交互作用,简要分析了交互作用产生的原因。建立了污染物响应曲面模型,通过方差分析以及假设检验分析了模型的适用性,在确定模型拟合度良好的条件下进行了反应条件优化和验证。在优化的基础上将响应模型应用于实际废水,取得了良好的效果。
     Fenton氧化单宁、β-萘磺酸钠的单因素试验表明相对于反应温度、曝气程度,反应的初始pH值、过氧化氢投加量、亚铁盐投加量、以及反应时间是Fenton氧化的重要影响因素。最佳pH值在2.5至3左右,过氧化氢投加量与COD值摩尔比接近1:1,亚铁盐投加量为过氧化氢投加量的1/20至1/5(摩尔比),反应时间60min。单因素试验中同时考察了反应过程中pH值的变化情况,通过pH值的变化从一个侧面分析了污染物、过氧化氢、铁盐的存在形式和对反应的影响,解释了各因素影响Fenton氧化的原因。这其中,亚铁离子和铁离子的存在形式对Fenton氧化的影响很大。最后通过反应后加碱沉淀,进一步提高了单宁和β-萘磺酸钠的去除效果,去除率的提高普遍在5%以上,最高达到13%。
     经ESI-MS分析,Fenton氧化单宁和β-萘磺酸钠主要是羟基自由基优先进攻含有官能团的苯环形成醌,之后使苯环断裂生成羧酸、酮等中间产物。这些中间产物会被氧化成苯酚,苯酚经历对苯醌,顺丁烯二酸最终被完全矿化。
     响应曲面法分析各因素交互作用发现污染物浓度、pH值以及过氧化氢投加量之间交互作用显著。拟合模型相关系数R2达0.9以上,置信度为99%,试验精度Adeq Precision高。模型优化得到Fenton氧化的最优条件进行实验室验证,单宁和β-萘磺酸钠的误差分别为0.84%和1.38%。将模型应用于实际废水预测,效果良好。现场皮革废水生物处理后经Fenton氧化,COD降至60mg/L以下。
Tanning effluent is conventional high contamination and non-biodegradation waste water, Traditional treatment method cannot be in keeping with the improvement of emission standard. A great deal of tanning agents and auxiliary tanning agents are adopted in tannery production process. They are mainly the non-biodegradation materials with stable structure.
     In this paper, selecting tannin and Sodiumβ-naphthalenesulfonate as model (auxiliary) tanning agent, the efficiency and mechanism of Fenton degradation on tannin andβ-NaSS were studied. Effect and reasons of initial pH, hydrogen peroxide dose, ferrous salt dose, aeration rate, reaction temperature and reaction time on the Fenton Oxidation were analysed. Then studied on the effect of coagulation and sedimentation with residual ferric salt after Fenton OxidationThe interaction of initial pH, reaction time, hydrogen peroxide dose and concentration of the pollutant was research by response surface method in order to make a brief analysis of the reasons. After creating response surface models of the two kind pollutants, It showed that the models were fitting well with analysis of variance and hypothesis testing. Reaction conditions were optimized by the models and lab testing results were accordance to the optimization conditions. Experiment with actual waste water in optimization condition gained good effect. ESI-MS was used to analyse the products generated by Fenton Oxidation of tannin andβ-NaSS so as to study the mechanisms of Fenton Oxidation of tannin andβ-NaSS. Single factor experiment indicated that initial pH, H2O2 dose, ferrous salt dose and reaction time are more important to Fenton Oxidation than reaction temperature, aeration rate. The optimal conditions are pH about2.5 to 3, the mol ratio of H2O2 dose and COD≈1:1, the mol ratio of Fe2+ and H2O2 from 1/20 to 1/5, reaction time=60min.The pH changs during Fenton Oxidation was also researched by single factor test. It can reflect the exist form of tannin,β-NaSS, H2O2 and iron ion, and explain how these factors affect the Fenton oxidation. the greater affection is ferrous ion and ferric ion s exist form . Removal ratios of tannin andβ-NaSS by coagulation and sedimentation after Fenton were improved above 5% generally, some up to 13%.ESI-MS analysis showed that during Fenton oxidation of tannin andβ-NaSS process, the hydroxy free radicals priority attack benzene ring with functional group and form quinone. Quinone was easily lead benzene rings to breaking into carboxylic acid, ketone and other intermediate products .If free radicals are enough, these intermediate products can be oxidated to phenol. Phenol was mineralized totally by way of p-benzoquinone, maleate, CO2 and H2O.
