用户名: 密码: 验证码:
吹脱-MAP-两相厌氧联合工艺处理苯胺基乙腈生产废水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯胺基乙腈是一种染料中间体,在其生产过程中会产生含大量氨氮的高浓度有机废水。该废水成份复杂,可生化性低,是一种难生物降解的化工废水。为了除去该废水中的高浓度氨氮以利于后续生化处理,本研究采用吹脱-磷酸铵镁沉淀法(MAP)对废水进行脱氮预处理,然后将预处理后的废水进入两相厌氧反应器,考察两相厌氧工艺在处理该废水时的启动、分相特性,对两相厌氧动力学进行分析和研究,得到两相厌氧工艺处理苯胺基乙腈生产废水的动力学方程,同时对两相厌氧处理后的出水进行了好氧处理的可行性研究。此外,还对两相厌氧工艺中微生物种群多样性进行了分析。
     苯胺基乙腈生产废水中的氨氮浓度高达7000mg/L~12000mg/L,若直接用MAP沉淀法处理会消耗大量化学药剂导致单位处理成本过高,并且处理效果不理想。对高浓度氨氮废水先进行吹脱可以降低氨氮浓度,同时还可以回收氨氮。经试验研究,吹脱法处理苯胺乙腈生产废水氨氮的最佳条件为:吹脱时间为180min,吹脱温度为70℃,气水比为2000:1,吹脱pH为11。吹脱出水的氨氮浓度为1000mg/L~1500mg/L,吹脱对废水的COD去除率为5.8%左右,废水颜色由吹脱前的亮棕色转为深黑色。
     采用MgO和H_3PO_4作为MAP沉淀药剂,对吹脱出水进行正交试验得到MAP法去除氨氮的条件为:氧化镁与氨氮计量比为2.5:1,氨氮与磷酸计量比为1:1.2,反应pH为9.5。此时出水氨氮浓度为100mg/L~150mg/L,出水的残磷量为15~20mg/L,可以补充后续生化处理所需的磷元素。研究中发现生成物不易沉降,分析认为可能是废水中的疏水性物质附着于小颗粒沉淀表面,颗粒之间不易接触不能形成较密实的沉淀所致,研究中将药剂投加方式改为预配制糊状沉淀剂投加,该问题得到解决。
     本研究利用重庆钢铁集团焦化厂废水处理站的兼氧污泥作为种泥进行接种,将未经氨氮预处理的原废水稀释后对污泥进行驯化。保持进水COD浓度为500mg/L,对污泥进行了12d的兼氧驯化和10d的厌氧适应驯化;污泥在22d内经历了底物类型与环境条件的变化,对苯胺基乙腈生产废水的降解作用逐渐增强,反应器在第22d对COD的去除率为50%左右。22d后反应器转入厌氧负荷驯化状态,在低负荷驯化段(进水COD=500~1000mg/L)反应器对COD的去除率为60%左右;在中负荷驯化段(进水COD=1000~2000mg/L)反应器对COD的去除率为80%左右;在高负荷驯化段(进水COD>2000mg/L)反应器对COD的去除率为80%左右,但随着进水浓度的继续增加,COD去除率下降至60%左右,此时进水中的氨氮浓度已达470mg/L以上,说明氨氮已对微生物产生抑制作用,所以后续工艺必须将废水中氨氮浓度降低再进入两相厌氧反应器。
     分相研究中,向酸化反应器中投加2mol/LNa_2MoO_4做为甲烷菌抑制剂,连续投加3天。分相过程中,出水pH由8降至7,出水VFA由400mg/L升至800mg/L左右,出水碱度(以CaCO_3计)从800mg/L降至400mg/L左右。分相期间酸化反应器的COD去除率略有下降,但很快恢复正常。
     用脱氮预处理的废水稀释后进行两相厌氧负荷试验,当进水COD浓度为7058mg/L时,两相厌氧反应器处理效率达到最高,COD去除率为55%,其中水解酸化反应器、一级产甲烷反应器、二级产甲烷反应器的去除率分别为11.1%、17.4%、25.1%。将两相厌氧处理出水稀释至COD浓度为1000mg/L进行好氧处理可行性研究,水力停留时间为16h,COD去除率为61.3%,色度去除率为76.1%。
     以Nerfeld修正Monod方程作为两相厌氧工艺处理苯胺基乙腈生产废水动力学模型,通过Origin软件自定义曲线拟合得到产甲烷相一级、二级反应器及两相厌氧系统的动力学方程。利用PCR-TGGE技术对两相厌氧反应器内污泥进行了微生物菌群变化研究,通过接种污泥与不同反应器内驯化后的污泥对比得出以下结论:驯化过程极大改变了接种污泥的菌群丰度与结构,水解酸化反应器内1至4格污泥、两级产甲烷反应器内污泥与接种污泥的相似度分别为48.0%、48.2%、59.7%、56.8%和50.6%、50.2%;非公制多尺度分析(NMDS)表明水解酸化过程前期污泥结构差异较大,后期差异较小,两级产甲烷过程污泥差异相对较小。
N-Phenylglycinonitrile was a kind of dye intermediate which would produce a large number of wastewater of high concentration of COD and ammonia nitrogen in its production process. The wastewater was a kind of low biodegradability chemical wastewater with complex component. In order to remove high concentration of ammonia nitrogen in wastewater for the latter biological treatment, we used air-stripping and MAP as the pretreatment. The wastewater after pretreatment was pumped into two-phase anaerobic digester to study the feature of TPAD process in dealing with startup and phase splitted, and the kinetics equation was obtained after reaction kinetics analysis studied. The feasibility of treatment by actived sludge after anaerobic treatement and variation of bacterial community were also studied.
