用户名: 密码: 验证码:
实心及中空型磁性高分子复合微球的制备及其固定化脂肪酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(lipase, EC3.1.1.3)是一种重要的生物催化剂,可以催化多种反应,如酯化反应、酯交换反应和水解反应等,在手性药物的制备中尤其具有重要的作用。但是,自由酶稳定性差、易失活、不可重复利用且成本较高,固定化酶技术则可以提高酶的稳定性、实现酶的回收重复使用以及连续化操作、降低成本。本学位论文综述了固定化酶技术的发展及研究现状、磁性高分子复合材料在固定化酶技术中的应用及制备方法,并依此提出了本论文的研究思路和选题指导思想。本论文的主要工作是设计制备了四种磁性固定化载体,将其用于固定化酶,并研究固定化酶的性质,主要取得了如下成果:
     (1)乳化法制备磁性海藻酸钠微球及其固定化脂肪酶的研究
     采用乳化法将超顺磁性Fe3O4纳米粒子直接包覆于交联的海藻酸钠中,制备了粒径约为25-30nm的超顺磁性海藻酸钠纳米微球。用透射电子显微镜(TEM)、红外光谱(FT-IR)、振动样品磁强计(VSM)等对其进行表征,证明所制备的磁性海藻酸钠纳米微球具有以下优点:粒径小、分散性较好、磁饱和强度高(51.4emu/g)。然后,分别使用戊二醛和环氧氯丙烷对磁性微球功能化,用于共价固定化假丝酵母脂肪酶(CRL),制备了两种固定化酶G-ICRL(醛基固定化)和E-ICRL(环氧基固定化),分别优化了固定化条件,并研究固定化酶的各项性质。结果表明,所制备固定化酶均表现出较高的活力回收,与自由酶相比,固定化酶具有更好的稳定性、pH及温度耐受性,也表现出优良的动力学行为和重复使用性。
     (2)自组装法制备柔性功能化载体Fe3O4@海藻酸钠/壳聚糖纳米微球及其固定化酶的研究
     首先通过自组装法用Ca2+交联海藻酸钠制备出分散性较好的磁性海藻酸钠纳米粒子,再进一步通过静电作用组装一层壳聚糖,得到Fe3O4@海藻酸钠/壳聚糖微球,然后采用氧化聚乙二醇对磁性微球功能化,制备带有醛基功能基的Fe3O4@海藻酸钠/壳聚糖载体。将未功能化和功能化的磁性微球分别用于固定化CRL,未功能化载体通过吸附法固定化酶得到A-ICRL,功能化载体通过吸附法和共价连接法共同固定化酶得到C-ICRL,分别优化固定化条件。然后,使用海藻酸钠和壳聚糖通过层层自组装法在所得固定化酶的表面加上保护层,以进一步提高固定化酶的稳定性。研究固定化酶的稳定性、动力学行为和重复使用性,发现两种方法制备的固定化酶均表现出优于自由酶的性能,同时也证明通过加保护层来提高固定化酶的稳定性是一种有效可行的方法。
     (3)水热法制备中空磁性纳米微球及其固定化脂肪酶的研究
     首先通过溶剂热法制备实心Fe3O4微球,再通过高压水热法将实心Fe3O4微球转化成中空Fe3O4微球,对各反应条件进行研究,包括碳源种类、中空诱导剂类型及用量、反应时间,最后推断该转化过程的主要机理是气泡支持的Ostwald熟化过程。并且,中空微球的粒径和中空内径的大小可以通过改变反应时间和中空诱导剂用量来调控。然后,分别采用TEM、FT-IR、VSM、热失重分析仪(TG)、物理吸附仪(BET)和动态光散射仪等表征了中空微球的理化性质,证明该中空磁性微球是外层为介孔壳层内部为中空内腔结构的微球,并且具有较高的磁饱和强度。将中空Fe3O4微球和实心Fe3O4微球用于固定化脂肪酶,中空微球表现出明显的固定化优势。最后,以壳聚糖为碳源、尿素为中空诱导剂制备的中空微球为典型样品,经过功能化以后共价固定化酶,优化固定化条件,研究固定化酶的性质,结果表明,所制备固定化酶相对于自由酶具有更好的稳定性及条件适用性。
     (4)分散聚合法制备多孔中空磁性Fe3O4/P(GMA-DVB-St)微球及其固定化脂肪酶的研究
     在中空四氧化三铁微球的基础上,首先用油酸改性以增强其亲油性,然后以甲基丙烯酸甲酯(GMA)、苯乙烯(St)为单体,二乙烯基苯(DVB)为交联剂,通过分散聚合法制备得到中空磁性高分子复合微球Fe3O4/P(GMA-DVB-St)。对微球进行TEM、FT-IR、BET等表征,证明该微球是表面为介孔壳层结构,内部为中空内腔且带有环氧基功能基的微球,可以直接与酶分子上的氨基连接共价固定化酶。然后,用中空磁性高分子复合微球Fe3O4/P(GMA-DVB-St)固定化CRL,优化固定化条件,研究固定化酶的性质,表明所制备固定化酶具有较高的活力回收、良好的pH和温度耐受性,与自由酶的动力学指数相比,该固定化酶与底物分子之间也具有较好的亲和性。此外,该固定化酶表现出优异的重复使用性,相比于未聚合改性的中空四氧化三铁微球,中空Fe3O4/P(GMA-DVB-St)微球作载体制备的固定化酶具有更优异的性能。
Lipase (triacylglycerol ester hydrolases, EC3.1.1.3) is a kind of ubiquitous enzymes with various biological activities, including enantioselective hydrolysis and esterification, chiral resolution, synthesis of enantioenriched monomers and macromolecules for polymerization, and other enzymatic reactions. However, the stability of free enzymes is pretty terrible, and their activity, broad applicability and reusability are still needed to be proved. Thus, the technology of enzyme immobilization, which could perform enzyme reuse and prove the stability of enzyme, was developed to overcome these inconveniences. This dissertation reviews the studies of enzyme immobilization, the application of magnetic polymer materials for enzyme immobilization and the preparation of magnetic polymer materials. Thus, we prepared four kinds of magnetic polymer supports for lipase immobilization and studied the properties of immobilized lipase. The main content of this dissertation is list as follows:
     (1) Preparation of superparamagnetic sodium alginate nanospheres for covalent immobilization of lipase
     Superparamagnetic sodium alginate (SA) nanospheres with diameter around25-30nm were prepared with a water-in-oil emulsion method. The resultant magnetic SA nanopspheres was activated with glutaraldehyde and epichlorohydrin to form nanoscale supports. Candida Rugosa Lipase (CRL), hereby chosen as a model enzyme, was covalently immobilized on the resultant magnetic support. The structure and magnetic behavior of the magnetic nanoparticle were confirmed by transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), and vibrating sample magnetometer(VSM). Then, it was verified that the supports we prepared has obvious advantages:small size, excellent dispersibility and high magnetization (51.4emu/g). The immobilized CRL (ICRL) we prepared displayed excellent stability, pH and temperature tolerance, kenetics behaviour and reusability.