     Response surface method verified that interaction of concentration of pollutant, H2O2 dose, and pH was outstanding. oefficients of correlation(R2)of fitting models were above 0.9, meanwhile the models’confidence level was 99% with high signal to noise ratio.It could be obtained optimal conditions using model optimize. Taking laboratory experiment in optimal conditions, tannin and NaSS error was only 0.84%and 1.38%. Experiment with actual waste water in optimization condition also gained good effect.After Fenton oxidation of biological treatment effluent of tanning waste water, COD could be blow 60mg/L and meet emission standard.
引文
[1]国家统计局. (整表/季度/工业)分行业主要工业经济指标(季报)[EB/OL]. [2010-11-02].http://www.stats.gov.cn/tjsj/
    [2]陈应元.全国皮革业最新资料统计[J].皮革与化工. 2010(1): 13.
    [3]田美.中国皮革工业现状分析及发展对策[J].中国皮革. 2008(1): 42-44.
    [4] Reemtsma T, Jekel M. Dissolved Organics in Tannery Wastewaters and their Alteration by a Combined Anaerobic and Aerobic Treatment[J]. Water Research. 1997, 31(5): 1035-1046.
    [5]游伟民.皮革废水治理技术的研究进展[J].皮革与化工. 2009(2): 16-20.
    [6]吴浩汀.制革工业废水处理技术及工程实例(第2版)[M].化学工业出版社, 2010.
    [7]国家统计局. (整表/年度/环境保护)工业按行业分废水排放及处理情况[EB/OL]. [2010-11-02].http://www.stats.gov.cn/tjsj/
    [8] Song Z, Williams C J, Edyvean R. Sedimentation of Tannery Wastewater[J]. Water Research. 2000, 34(7): 2171-2176.
    [9] Tunay O, Kabdasli I, Orhon D, et al. Use and Minimization of Water in Leather Tanning Processes[J]. Water Science and Technology. 1999, 40(1): 237-244.
    [10]陈彦.制革厂清洁生产中的废水深度处理研究[D].华南理工大学, 2010.
    [11]魏俊飞.制革工业典型污染物产污特征及产污系数研究[D].陕西科技大学, 2009.
    [12] Haydar S, Aziz J A. Characterization and Treatability Studies of Tannery Wastewater Using Chemically Enhanced Primary Treatment (Cept) a Case Study of Saddiq[J]. Journal of Hazardous Materials. 2009(163): 1076-1083.
    [13]高忠柏,苏超英.制革工业废水处理[M].化学工业出版社, 2001.
    [14] Menéndez C M D. Tannery Wastewater Treatment[J]. Tecnologia Del Agua. 1998, 183: 27-32.
    [15] Cooman K, Gajardo M, Nieto J, et al. Tannery Wastewater Characterization and Toxicity Effects On Daphnia Spp.[J]. Environmental Toxicology. 2003, 18(1): 45-51.
    [16]霍宇凝,薛莉,袁虹,等.高分子复合絮凝剂对活性印染废水的脱色性能研究[J].工业水处理. 2006, 1(1): 33-35.
    [17] De Souza S M D A, Bonilla K A S, De Souza A A U. Removal of COD and Color From Hydrolyzed Textile Azo Dye by Combined Ozonation and Biological Treatment[J]. Journal of Hazardous Materials. 2010, 179(1-3): 35-42.