     Concentration of Ammonia nitrogen in N-Phenylglycinonitrile wastewater was up to 7000mg/L~12000mg/L,if the MAP applied directly it would consume a large quantities of chemicals which could lead to high consumption in unit treatment, and the effect was not good enough. So MAP applied after the air-stripping process was feasible that could reduce concentraion of ammoina nitrogen to 1500mg/L~2000mg/L, and we could recovery tail gas. The best condition determined by the experiment was: air-stripping time=180min, temperature=70℃, gas-water ratio=2000:1, pH=11. Air-stripping would remove 5.8% COD, but the wastewater would get into darkness.
     Using MgO and H_3PO_4 as the MAP agent, the optimal operation parameters of MAP was determined by orthogonal experiment: magnesium oxide and ammonia nitrogen stoichiometric ratio=2.5:1, ammonia nitrogen and phosphate ratio=1:1.2, reaction pH=9.5. Under the condition above, there would be 100mg/L~150mg/L NH_3-N and 15~20 mg/L phosphate remain in the wastewater. Experiments showed that the sediment was not easy to settle down for the reason that small particles of hyrophobic substances in wastewater attached to the sediments' surface, so that big particles of sediment was not easy to form for that they could not easily getting access from each other. But it would not occured after changing pre-prepared into paste precipitant dosage.
     Acclimated seed sludge was from coking plant in Chongqing Steel Group which feeded with orginal wastewater. Holding influent COD concentration 500mg/L, we did a duration of 12 days’facultative anaerobic acclimation and 10 days’adaptive anaerobic acclimation. After sludge suffered changing of substrates and living environment, the degradation strengthened gradually, and the remove rate of COD reached 50%. Acclimation run into load anaerobic acclimation after 22 days, and in low load stage (COD=500~1000mg/L) , TPAD remove over 60% COD, in medium load stage (COD=1000~2000mg/L),the removal rate of COD was about 80%, in high load stage (COD>2000mg/L), removal rate was high as medium load stage at first, but it would drop down with the concentration increase, for the reason was the ammonia nitorgen concentration was up to 470 mg/L, and bacterias would get depressed. The ammonia nitrogen must be removed before wastewater pumped into TPAD.