     (2) Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres by self-assembly and their immobilization for lipase
     Superparamagnetic alginate nanospheres with diameter of50nm were prepared by self-assembly of alginate in the solution containing Ca2+; and then superparamagnetic alginate/chitosan nanospheres, which could adsorb lipase directly, were obtained with a following assembly of chitosan based on the electrostatic interaction between alginate and chitosan. Subsequently, oxydic poly (ethylene glycol)(PEG) was used to functionalize the magnetic alginate/chitosan nanospheres. Thus, the magnetic nanospheres with aldehyde group and brush-like structure were formed. With various kinds of characterization, it was verified that the magnetic alginate/chitosan nanospheres held small diameters (around60nm) and displayed superparamagnetism with high saturation magnetization. The candida rugosa lipase (CRL), meanwhile, was immobilized onto the magnetic alginate/chitosan nanospheres non-functionalized or functionalized by electrostatic adsorption and covalent bonding, respectively. Afterwards, the immobilized CRL (ICRL) was coated with covering layers made up of alginate and chitosan by a layer-by-layer (LBL) assembly process. Studying the properties of ICRL such as activity, kinetic behaviors, stability and reusability, the ICRL prepared by covalent bonding was proved to be more excellent than that prepared by electrostatic adsorption. Additionally, coating ICRL with covering layers showed good effect on improving the stability of ICRL.
     (3) Building on size-controllable hollow nanospheres with superparamagnetism derived from solid Fe3O4nanospheres:preparation, characterization and application for lipase immobilization
     Monodisperse porous hollow nanospheres with superparamagnetism were prepared via a hydrothermal reaction based on solid Fe3O4nanospheres. By investigating the effect of carbon precursors, the kinds and amounts of structure direction agents and the reaction time on the formation of hollow spheres, it was proposed that the main formation mechanism of hollow spheres is a gas-bubble-assisted Ostwald ripening process. Additionally, it is found that the diameter of hollow spheres and the size of hollow core could be adjusted by changing the above factors. The resultant hollow spheres were characterized by means of Brunauer-Emmett-Teller gas sorptometry, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectrophotometer, Thermogravimetric analysis and vibrating sample magnetometer. It is verified that the resultant hollow spheres are porous and have high saturation magnetization. For further application, these hollow spheres were utilized to immobilize CRL and they showed excellent immobilization capacities compared with the solid microspheres. Finally, the resultant ICRL also displayed good applicability and reusability.(4) Preparation of hollow magnetic Fe3O4/P(GMA-DVB-St) microspheres and their application for lipase immobilization
     On the basis of hollow magnetic nanoparticles, the monomer GMA and St, the cross-linker DVB were selected to be polymerized to form hollow magnetic Fe3O4/P(GMA-DVB-St) microspheres. It was verified that this hollow microspheres had an especial structures consisting of mesoporous shell and hollow core, which would improve its ability for lipase immobilization. Additionally, there were expoxy groups on the surface of these microspheres due to the existence of GMA, thus, these microspheres could react with lipase directly. Then, we studied the properties of immobilized CRL (ICRL). The ICRL showed excellent stability and reusability. Copared with the ICRL prepared by hollow magnetic nanospheres without polymeric modification, the ICRL prepared by hollow magnetic polymer microspheres displayed more excellent properties.