    [18] Su C, Pukdee-Asa M, Ratanatamskul C, et al. Effect of Operating Parameters On Decolorization and COD Removal of Three Reactive Dyes by Fenton's Reagent Using Fluidized-Bed Reactor[Z]. 2011: In Press, Corrected Proof.
    [19] Santana M H P, Da Silva L M, Freitas A C, et al. Application of Electrochemically Generated Ozone to the Discoloration and Degradation of Solutions Containing the Dye Reactive Orange 122[J]. Journal of Hazardous Materials. 2009, 164(1): 10-17.
    [20]石碧,狄莹.植物单宁在制革工业中的应用原理[J].皮革科学与工程. 1998, 8(3): 5-29.
    [21]刘步明,罗怡,马亚军.制革用阳离子复鞣剂[J].皮革科学与工程. 2006(4): 45-47.
    [22]维基百科.单宁酸[EB/OL]. [2010-11-11].http://zh.wikipedia.org/wiki/五倍子单宁酸
    [23]何贵萍,申琳,马佳,等.含单宁废液的生物降解特性研究[J].中国科技论文在线. 2009, 4(9): 670-674.
    [24]任南琪.单宁影响制革废水可生化性的研究[J].中国给水排水. 1989, 5(2): 16-19.
    [25] Villalba J J, Provenza F D, Shaw R. Initial Conditions and Temporal Delays Influence Preference for Foods High in Tannins and for Foraging Locations with and without Foods High in Tannins by Sheep[J]. Applied Animal Behaviour Science. 2006, 97(2-4): 190-205.
    [26] Scalbert A. Antimicrobial Properties of Tannins[J]. Phytochemistry. 1991, 30(12): 3875-3883.
    [27]任南琪,张自杰.单宁的生物降解途径及规律的研究[J].哈尔滨建筑工程学院学报. 1987(4): 38-45.
    [28]龚英,陈武勇,成康.表面活性剂在制革准备和染色中的研究进展[J].中国工程科学. 2009(4): 31-35.
    [29]王云芳,刘静.表面活性剂在毛皮工业中的应用[J].咸阳师范学院学报. 2002(2): 13-15.
    [30]李晓娥,杨宗邃,程凤侠,等.表面活性剂的结构、性能及其对猪皮的脱脂效果[J].精细化工. 1995(2).
    [31] Piotte M, Bossányi F, Perreault F, et al. Characterization of Poly(Naphthalenesulfonate) Salts by Ion-Pair Chromatography and Ultrafiltration[J]. Journal of Chromatography A-Chemistry. 1995, 704(2): 377-385.
    [32]彭书传,魏凤玉,崔康平,等.Β-萘磺酸钠生产废水的处理[J].中国环境科学. 1998(5).
    [33]经再英. 2-萘酚生产废水的处理[J].化工环保. 1991(3): 157-161.
    [34]易德莲,官章伟,周建锋,等. 2-萘酚生产废水处理技术研究进展[J].工业用水与废水. 2009(4): 9-12.
    [35]陈梅雪,王菊思,赵丽辉,等.某些芳香化合物生物降解性研究[J].环境科学学报. 1995(4).
    [36] H. G, Ahlers J, Bias R, et al. Toxicity and Ecotoxicity of Sulfonic Acids: Structure-Activity Relationship[J]. Chemosphere. 1994, 28(12): 2203-2236.
    [37] A. S. Degradation of Substituted Naphthalenesulfonic Acids by Sphingomonas Xenophaga Bn6.[J]. Journal of Industrial Microbiology and Biotechnology. 1999, 23(4-5): 391-399.
    [38] Song Z, Edwards S, Burns R. Biodegradation of Naphthalene-2-Sulfonic Acid Present in Tannery Wastewater by Bacterial Isolates Arthrobacter Sp. 2Ac and Comamonas Sp. 4Bc[J]. Biodegradation. 2005, 16(3): 237-252.
    [39] Zerbinati O, Ostacoli G, Gastaldi D, et al. Determination and Identification by High-Performance Liquid Chromatography and Spectrofluorimetry of Twenty-Three Aromatic Sulphonates in Natural Waters[J]. Journal of Chromatography A-Chemistry. 1993, 640(1-2): 231-240.