     Putting a dosage of 2mol/L Na2MoO4 as methanogens inhibitor lasted for 3 days. In this process, effluent pH drop down from 8 to 7, and VFA rised from 400mg/L to 800mg/L, alkalinity(CaCO_3) dropped from 800mg/L to 400mg/L. During these days, COD removal rate dropped down for a while, but it ran into normal quickly.
     The TPAD reactor reached its highest condition when influent COD up to 7058 mg/L which was after ammonia nitrogen removing pretreatment. The COD removal rate was 55%, and the souring reactor could remove 11.1% COD, 1st methane reactor could remove 17.4% COD, 2st methane reactor could remove 25.1% COD. TPAD effluent was treated by actived sludge treatment to study the feasibility of aerobic treatment after diluting COD to 1000mg/L. When HRT was 16h, actived sludge treatment could remove 61.3% COD and 76.1% chroma.
     We got N-Phenylglycinonitrile biodegradation dynamic model with 1st methane reactor, 2st methane reactor and TPAD reactor by curve fitting with Origin software custom fitted curve based on Nerfeld modified Monod equation. Research on bacterial community by contrasting acclimated sludge with seed sludge in different treatment unit with PCR-TGGE technique, we draw conclusion as follows: acclimating process could change bacterial diversity and community greatly, the dice coefficient between seed sludge and acclimated sludge was 48.0%、48.2%、59.7%、56.8% and 50.6%、50.2%, Analysis of NMDS showed there were differences in sludge of first steps of souring process, but less difference in the last steps, and more less differences between 1st methane sluge and 2st methane sludge.
引文
[1]赵月龙,祁偑时,杨云龙.高浓度难降解有机废水处理技术综述[J].四川环境, 2006, 25(4): 98-103.
    [2]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社, 2006, 8: 5-7.
    [3]薛蔓,张磊,崔元臣,芬顿试剂对田菁胶的氧化降解[J].应用化学, 2009, 26(10): 1241-1243.
    [4] Yang Deng, James D Englehardt.. Treatment of landfill leachate by the Fenton process[J]. Water Research, 2006, 40: 3683-3694.
    [5] Haber F, Weiss J J. The catalytic decomposition of hydrogen peroxide by iron satls[J]. Proceeding of the Royal Society(London), A, 1934, 147(51): 332-345.
    [6] Lei Lecheng, He Feng. Mechanism of homogeneous Fenton oxidation of phenol-containing wastewater[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(11): 1592-1597.
    [7]吴彦瑜,周少奇,覃芳慧. Fenton试剂对垃圾渗滤液中腐殖质的氧化/混凝作用[J].化工学报, 2009, 60(10): 2609-2613.
    [8]张恒,赵娜娜,王乐乐等.酸析-絮凝-Fenton氧化偶联工艺预处理制浆黑液[J].纸和造纸, 2009, 28(10): 51-54.
    [9]沈明,杨梦兵,王中伟.阳离子染料废水治理技术[J],中国环保产业, 2009, 9: 45-48.
    [10]周国娟,秦芳玲,屈撑囤等.油田压裂废水的Fenton氧化-絮凝回注处理研究[J],西安石油大学学报(自然科学版), 2009, 24(5): 67-71.
    [11]李甲亮,张万伟,王宏国. Fenton氧化对活性染料废水的处理[J].滨州学院学报, 2009, 25(3): 79-82.
    [12]陈武,杨昌柱.三维电极-Fenton试剂耦合法去除废水COD实验研究[J].环境污染治理技术与设备, 2006, 7(3): 83-87.
    [13] Agladze G R. Comparative study of chemical and electrochemical Fenton treatment of organic pollutants in wastewater[J].. J Appl Electrochem, 2007, (37): 985-990.
    [14]鲁思伽,洪军,祁士华等. UV/Fentnon体系中Fe3+/Fe2+的相互转化规律[J].环境科学学报, 2009, 29(6): 1258-1262.