引文
[1]Hanefeld, U., Gardossi, L., Magner, E. Understanding enzyme immobilization[J]. Chem.Soc.Rev.2009,38(2):453-468.
    [2]王镜岩,朱圣庚等.生物化学[M].第三版.北京:高等教育出版社.2002.
    [3]Kim, J., Grate, J.W., Wang, P. Nanostructures for enzyme stabilization[J]. Chem. Eng. Sci. 2006,61(3):1017-1026.
    [4]Sharma, A., Qiang, Y., Antony, J., Meyer, D., Kornacki, P., Paszczynski. A. Dramatic Increase in Stability and Longevity of Enzymes Attached to Monodispersive Iron Nanoparticles[J]. IEEE Trans. Magn.2007,43(6):2418-2426.
    [5]Cao, L. Carrier-bound Immobilized Enzymes[J]. Wiley-VCH, Weinheim,2005.
    [6]Sheldon, R.A., Enzyme Immobilization:The Quest for Optimum Performance[J]. Adv. Synth. Catal.2007,349(8-9):1289-1307.
    [7]Micheel, F., Ewers, J. Synthese von verbindungen der cellulose miteiwei β-stoffen[J]. Makromol. Chem.1949,3(2-3):200-209.
    [8]Grubhofer, N., Schleith, L. Die Spaltung von Racemischer Mandelsaure miteinem optisch aktiven Anionenaustauscher. Hoppe-Seyler's Z[J]. Physiol. Chem.1954,296:262-266.
    [9]Manecke, G., Singer, S. Uber einige chemische umsetzungen am polyaminostyrol[J]. Makromol. Chem.1960,37:119-142.
    [10]Tosa, T., Mori, T., Fuse, N., Chibata, I. Studies on continuous enzyme reactions. Part V. Kinetics and industrial application of aminoacylase column for continuous optical resolution of acyl-DL-amino acids[J]. Agric. Biol. Chem.1969,33(7):1047-1052.
    [11]Carleysmith, S.W., Lilly, M.D. Deacylation of benzylpenicillin by immobilized penicillin acylase in a continuous four-stage stirred-tank reactor[J]. Biotechnol. Bioeng.1979,21(6): 1057-1073.
    [12]Tischer, W., Wedekind, F. Immobilized enzymes:methods and applications. In:Fressner, W.D. (Ed.), Biocatalysis-From Discovery to Application[J]. Springer-Verlag. Berlin.1999, 95-126.
    [13]Gross, R.A., Kumar, A., Kalra, B. Polymer synthesis by in vitro enzyme catalysis[J]. Chem. Rev.2001,101(7):2097-2124.
    [14]Krajewska, B. Application of chitin-and chitosan-based materials for enzyme immobilizations:a review. Enzyme Microb[J]. Technol.2004,35(2-3):126-139.
    [15]Miletic', N., Vukovic', Z., Nastasovic', A., Loos, K. Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-versatile immobilization supports for biocatalysts[J]. J. Mol. Catal. B:Enzym.2009,56(4):196-201.
    [16]Pavlidis, I.V., Tzialla, A.A., Enotiadid, A., Stamatis, H., Gournis, D. Enzyme immobilization on layered and nanostructured materials[J]. In:Loos, K. (Ed.), Biocatalysis in Polymer Chemistry. Wiley-VCH, Weinheim.2010,35-63.
    [17]Sassolas, A., Blum, L.J., Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors[J]. Biotechnology. Advances.2012,30(3):489-511.
    [18]周诗毅,袁均林,贺红武,马玉涵,谭宏亮.包埋法固定SOD及固定化酶性质的研究[J].华中师范人学学报.自然科学版.2005,39(1):97-99.
    [19]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学.2003,24(4):158-161.
    [20]Yadav, G.D., Jadhav, S.R. Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate:Transesterification in non-aqueous medium[J]. Micropor. Mesopor. Mater.2005,86(1-3):215-222.
    [21]Avnir, D., Braun, S., Lev, O., Ottolenghi, M. Enzymes and Other Proteins Entrapped in Sol-Gel Materials[J]. Chem. Mater.1994,6(10):1605-1614.
    [22]Caballero, V., Bautista, F.M., Campelo, J.M., Luna, D., Marinas, J.M., Romero, A.A., Hidalgo, J.M., Luque, R., Macario, A., Giordano, G. Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase:Partial 1,3-regiospecific alcoholysis of sunflower oil[J]. Process Biochem.2009,44(3):334-342.
    [23]Reetz, M.T., Zonta, A., Simpelkamp, J. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials[J]. Biotechnol. Bioeng.1996,49(5):527-534.
    [24]Soares, C.M.F., Santos, O.A., Olivo, J.E., Castro, H.F., Moraes, F.F., Zanin, G.M. Influence of the alkyl-substituted silane precursor on sol-gel encapsulated lipase activity[J]. J. Mol. Catal. B:Enzym.2004,29(1-6):69-79.
    [25]Novak, Z., Habulin, M., Krmelj, V., Knez, Z., Supercrit, J. Silica aerogels as supports for lipase catalyzed esterifications at sub-and supercritical conditions [J]. Fluids.2003,27(2): 169-178.