    [40]冯丽娟.固相萃取-离子抑制色谱法研究萘磺酸盐在环境的降解及吸附行为[D].东北师范大学, 2006.
    [41] T R, J J, M J. Persistance of Sulphonated Polyphenols in the Biological Treatment of Industrial Wastewate[J]. Vom Wasser. 1993, 81: 353-363.
    [42] Arslan-Alaton I, Yalabik A B, Olmez-Hanci T. Development of Experimental Design Models to Predict Photo-Fenton Oxidation of a Commercially Important Naphthalene Sulfonate and its Organic Carbon Content[J]. Chemical Engineering Journal. 2010, 165(2): 597-606.
    [43]隋智慧,曹向禹,强西怀.氧化沟工艺及其在制革废水处理中的应用[J].中国皮革. 2005(1).
    [44]吴浩汀,王大长.氧化沟工艺处理制革废水实例[J].中国皮革. 2001(7).
    [45]杨建军,高忠柏.氧化沟工艺处理绵羊皮制革废水[J].中国皮革. 2002(9).
    [46]张林竹. Fenton试剂处理印染废水的实验研究[D].武汉理工大学, 2009.
    [47]何志明.微曝气Fenton氧化法-厌氧-好氧组合工艺处理含双酚a废水研究[D].江南大学, 2009.
    [48] Lofrano G, Meric S, Belgiorno V, et al. Fenton's Oxidation of Different Based Synthetic Tannins (Syntans)[M]. ATHENS:UNIV AEGEAN, 2005, B539-B545.
    [49] Lofrano G, Meric S, Belgiorno V, et al. Fenton’S Oxidation of Various-Based Tanning Materials[J]. Desalination. 2007(211): 10-21.
    [50] Lofrano G, Meri? S, Belgiorno V, et al. Fenton and Photo-Fenton Treatment of a Synthetic Tannin Used in Leather Tannery: A Multi-Approach Study[J]. Water Science & Technology. 2007, 55(10): 53-61.
    [51] Kremer M L. Complex Versus Free Radical Mechanism for the Catalytic Decomposition of H2O2 by Ferric Ions[J]. International Journal of Chemical Kinetics. 1985, 17(12): 1299-1314.
    [52] Walling C, Goosen A. Mechanism of the Ferric Ion Catalyzed Decomposition of Hydrogen Peroxide. Effect of Organic Substrates[J]. Journal of the American Chemical Society. 1973, 95(9): 2987-2991.
    [53] Lin S H, Lo C C. Fenton Process for Treatment of Desizing Wastewater[J]. Water Research. 1997, 31(8): 2050-2056.
    [54] Rigg T, Taylor W, Weiss J. The Rate Constant of the Bimolecular Reaction Between Hydrogen Peroxide and Ferrous Ion[J]. Cellular and Molecular Life Sciences. 1954, 10(5): 202.
    [55]柏华,刘佳,刘福柱.自由基的研究进展[J].江西饲料. 2007(3): 1-4.
    [56] Meri? S, Kaptan D, ?lmez T. Color and COD Removal From Wastewater Containing Reactive Black 5 Using Fenton's Oxidation Process[J]. Chemosphere. 2004, 54(3): 435-441.
    [57] Lopez A, Pagano M, Volpe A, et al. Fenton’S Pre-Treatment of Mature LandfillLeachate[J]. Chemosphere. 2004, 54(7): 1005-1010.
    [58] Maezono T, Tokumura M, Sekine M, et al. Hydroxyl Radical Concentration Profile in Photo-Fenton Oxidation Process Generation and Consumption of Hydroxyl Radicals During the Discoloration of Azo-Dye Orange Ii[J]. Chemosphere. 2011, 82(10): 1422-1430.
    [59] Myers R H, Montgomery D C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2Nd Ed[M]. USA: JohnWiley & Sons, 2002.