    [15]魏毅,汤亚飞,明勇.活性炭载Fe2+三维电极法处理染料废水[J].武汉工程大学学报, 2009, 31(9): 35-38.
    [16]陈在旭,熊振湖. UV/Fenton反应对直接黑38的脱色与矿化[J]..环境科学与技术, 2009,32(8): 76-79.
    [17]陈小泉,刘焕彬.纳米科学与技术导论[M].北京:化学工业出版社, 2006.
    [18] Azrague K, Ainar P, Benoit Marquie F, et al. A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water[J].. Applied Catalysis B: Enviromental, 2007, 72: 197.
    [19]李翠翠,沈文浩,陈小泉.光催化氧化反应机理及在造纸废水处理中的应用[J].中国造纸, 2009, 28(8): 65-72.
    [20]张忠杰,杨绍贵,何忠等.微波辅助光催化氧化罗丹明B研究[J].三峡环境与生态, 2009, 2(5): 5-10.
    [21]陈芳艳,朱娇,唐玉斌. TiO2/AC复合光催化剂的研究进展[J].工业用水与废水, 2009, 40(3): 7-11.
    [22]梁新,徐敏强,李伟然等.难降解有机污水的超临界水氧化技术.环境科学与技术, 2009, 32(7): 163-194.
    [23]廖传华,褚旅去,方向等.高浓度难降解合成香料废水治理新技术-超临界水氧化法[J].香料香精化妆品, 2009, 8(4): 33-36.
    [24]陈杭,冯银花,蒋春跃等.超临界氧化废水装置技术的现状[J].水处理技术, 2007, 33(5): 6-9.
    [25]全魁,苍大强,成泽伟等.间歇式超临界水氧化技术处理焦油高酚水的试验研究[J].水处理技术, 2009, 35(5): 83-94.
    [26]陈淑花,詹世平,刘学武.超临界水氧化技术工业化的瓶颈问题及解决方法[J].化工设计, 2008, 18(6): 11-15.
    [27]张捷鑫,熊如意.湿式空气氧化技术的发展[J].广东化工, 2009, 36(8): 95-119.
    [28]曾经,彭青林.催化湿式氧化技术处理高浓度有机废水催化剂研究[J].环境污染与防治, 2009, 8(31): 37~45
    [29]舒燕,周军.活性炭为载体的CWAO催化剂研究[J].文山师范高等专科学校学报, 2009, 22(3): 117-120.
    [30]孟专国,王金生,付磊.湿式过氧化物氧化法处理苯酚丙酮废水研究[J].西安建筑科技大学学报(自然科学版), 2009, 41(4): 571-574.
    [31]闫雷,于秀娟,李淑芹.电解法处理化学镀镍废液[J].沈阳建筑大学学报(自然科学版), 2009, 25(4): 762-766.
    [32]高建平,陈庆彩,李翔美等.电解法处理硝基苯废水研究[J].现代农业科学, 2009, 16(5): 177-178.
    [33]吴丹,史启才,周集体.电解法废水处理技术的研究进展[J].辽宁化工, 2006, 35(8): 470-472.
    [34]王营茹,王莉.不同电极材料处理蒽醌蓝染料废水的比较[J].武汉工程大学学报, 2009, 31(9): 31-34.
    [35]班福忱,刘炯天,程琳等.极板材料对三维电极反应器处理苯酚模拟废水的影响[J].环境科学学报, 2009, 29(10): 2076-2080.
    [36]朱亚东,常明,王领.金刚石膜电极电化学氧化工业含磷废水的研究[J].天津理工大学学报, 2008,24(6): 58~61
    [37]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社, 1999.
    [38]于军,秦霄鹏,高磊等.内电解技术处理有机废水的应用进展[J].中国给水排水, 2009, 25(12): 12-15.
    [39]于凤刚,李彦锋,周林成等. Fenton强化铁炭微电解工艺处理硫化红棕中间体废水[J].环境科学与技术. 2009, 32(10): 149-152.