    [26]Ozyilmaz, G., Gezer, E. Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel[J]. J. Mol. Catal. B:Enzym.2010, 64(3-4):140-145.
    [27]Reetz, M.T., Zonta, A., Vijayakrishnan, V., Schimossek, K. Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials:magnetic separation of heterogeneous biocatalysts[J]. J. Mol. Catal. A:Chem.1998,134(1-3):251-258.
    [28]Chen, J.P., Lin, W.S. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis[J]. Enzyme Microb. Technol.2003,32(7):801-811.
    [29]Omata, T., Tanaka, A., Yamane, T., Fukui, S. Immobilization of microbial cells and enzymes with hydrophobic photo-crosslinkable resin prepolymers[J]. Appl. Microbiol. Biotechnol. 1979,8(3):207-215.
    [30]Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques [J]. Enzym. Microb. Technol.2007,40(6):1451-1463.
    [31]Ferrer, M., Plou, F. J., Fuentes, G., Angeles Cruces, M., Andersen, L., Kirk, O., Christense, M., Ballesteros, A. Effect of the Immobilization Method of Lipase from Thermomyces lanuginosus on Sucrose Acylation[J]. Biocatal. Biotransform.2002,20(1):63-71.
    [32]Inagaki, M., Hiratake, J., Nishioka, T., Oda, J. One-pot synthesis of optically active cyanohydrin acetates from aldehydes via lipase-catalyzed kinetic resolution coupled with in situ formation and racemization of cyanohydrins[J]. J. Org. Chem.1992,57(21): 5643-5649.
    [33]Costes, D., Rotcenkovs, G., Wehtje, E., Adlercreutz, P. Stability and Stabilization of Hydroxynitrile Lyase in Organic Solvents[J]. Biocatal. Biotransform.2001,19(2):119-130.
    [34]Plou, F.J., Barandiaran, M., Calvo, M.V., Ballesteros, A., Pastor, E. High-yield production of mono-and di-oleylglycerol by lipase catalyzed hydrolysis of triolein[J]. Enzyme Microb.Technol.1996,18:66-71.
    [35]Castro, H.F., Oliveira, P.C., Soares, C.M.F., Zanin, G.M. Immobilization of porcine pancreatic lipase on celite for application in the synthesis of butyl butyrate in a nonaqueous system[J]. J. Am. Oil Chem. Soc.1999,76(1):147-152.
    [36]Li, Y., Zhou, G., Li, C., Qin, D., Qiao, W., Chu, B. Adsorption and catalytic activity of Porcine pancreatic lipase on rod-like SBA-15 mesoporous material[J]. Colloids. Surf. A. 2009,341(1-3):79-85.
    [37]Kang, Y., He, J., Guo, X., Guo, X., Song, Z. Influence of Pore Diameters on the Immobilization of Lipase in SBA-15[J]. Ind. Eng. Chem. Res.2007,46(13):4474-4479.
    [38]Yesiloglu, Y. Immobilized lipase-catalyzed ethanolysis of sunflower oil[J]. J. Am. Oil Chem. Soc.2004,81(2):157-160.
    [39]Lee, D.G., Ponvel, K.M., Kim, M., Hwang, S., Ahn, I.S., Lee, C.H. Immobilization of lipase on hydrophobic nano-sized magnetite particles[J]. J. Mol. Catal. B:Enzym.2009,57(1-4): 62-66.
    [40]Ponvel, K.M., Lee, D.G., Woo, E.J., Ahn, I.S., Lee, C.H. Immobilisation of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate[J]. J. Chem. Eng.2009, 26(1):127-130.
    [41]Pereira, E.B., Castro, H.F., Zanin, G.M. Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions[J]. J. Chem. Eng.2003,20(4): 343-355.
    [42]Uygun, D.A., CormanF M.E., Ozturkk, N., Akgol, S., Denizli, A. Poly(hydroxyethyl methacrylate-co-methacryloylamidotryptophane) nanospheres and their utilization as affinity adsorbents for porcine pancreas lipase adsorption [J]. Mater. Sci. Eng. C.2010,30: 1285-1290.
    [43]Ozcan, H.M., Sagiroglu, A. Production of Ricinoleic Acid from Castor Oil by Immobilised Lipases[J]. Prep. Biochem. Biotechnol.2009,39(2):170-182.
    [44]Wu, Y., Wang, Y., Luo, G., Dai, Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution[J]. Bioresour. Technol.2009,100(14):3459-3464.
    [45]Netto, C.G.C.M., Andrade, L.H., Toma, H.E. Enantioselective transesterification catalysis by Candida antarctica lipase immobilized on superparamagnetic nanoparticles[J]. Tetrahedron. Asymmetry.2009,20(19):2299-2304.
    [46]Yiu, H.H.P., Wright, P. A. Enzymes supported on ordered mesoporous solids:a special case of an inorganic-organic hybrid[J]. J. Mater. Chem.2005,15(35-36):3690-3700.
    [47]Decher, G., Hong J.D. Builup of ultrayhin multilayer films by a self-assembly process, I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromol. Chem. Macromol. Symp.1991,46:321-327.