    [60] Malik P K, Saha S K. Oxidation of Direct Dyes with Hydrogen Peroxide Using Ferrous Ion as Catalyst[J]. Separation and Purification Technology. 2003, 31(3): 241-250.
    [61] Panizza M, Cerisola G. Electro-Fenton Degradation of Synthetic Dyes[J]. Water Research. 2009, 43(2): 339-344.
    [62] Zepp R G, Faust B C, Hoigne J. Hydroxyl Radical Formation in Aqueous Reactions (Ph 3-8) of Iron(Ii) with Hydrogen-Peroxide - The Photo-Fenton Reaction[J]. Environmental Science & Technology. 1992, 26(2): 313-319.
    [63] Kwon B G, Lee D S, Kang N, et al. Characteristics of P-Chlorophenol Oxidation by Fenton's Reagent[J]. Water Research. 1999, 33(9): 2110-2118.
    [64] T. Rigg W T J W. The Rate Constant of the Reaction Between Hydrogen Peroxide and Ferrous Ions[J]. Chemical Physics. 1054, 22(4): 575-577.
    [65] Bielski B H J, Cabelli D E, Arudi R L. Reactivity of H2O2/O2-Radicals in Aqueous Solution[J]. Journal of Physical and Chemical Reference Data. 1985, 14(4): 1041-1100.
    [66] C. Walling S K. The Oxidation of Alcohols by Fenton’S Reagent: The Effect of Copper Ion[J]. Journal of the American Chemical Society. 1971(93): 4275-4281.
    [67] Rivera-Utrilla J, Sanchez-Polo M, Zaror C A. Degradation of Naphthalenesulfonic Acids by Oxidation with Ozone in Aqueous Phase[J]. Physical Chemistry Chemical Physics. 2002, 4(7): 1129-1134.
    [68] Dutta K, Bhattacharjee S, Chaudhuri B, et al. Oxidative Degradation of Malachite Green by Fenton Generated Hydroxyl Radicals in Aqueous Acidic Media[J].Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 2003, 38(7): 1311-1326.
    [69] Rivas F J, M F J B, Frades J, et al. Oxidation of P-Hydroxybenzoic Acid by Fenton's Reagent[J]. Water Research. 2001, 35(2): 387-396.
    [70] H H, Y N, K O. Novel Degradation Method of Organic Compounds in Human Surroundings Using Iron Oxide[J]. Repeort Technology Research. 2007.
    [71] Buxton G V, Greenstock C L, Helman W P, et al. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals(·OH/·O- )Aqueous Solution[J]. Journal of Physical and Chemical Reference Data. 1988, 17(2): 513-886.
    [72] Walling C. Fenton's Reagent Revisited[J]. Accounts of Chemical Research. 1975, 8(4): 125-131.
    [73] Zazo J A, Pliego G, Blasco S, et al. Intensification of the Fenton Process by Increasing the Temperature[J]. Industrial & Engineering Chemistry Research. 2011, 50(2): 866-870.
    [74] Ruppert G, Bauer R, Heisler G, et al. Mineralization of Cyclic Organic Water Contaminants by the Photo-Fenton Reaction -- Influence of Structure and Substituents[J]. Chemosphere. 1993, 27(8): 1339-1347.
    [75] O'Coinceanainn M, Bonnely S, Baderschneider B, et al. Reaction of Iron(Iii) with Theaflavin: Complexation and Oxidative Products[J]. Journal of Inorganic Biochemistry. 2004, 98(4): 657-663.
    [76] Gu H F, Li C M, Xu Y J, et al. Structural Features and Antioxidant Activity of Tannin From Persimmon Pulp[J]. Food Research International. 2008, 41(2): 208-217.
    [77]沈吉敏.水中硝基(氯)苯及多羟基单宁酸的O3/H2O2降解效果与机理[D].哈尔滨工业大学, 2007.
    [78]张文华,候旭.单宁抗氧化活性与结构关系的理论研究[J].皮革科学与工程. 2009(5): 9-13.