    [40]叶张荣,马鲁铭.曝气催化铁内电解预处理混合化工废水[J].化工环保, 2004, 24(6): 433-435.
    [41]方大伟,杨永忠,房发俐.曝气催化铁炭微电解预处理THF废水的实验研究[J].应用化工, 2009, 38(9): 1392-1394.
    [42]许吉现,唐葆彤,马新刚.曝气催化铝内电解法处理印染废水的试验[J].河北工程大学学报(自然科学版), 2009, 26(2): 42-44.
    [43]成功,雷蕾,徐迪等.微波无极紫外光催化-内电解协同降解活性艳红X-3B[J].化工环保, 2009, 29(3): 207-211.
    [44]郭振英,吕荣湖,孙惠东.高效好氧生物技术及其在污水处理中的应用[J].化工进展, 2008, 27(10): 1533-1550.
    [45]张勇,张林生,夏明芳.加压溶氧废水生物处理技术研究进展[J].工业水处理, 2005, 25(11): 9-11.
    [46] PAN Zhiyan, YU Shangqing, HUANG Haifeng, et al. Treatment of high concentration pesticide wastewater by pressurized biochemical process[C]. Japan: The 10th Asian-Pacific Confederation of Chemical Engineering Congress, 2004: 1-8.
    [47]王正,罗惕乾,康灿.加压微孔曝气反应器内气含率的实验研究.中国农机化, 2006, 1: 85-87.
    [48]方芳,金赞芳,潘志彦等.有机中间体废水加压活性污泥法处理及动力学研究[J].浙江工业大学学报, 2006, 34(4): 381-385.
    [49]雷彩虹,金赞芳,潘志彦.加压生化法处理苯胺废水的研究[J].浙江工业大学学报, 2008, 36(4): 423-426.
    [50] van Loosdrecht M C M, Heijnen S J. Biofilm bioreactors for wastewater treatment[J]. TrendsBiotechnol, 1993, 11(4): 117-121.
    [51]李博. MBBR移动床在污水处理技术中研究应用[J].煤矿现代化, 2009, 4: 65-66.
    [52]朱家义,王宏军,胡晓丽等.采用流动床生物膜工艺处理炼油污水[J].石化技术与应用, 2009, 27(3): 269-272.
    [53]徐灏龙,王长智,章一丹等.生物膜组合工艺处理医药综合废水的中试研究[J].中国给水排水, 2009, 25(7): 41-44.
    [54]郑慧,王兴祖,孙德智.厌氧光生物转盘-好氧生物膜处理偶氮染料废水[J].工业水处理, 2009, 29(1): 49-52.
    [55]李芙蓉,董有,宋珏容.悬浮载体生物膜工艺持膜试验研究[J].工业安全与环保, 2009, 35(9): 22-24.
    [56]刘正芹.染料生物降解脱色及印染废水FABR/O处理工艺研究[D].上海:东华大学, 2006.
    [57]唐晓亮,王同成,阮文权等.混凝-厌氧-好氧组合工艺处理聚合物生产废水[J].食品与生物技术学报, 2009, 28(5): 660-663.
    [58]张广垠,张娟,张炜等.全程厌氧与水解酸化在印染废水处理中的比较[J].工业水处理, 2009, 29(7): 41-43.
    [59]曲江,李生敏.外循环厌氧反应器处理含酚废水的启动研究[J].煤化工, 2009, 4: 61-63
    [60]周建冬,奚旦立,李小琴等.厌氧折板流反应器处理退浆废水的启动研究[J].工业水处理, 2009, 29, (7): 44-47.
    [61]张望,杨波,肖勇等. UBF两相生物反应器对渗滤液水质的稳定化作用[J].环境科学与技术, 2008, 31(6): 111-113.
    [62]吴锦华,韦朝海.两相厌氧流化床中优势菌种降解硝基苯废水的特性[J].环境工程学报, 2008, 2(6): 748-751.