    [48]Zhao, W., Ju, H. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase[J]. Anal. Biochem.2006,350(1): 138-44.
    [49]Torres, R., Ortiz, C., Pessela, B.C.C., Palomo, J.M., Mateo, C., Guisan, J.M., Fernandez-Lafuente, R. Improvement of the enantioselectivity of lipase (fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose under different experimental conditions[J]. Enzym. Microb. Technol.2006,39(2):167-171.
    [50]Nahalka, J., Liu, Z., Chen, X., Wang, P. G. Superbeads:Immobilization in "Sweet" Chemistry[J]. Chem. Eur. J.2003,9(2):373-377.
    [51]Wan, Y., Zhao, D. Supramolecular Aggregates as Templates:Ordered Mesoporous Polymers and Carbons[J]. Chem. Rev.2007,107(3):2821-2860.
    [52]Mendes, A.A., Giordano, R.C., Giordano, R.L.C., Castro, H.F. Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity:Application of the biocatalysts in biodiesel synthesis[J]. J. Mol. Catal. B:Enzym. 2011,68(1):109-115.
    [53]Mendes, A.A., Castro, H.F., Rodrigues, D.S., Adriano, W.S., Tardioli, P.W., Mammarella, E.J., Giordano, R.C., Giordano, R.L.C. Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels:influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts [J]. J. Ind. Microbiol. Biotechnol. 2011,38(8):1055-1066.
    [54]Basso, A., Braiuca, P., Cantone, S., Ebert, C., Linda, P., Spizzo, P., Caimi, P., Hanefeld, U., Degrassi, G., Gardossi, L. In Silico analysis of enzyme surface and glycosylation effect as a tool for efficient covalent immobilization of Ca1B and PGA on Sepabeads[J]. Adv. Synth. Catal.2007,349(6):877-886.
    [55]Mendes, A.A., Oliveira, P.C., De Castro, H.F. Properties and biotechnological applications of porcine pancreatic lipase[J]. J. Mol. Catal. B:Enzym.2012,78:119-134.
    [56]Xie, W., Ma, N. Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production[J]. Energy. Fuels.2009,23(3):1347-1353.
    [57]Zeng, L., Luo, K., Gong, Y. Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier[J]. J. Mol. Catal. B:Enzym. 2006,38(1-2):24-30.
    [58]Desai, P.D., Dave, A.M., Devi, S. Alcoholysis of salicomia oil using free and covalently bound lipase onto chitosan beads [J]. Food. Chem.2006,95(2):193-199.
    [59]Mateo, C., Fernandez-Lorente, G., Abian, O., Fernandez-Lafuente, R., Guisan, J.M. Multifunctional Epoxy Supports:A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage[J]. Biomacromolecules.2000,1 (4):739-745.
    [60]Mateo, C., Abian, O., Fernandez-Lorente, G., Pedroche, J., Fernandez-Lafuente, R., Guisan, J.M., Tam, A., Daminati, M. Epoxy Sepabeads:A Novel Epoxy Support for Stabilization of Industrial Enzymes via Very Intense Multipoint Covalent Attachment[J]. Oechnol. Prog. 2002,18(3):629-634.
    [61]Mateo, C., Grazu, V., Pessela, B.C.C., Montes, T., Palomo, J.M., R. Torres, Lopez-Gallego, F., Fernandez-Lafuente, R., Guisan, J.M. Advances in the Design of New Epoxy Supports for Enzyme Immobilization-Stabilization[J]. Biochem. Soc. Trans.2007,35:1593-1601.
    [62]Lei, L., Bai, Y., Li, Y., Yi, L., Yang, Y., Xia, C. Study on immobilization of lipase onto magnetic microspheres with epoxy groups[J]. J. Magn. Mater.2009,321(4):252-258.
    [63]Guo, Z., Bai, S., Sun, Y. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres [J]. Enzym. Microb. Technol.2003,32(7):776-782.
    [64]Chang, M., Juang, R. Use of chitosaneclay composite as immobilization support for improved activity and stability of [3-glucosidase[J]. J. Biochem. Engineering.2007,35(1): 93-98.
    [65]Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., Zeng, X. Novel and efficient method for immobilization and stabilization of β-galactosidase by covalent attachment onto magnetic Fe3O4 echitosan nanoparticles[J]. J. Mol. Catal. B:Enzym.2009,61(3-4):208-215.
    [66]Hara, P., Hanefeld, U., Kanerva, L.T. Sol-gels and cross-linked aggregates of lipase PS from Burkholderia cepacia and their application in dry organic solvents[J]. J. Mol. Catal. B: Enzym.2008,50(2-4):80-86.
    [67]Pessela, B.C.C., Mateo, C., Filho, M., Carrascosa, A., Fernandez-Lafuente, R., Guisan, J.M. Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations:purification, reversible immobilization and stabilization of thermophilic and galactosidases[J]. Enzym. Microb. Technol.2007,40(2):242-248.
    [68]Pessela, B.C.C., Torres, R., Fuentes, M., Mateo, C., Fernandez-Lafuente, R., Guisan, J.M. Immobilization of rennet from Mucor miehei via its sugar chain. Its use in milk coagulation[J]. Biomacromolecules.2004,5(5):2029-2033.