    [79]李大祥,宛晓春,杨昌军,等.茶儿茶素氧化机理[J].天然产物研究与开发. 2006(1): 171-181.
    [80]王静,戚向阳.表没食子酸儿茶素没食子酸酯体外氧化影响因素及其氧化产物分析[J].精细化工. 2006(11): 1094-1098.
    [81] Schrank S G, Jose H J, Moreira R F P M, et al. Applicability of Fenton and H2O2 /Uv Reactions in the Treatment of Tannery Wastewaters[J]. Chemosphere. 2005(60): 644-655.
    [82] Poznyak T, Araiza B. Ozonation of Non-Biodegradable Mixtures of Phenol and Naphthalene Derivatives in Tanning Wastewaters[J]. Ozone-Science & Engineering. 2005, 27(5): 351-357.
    [83]钟先锦.高级氧化法降解对甲基苯磺酸机理的研究[D].河南大学, 2007.
    [84]林春绵,王军良,徐明仙,等.萘酚在超临界水中氧化降解路径的研究[J].环境化学. 2004(3): 283-288.
    [85] Poerschmann J, Trommler U. Pathways of Advanced Oxidation of Phenol by Fenton's Reagent-Identification of Oxidative Coupling Intermediates by Extractive Acetylation[J]. Journal of Chromatography A-Chemistry. 2009, 1216(29): 5570-5579.
    [86] Thornton T D, Savage P E. Phenol Oxidation Pathways in Supercritical Water[J]. Industrial & Engineering Chemistry Research. 1992, 31(11):2451-2456.
    [87] Rivera-Utrilla J, Sanchez-Polo M, Zaror C A. Degradation of naphthalenesulfonic acids by oxidation with ozone in aqueous phase[J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2002, 4(7): 1129-1134.
    [88] Khataee A R, Zarei M, Moradkhannejhad L. Application of Response Surface Methodology for Optimization of Azo Dye Removal by Oxalate Catalyzed Photoelectro-Fenton Process Using Carbon Nanotube-Ptfe Cathode[J]. Desalination. 2010, 258(1-3): 112-119.
    [89] Babaei A A, Mesdaghiniai A R, Haghighi N J, et al. Modeling of Nonylphenol Degradation by Photo-Nanocatalytic Process Via Multivariate Approach[J]. Journal of Hazardous Materials. 2011, 185(2-3): 1273-1279.
    [90] Kasiri M B, Khataee A R. Photooxidative Decolorization of Two Organic Dyes with Different Chemical Structures by Uv/H2O2 Process: Experimental Design[J]. Desalination. 2011, 270(1-3): 151-159.
    [91] Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of Azo Dye Production Wastewaters Using Photo-Fenton-Like Advanced Oxidation Processes: Optimization by Response Surface Methodology[J]. Journal of Photochemistry and Photobiology A-Chemistry. 2009, 202(2-3): 142-153.
    [92]张君萍,侯喜林,董海艳,等.响应曲面法优化超声波提取沙葱籽多糖工艺[J].食品科学. 2011(2): 98-103.
    [93]李丰超.高浓度皮革复(植)鞣废水处理研究[D].中山大学, 2006.
    [94]王成军,黄瑞敏,卿海波,等. Fenton试剂法深度处理皮革废水生化出水的研究[J].工业用水与废水. 2008(2): 49-51.
    [95]赵崇山,肖传山,董允. A/A/O生化处理+Feton深度处理工艺处理制革废水工程实例[J].肉类工业. 2009(6): 32-34.
    [96] Dantas T L P, JoséH J, De Fátima Peralta Muniz R M. Fenton andPhoto-Fenton Oxidation of Tannery Wastewater[J]. Acta Scientiarum. Technology. 2003, 25(1): 91-95.
    [97] Lou J C, Lee S S. Chemical Oxidation of Btx Using Fenton's Reagent[J]. Hazardous Waste and Hazardous Materials. 1995, 12(2): 185-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700