    [63]黄健,汤利华,张华等.两相厌氧生物技术处理环氧树脂生产废水[J].合肥工业大学学报(自然科学版), 2007, 30(9): 1148-1151.
    [64] SHEN Xu-feng, SUN Xian-feng, XU Tian-tian. Treatment of printing and dyeing wastewater with multi-strain bioaugmentation process of SBR[J]. Journal of Xi’an Polytechnic University, 2009, 23(2): 574-577.
    [65] Venkata Mohan S, Chandrasekhara Rao N, Krishna Prasad K, et al. Bioaugmentation of an anaerobic sequencing bath biofilm reactor (AnSBBR) with immobilized suphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater[J]. Process Biochemistry, 2005, 40(8): 2849-2857.
    [66]田玉萍.白腐真菌生物接触氧化法处理染料废水试验研究[J].工业用水与废水, 2009, 40(1): 36-38.
    [67]孙先锋.高效菌降解造纸黑液木质素的特性与机理研究[D].西安建筑科技大学, 2002, 10.
    [68]冯栩,李旭东,曾抗美等.紫外线诱变提高特效菌的降解性能[J].中国环境科学, 2008, 28(9): 807-812.
    [69]肖亦,钟飞,潘献晓.固定化微生物技术在废水处理中的应用研究进展[J].环境科学与管理, 2009, 34(6): 82-84.
    [70]王坤,刘永军.活细胞固定化技术在焦化废水生物处理中的应用试验[J].环境科技, 2009, 22(4): 25-33.
    [71]吴秉韬,周伟丽,张振家等.包埋固定化微生物厌氧反应器启动特性研究[J].环境科学, 2009, 30(10): 2946-2951.
    [72]李超伟,谢娟,赖日坤.萃取预处理苯胺基乙腈生产废水试验研究[J].环保产业研究, 2007, 11: 30~33.
    [73]邱金建,付永胜,杨敏等.反渗透膜分离天然气化工废水的试验研究[J].四川建筑, 2006, 26(6): 163~164.
    [74]陈琳.苯胺基乙腈车间废水预处理工艺研究[D].重庆大学, 2008, 4.
    [75]何强,何孟狄,吉方英.兼氧-好氧工艺处理苯胺基乙腈废水试验研究[J].重庆建筑大学学报, 2002, 24(4): 50~52.
    [76]何化.两相厌氧处理苯胺基乙腈生产废水试验研究[D].重庆大学, 2008, 4.
    [77] LI X Z, ZHAO Q L. Efficiency of Biological Treatment Affected by High Strength of Ammonia-nitriogen inleachate and Chemical Precipitation of Ammonia-nitrogenos Pretreatment[J]. Chemosphere, 2001, 44: 37~43.
    [78]宁平,曾凡勇,胡学伟.中高浓度氨氮废水综合处理[J].有色金属, 2003, 55,增刊: 130-132.
    [79]方莎.磷酸铵镁化学沉淀法循环处理高氨氮废水研究[D].北京:北京交通大学, 2007, 12
    [80]邱卫国.农业氮素流失规律及河网污染控制研究[D].河海大学, 2007.
    [81]黄丽,项雅玲,袁锦方.三峡库区农田的化肥面源污染状况研究[C].第二届全国农业环境科学学术研讨会论文集, 2007, 7: 478~483.
    [82]任源,韦朝海,吴超飞等.焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报, 2007, 27(7): 1094~110.
    [83]郭景玉,万小芳,贺春梅等.上向流BAF处理合成氨废水的应用研究[J].石油化工安全环保技术, 2008, 24(3): 55~56.
    [84]魏俊飞,马宏瑞,郗引引.制革工段废水中COD、氨氮和总氮的分布与来源分析[J].中国皮革, 2008, 37(17): 35~43.
    [85]牛艳芳,马兴元,吕凌云等.制革废水处理新技术存在的问题和解决方法[J].中国皮革,2009, 38(11): 37~41.