    [69]Min, D.J., Andrade, J.D., Stewart, R.J. Specific immobilization of in vivo biotinylated bacterial luciferase and FMN:NAD(P)Hoxidoreductase[J]. Annal. Biochem.1999,270(1): 133-139.
    [70]Zuzana, B., Marcela S., Antonan, L.. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly (HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. J. Chromatogr. B.2002,770(1-2):25-34.
    [71]Grolger, E., Capan, H., Barthuber, A., Vorlop, K.D. Asymmetric Synthesis of an (R)-Cyanohydrin Using Enzymes Entrapped in Lens-Shaped Gels[J]. Org. Lett.2001,3(13): 1969-1972.
    [72]王家东,姜子明,曹彬,侯红萍等.固定化糖化酶的研究[J].中国调味品.2006,3:14-16.
    [73]Yesiloglu, Y. Utilization of bentonite as a support material for immobilization of Candida rugosa lipase[J]. Proc. Biochem.2005,40:2155-2159.
    [74]Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc.1992,114(27):10834-10843.
    [75]Zhao, X.S., Bao, X.Y., Guo, W., Lee, F.Y. Immobilizing catalysts on porous materials[J]. Mater. Today.2006,9(3):32-39.
    [76]Lei, C, Soares, T.A., Shin, Y., Liu, J., Ackerman, E.J. Enzyme specific activity in functionalized nanoporous supports[J]. Nanotech.2008,19(12):125102-125111.
    [77]Ravindra, R., Zhao, S., Gies, H., Winter, R. Protein Encapsulation in Mesoporous Silicate: The Effects of Confinement on Protein Stability, Hydration, and Volumetric Properties[J]. J. Am. Chem. Soc.12004,26(39):12224-12225.
    [78]Zhang, J.L., Zhang, F., Yang, H.J., Huang, X.L., Liu, H., Zhang, J.Y., Guo, S.W. Graphene Oxide as a Matrix for Enzyme Immobilization[J]. Langmuir.2010,26(9):6083-6085.
    [79]Zhang, F., Zheng, B., Zhang, J.L., Huang, X.L., Liu, H., Guo, S.W., Zhang, J.Y., Horseradish Peroxidase Immobilized on Graphene Oxide:Physical Properties and Applications in Phenolic Compound Removal[J]. J. Phys. Chem. C.2010,114(18): 8469-8473.
    [80]Zhu, H.G., Srivastava, Brown, J.Q., Michael, J.M., Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity [J]. Bioconjugate. Chem.2005,16(6):1451-1458.
    [81]Liu, Y., Jia, S., Wu, Q., Ran, J., Zhang, W., Wu, S. Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization[J]. Catal. Commun.2011,12(8):717-720.
    [82]Luo, X., Zhang, L. Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities[J]. Biomacromolecules.2010,11(11):2896-2903.
    [83]Miletic, N., Nastasovic, A., Loos, K. Immobilization of biocatalysts for enzymatic polymerizations:Possibilities, advantages, applications [J]. Bioresour. Technol.2012,115: 126-135.
    [84]Kirk, O., Christensen, M.W. Lipases from Candida antarctica:Unique Biocatalysts from a Unique Origin[J]. Org. Proc. Res.2002,6(4):446-451.
    [85]Li, Y.F., Li, J.R., Fu, L.D. Study on the immobilization of PAPAIN with a macroporous, bead carrier of copolymer containing monomer units of naminoethyl acrylamide and vinyl alcohol[J]. Chinese J. Polym. Sci.,2000,18(1):25-29
    [86]Bai, Y.X., Li, Y.F., Wang, M.T. Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization[J]. Enzyme. Microb. Technol.2006,39(4):540-547.
    [87]Zhang, Z., Wang, Z.L., Chakoumakos, B.C., Yin, J.S. Temperature Dependence of Cation Distribution and Oxidation State in Magnetic Mn-Fe Ferrite Nanocrystals[J]. J. Am. Chem. Soc.1998,120(8):1800-1804.
    [88]Fried, T., Shemer, G., Markovich, G. Ordered Two-Dimensional Arrays of Ferrite Nanoparticles[J]. Adv. Mater.2001,13(15):1158-1161.
    [89]Neveu, S., Bee, A., Robineau, M., Talbot, D. Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid[J]. J. Colloid Interface Sci.2002,255(2): 293-298.
    [90]Lu, X., Niu, M., Qiao, R., Gao, M. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction[J]. J. Phys. Chem. B.2008,112(46):14390-14394.
    [91]Cushing, B.L., Kolesnichenko, V.L., O'Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev.2004,104(9):3893-3946.
    [92]Willis, A.L., Turro, N.J., O'Brien, S. Spectroscopic Characterization of the Surface of Iron Oxide Nanocrystals[J]. Chem.Mater.,2005,17(24):5970-5975.
    [93]Cansell, F., Chevalier, B., Demourgues, A., Etourneau, J., Even, C., Pessey, V., Petit, S., Tressaud, A., Weill, F. Supercritical fluid processing:a new route for materials synthesis[J]. J. Mater. Chem.,1999,9(1):67-75.
    [94]Ge, S, Shi, X.Y., Sun, K., Li, C.P., Uher, C., Baker, J.R., Banaszak Holl, M.M, Orr, B.G. Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties[J]. J. Phys. Chem. C.2009,113(31):13593-13599.
    [95]Lu, J., Jiao, X., Chen, D., Li, W. Solvothermal Synthesis and Characterization of Fe3O4 and y-Fe2O3 Nanoplates [J]. J. Phys. Chem. C.2009,113(10):4012-4017.
    [96]Daou, T., Pourroy, G., Begin-Colin, S., Greneche, J., Ulhaq-Bouillet, C., Legare, P., Bernhardt, P., Leuvrey, C., Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles[J]. Chem. Mater.2006,18(18):4399-4404.
    [97]Jia, C.J., Sun, L.D., F. Luo, Han, X.D., Heydennan, L.J., Yan, Z.G., Yan, C.H., Zheng, K., Zhang, Z., Takano, M., Hayashi, N., Eltschka, M., Klaui, M., Rudiger, U., Kasama, T., Cervera-Gontard, L., Dunin-Borkowski, R.E., Tzvetkov, G., Raabe, J., Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings[J]. J. Am. Chem. Soc.2008, 130(50):16968-16977.
    [98]Rockenberger, J., Scher, E.C., Alivisatos, A.P. A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides[J]. J. Am. Chem. Soc.1999,121(49):11595-11596.
    [99]Sun, S., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. J. Am. Chem. Soc.2002,124(28):8204-8205.
    [100]Farrell, D., Majetich, S.A., Wilcoxon, J.P. Preparation and Characterization of Monodisperse Fe Nanoparticles[J]. J. Phys. Chem. B.2003,107(40):11022-11030.
    [101]Farrell, D., Cheng, Y., McCallum, R.W., Sachan, M., Majetich, S.A. Magnetic interactions of iron nanoparticles in arrays and dilute dispersions[J]. J. Phys. Chem. B.2005,109(28): 13409-13419.
    [102]Park, J.N., An, K.J., Hwang, Y.S., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T.H. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat. Mater. 2004,3:891-895.
    [103]Philippova, O., Barabanova, A., Molchanov, V., Khokhlov, A. Magnetic polymer beads: Recent trends and developments in synthetic design and applications[J]. Eur. Polym. J.2011, 47(4):542-559.
    [104]Ugelstad, J., Stenstad, P., Kilaas, L., Prestvik, W.S., Herje, R., Berge, A." Monodisperse magnetic polymer particles[J]. Blood, Purif,1993,11(6):349-369.
    [105]Kawaguchi, H., Fujimoto, K., Nakazawa, Y., Sakagawa, M., Ariyoshi, Y., Shidara, M. Modification and functionalization of hydrogel microspheres[J]. Colloids. Surf. A.1996, 109:147-154.
    [106]Dou, H., Xu, B., Tao, B., Tang, M., Sun, K. The one-pot synthesis of dextran-based nanoparticles and their application in in-situ fabrication of dextran-magnetite nanoparticles[J]. J. Mater. Sci:Mater. Med.2008,19(7):2575-2580.
    [107]Morales, M.A, Finotelli, P.V., Coaquira, J.A.H., Rocha-Leao, M.H.M., Diaz-Aguila, C., Baggio-Saitovitch, E.M. In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium-alginate matrix for biomedical applications[J]. Mater. Sci. Eng. C.2008,28(2): 253-257.
    [108]Lee, J., Isobe, T., Senna, M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high Ph[J]. J. Colloid. Interface. Sci.1996,177(2):490-494.
    [109]Suzuki, D., Kawaguchi, H. Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core[J]. Colloid. Polym. Sci.2006,284(12):1443-1451.
    [110]Kumagai, M., Imai, Y., Nakamura, T., Yamasaki, Y, Sekino, M., Ueno, S. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging[J]. Colloids. Surf. B. 2007,56(1-2):174-181.
    [111]Breulmann, M., Colfen, H., Hentze, H., Antonietti, M., Walsh, D., Mann, S. Elastic magnets:template-controlled mineralization of iron oxide colloids in a sponge-like gel matrix[J]. Adv. Mater.1998,10(3):237-241.
    [112]Luo, B., Song, X.J., Zhang, F., Xia, A., Yang W.L., Hu, J.H. Multifunctional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters[J]. Langmuir.2010,26(3):1674-1679.
    [113]Kim, B.S., Qiu, J.M., Wang, J.P., Taton, T.A. Magnetomicelles:composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers[J]. Nano. Lett. 2005,5(10):1987-1991.
    [114]Schmidt, A.M. The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of s-caprolactone[J]. Macromol. Rapid. Commun.2005,26(2): 93-97.
    [115]Gelbrich, T., Feyen, M., Schmidt, A.M. Magnetic thermoresponsive core-shell nanoparticles[J]. Macromolecules.2006,39(9):3469-3472.
    [116]Kaiser, A., Gelbrich, T., Schmidt, A.M. Thermosensitive magnetic fluids. J. Phys. Condens. Mater.2006,18(38):2563-2580.
    [117]Gao, Q., Wang, C., Liu, H., Chen, Y., Tong, Z. Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple Pickering emulsion[J]. Polym. Chem.2010,1(1):75-77.