    [86]鲁林仓,谨防氨氮中毒.内陆水产[J], 2001(7): 32.
    [87]黄骏,陈建中.氨氮废水处理技术研究进展[J].环境污染治理技术与设备. 2002, 3(1): 65~66.
    [88]钱易,唐孝炎.环境保护与可持续性发展[M].北京:高等教育出版社, 115~128.
    [89]孙华,申哲民.吹脱法去除氨氮的模型研究[J].环境科学与技术, 2009, 32(8): 84-87.
    [90]黄勇,胡旭跃,吴方同.氨氮吹脱效率影响因素[J].长沙理工大学学报(自然科学版), 2009, 6(2): 88-91.
    [91]王保学.空气吹脱UASB处理垃圾渗滤液的工艺试验研究[D].武汉:武汉理工大学, 2007, 5.
    [92]文艳.吹脱解吸法去除焦化废水中氨氮的研究[D].武汉:武汉科技大学, 2007, 4.
    [93] Dictionary of Inorganic compounds, Vol. 3. C46-Zr, London Chapman & Hall,, 1992.
    [94]马世昌.化学物质词典[M].西安;陕西科学技术出版社1998, 916.
    [95]刘正.高含盐废水生物处理技术探讨[J].给水排水, 2001, 27(11): 54~56.
    [96]王利平,李义科,庞宏等.化学沉淀法处理高浓度氨氮稀土废水实验研究[J].包头钢铁学院学报, 2003, 22(3): 277~280.
    [97]王汉道,肖继波,陈立权.磷酸铵镁-混凝深度处理垃圾渗滤液实验研究[J].环境科学与技术, 2006, 9(4): 84~103.
    [98]潘终胜,汤金辉,赵文已.化学沉淀法去除垃圾渗滤液中氨氮的试验研究[J].桂林工学院学报. 2003, 23(1): 89~92.
    [99]李才辉,冯晓西,乌锡康. MAP法处理氨氮废水最佳条件的研究[J].化学世界, 2003: 66~69.
    [100]解磊,赵庆良.高浓度氨氮废水化学沉淀装置的最佳运行条件[J].哈尔滨理工大学学报, 2008, 13(1): 96~99.
    [101]钟理,詹怀宇, D.O.Hill.化学沉淀法去除废水中的氨氮及其反应的探讨[J].重庆环境科学, 2000, 22(6): 54~71.
    [102]汤琪.磷酸铵镁技术中不同沉淀剂脱氮除磷效果比较[J].重庆交通大学学报(自然科学版). 2008, 27(1): 148~151.
    [103]穆大刚,孟范平,赵莹.化学沉淀法净化高浓度氨氮废水初步研究[J].青岛大学学报(工程技术版), 2004, 19(2): 1~4.
    [104] Stratful, M.D. Scrimshaw J.N. Lester, Conditions influencing the precipitation of magnesium ammonium phosphate[J]. Wat. Res. 2001, 35(17): 4191~4199.
    [105]郭立萍,白斌,周晓靖. MAP法处理化肥厂高浓度氨氮废水试验研究[J].新乡师范高等专科学校学报, 2006, 20(2): 31~32.
    [106]董志勇,张显龙,蔡永涛.一种沉淀法处理生活垃圾渗滤液的研究[J].环境科学与管理, 2008, 33(12): 127~129.
    [107]黄稳水,王继徵,刘小澜.磷酸铵镁法预处理高浓度氨氮废水的研究[J].工业水处理, 2003, 23(10): 34~36.
    [108] Tunay C Zeng N G E Ki Karahan O. performance of magnesium Ammonium Phosphate Precipitation and Its Effect on Biological Treatability[J]. Journal of Environmental Science and Health Part A Toxic/Hzardous Substance & Environmental Engineering, 2004, 39(7): 1891~1902.
    [109]闵敏,黄种买.化学沉淀法去除养猪场废水中氨氮的试验研究[J].化学与生物工程, 2005, 5: 27~30.
    [110]吴东雷,许文峰,殷峻.沉淀法吹脱法处理高浓度味精废水试验研究[J].重庆环境科学. 2002, 24(1):43~45.
    [111]刘继峰,刘怀.含氨废水处理技术及工艺设计方案[J].水处理技术, 2003, 29(4): 244~246.
    [112]周律.厌氧生物反应器的启动及其影响因素.工业水处理, 1996, 16(5): 1~3.
    [113]章育铭.两相厌氧工艺处理高浓度中药废水启动及运行调控研究[D],哈尔滨工业大学. 2006.
    [114]买文宁,周荣敏,王震.两相厌氧系统处理乙酰螺旋霉素废水[J],郑州大学学报(工学版), 2002, 22(3),25~28.
    [115]李宇庆,陈玲,赵建夫.两相厌氧工艺处理浆粕废水及其动力学研究[J],环境科学与技术, 2005, 28(3), 32~35.
    [116]杨江红,周世辉,两相厌氧处理腈纶废水的可行性分析[J], 2006, 25(2): 38-39.
    [117]赵庆良,李湘中.垃圾渗滤液中的氨氮对微生物活性的抑制作用.环境污染与防治, 1998, 20(6): 1~4.
    [118] Isa M Hasnaim, Anderson G. K. Molybdate inhibition of sulphate reduction in two phase anaerobic digestion Process Biochemistry Vol. 40 Issue: 6, May, 2005, p2079~2089 .
    [119]胡纪萃,周孟津等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出社, 2003.
    [120]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社, 2001.
    [121]顾夏声,废水处理数学模式(第二版)[M],北京:清华大学出版社, 1993, 7.
    [122]毛小方, UASB-SBR工艺处理黄姜皂素生产废水试验研究[D],长安大学, 2006.
    [123]陶炳勋,黄姜废水厌氧处理试验研究[D],西南交通大学, 2008.
    [124]潘正现,厌氧折板流反应器(ABR)处理山梨酸生产废水降解动力学研究[D],广西大学, 2006.
    [125]王子波,杨玉杰.两相厌氧工艺处理草浆黑液甲烷相动力学模型[J],环境科学研究,1999, 12(4), 28~29.
    [126] Ronald M. Richard B. Microbial Ecology[M]. fourth edition, 1997.
    [127]王海舟,张小波,分子生物学在微生物生态学中的应用[J],萍乡高等专科学校学报: 2009, 26(3): 72-75.
    [128]陈静,马松成,毛华明, DGGE/TGGE技术在微生物生态学中的应用[J],中国畜牧兽医, 2006, 33(11): 47-49.
    [129]刘上峰,傅俊江等,变性梯度凝胶电泳的原理、应用及其进展[J],国外医学遗传学分册, 2002, 25(2): 74-76.
    [130] LIU Xin-chun, ZHANG Yu, etc. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by ne PCR-DGGE method[J], Journal of environmental sciences, 2007(19):60-66..
    [131] Gerard Muyzer, DGGE/TGGE a method for identifying genes from natural ecosystems[J], Techniques:317-322.
    [132] Seidu Malik, Michael Beer, Mallavarapu Megharaj,etc. The use of molecular techniques to characterize the microbial communities in contaminated soil and water[J]. Environment International, 2008(34):265-276.
    [133]邢鹏,孔繁翔,高光.太湖浮游细菌种群基因多样性及其季节变化规律[J].湖泊科学, 2007, 19(4): 373-381.
    [134] Simpson J M, V J McCracken, B A White, H R Gaskins, and R I Mackie. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestin microbiota. J Microbiol Methods. 1999.36:167-79.
    [135] Eichner C A, R W Erb, K N Timmis, and I wagner-Dobler. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol. 1999.65:102-9.
    [136]邢德峰等,应用DGGE研究微生物群落时的常见问题分析[J],微生物学报, 2006, 46(2): 331-335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700