    [118]Muller-Schulte, D., Schmitz-Rode, T. Thermosensitive magnetic polymer particles as contactless controllable drug carriers[J]. J. Magn. Magn. Mater.2006,302(1):267-271.
    [119]Deng, Y, Wang, L., Yang, W., Fu, S., Elaissari, A. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process[J]. J. Magn. Magn. Mater.2003, 257(1):69-78.
    [120]Liu, X., Guan, Y., Shen, R., Liu, H. Immobilization of lipase onto micronsize magnetic beads[J]. J. Chromatogr. B.2005,822(1-2):91-97.
    [121]Ma, Z., Guan, Y, Liu, H. Affinity adsorption of albumin on cibacron blue F3GA-coupled non-porous micrometer-sized magnetic polymer microspheres [J]. React. Funct. Polym. 2006,66(6):618-624.
    [122]Pich, A., Bhattacharya, S., Ghosh, A., Adler, H.J.P. Composite magnetic particles:2. Encapsulation of iron oxide by surfactant-free emulsion polymerization[J]. Polymer.2005, 46(13):4596-4603.
    [123]Okassa, L.N., Marchais, H., Douziech-Eyrolles, L., Cohen-Jonathan, S., Souce, M., Dubois, P. Development and characterization of submicron poly(D, L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles[J]. Int. J. Pharm.2005,302(1-2): 187-196.
    [124]Xulu P.M., Filipcsei, P., Zrinyi, M. Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels. Macromolecules.2000,33(5):1716-1719.
    [125]Van Berkel, K.Y., Piekarski, A.M., Kierstead, P.H., Pressly, E.D., Ray, P.C., Hawker, C.J. A simple route to multimodal composite nanoparticles[J]. Macromolecules.2009,42(5): 1425-1427.
    [126]Ansell, R.J., Mosbach, K. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay [J]. Analyst.1998,123:1611-1616.
    [127]Kim. E.H., Lee, K.S., Kwak, B.K., Kim, B.K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent[J]. J. Magn. Magn. Mater. 2005,289:328-330.
    [128]Thunemann, A.F., Schutt, D., Kaufner, L., Pison, U., Mohwald, H. Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly (glutamic acid)[J]. Langmuir.2006,22(5):2351-2357.
    [129]Sauzedde, F., Elaissari, A., Pichot, C. Thermosensitive magnetic particles as solid phase support in an immunoassay[J]. Macromol. Symp.2000,151(1):617-623.
    [130]Wong, J.E., Gaharwar, A.K., Muller-Schulte, D., Bahadur, D., Richtering, W. Layer-by-layer assembly of a magnetic nanoparticle shell on a thermoresponsive microgel core[J]. J. Magn. Magn. Mater.2007,311(1):219-223.
    [131]Singh, H., Laibinis, P.E., Hatton, T.A. Rigid, superparamagnetic chains of permanently linked beads coated with magnetic nanoparticles. Synthesis and rotational dynamics under applied magnetic fields [J]. Langmuir.2005,21:11500-11509.
    [132]Hou, Y.Y. A systematic investigation of a liquid magnetically stabilized fluidized bed. PhD thesis, University of Leeds,2001.
    [133]Denkba, E.B., Kilicay, E., Birlikseven, C., Ozturk, E. Magnetic chitosan microspheres: preparation and characterization[J]. React. Funct. Polym.2002,3(50):225-232.
    [134]Jiang, D., Long, S., Huang, J., Xiao, H., Zhou, J. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres[J]. Biochem. Eng. J.2005,25(1): 15-23.
    [135]Asmatulu, R., Zalich, M.A., Claus, R.O., Riffle, J.S. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields[J]. J. Magn. Magn. Mater.2005,292:108-119.
    [136]Roger, S., Talbot, D., Bee, A. Preparation and effect of Ca2+on water solubility, particle release and swelling properties of magnetic alginate films[J]. J. Magn. Magn. Mater.2006, 305(1):221-226.
    [137]Huang, H.Y., Shieh, Y.T., Shih, C.M., Twu, Y.K. Magnetic chitosan/iron (Ⅱ, Ⅲ) oxide nanoparticles prepared by spray-drying[J]. Carbohydr. Polym.2010,81:906-910.
    [138]Omi, S., Kanetaka, A., Shimamori, Y., Supsakulchai, A., Nagai, M., Ma, G.H. Magnetite (Fe3O4) microcapsules prepared using a glass membrane and solvent removal[J]. J. Microencapsulation.2001,18(6):749-765.
    [139]Badescu. V., Udrea, L.E., Rotariu, O., Badescu, R., Apreotesei, G. On preparation of magnetic microbeads by two microfluidic emulsification techniques and polymerization[J]. Rev. Roum. Chim.2009,54(3):201-204.
    [140]Yang, C.H., Huang, K.S., Lin, Y.S., Lu, K., Tzeng, C.C., Wang, E.C. Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules:incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs[J]. Lab. Chip.2009,9:961-965.
    [141]Wang, X.C., Liu, J., Feng, X.F., Guo, M.J., Sun, D.L. Fabrication of hollow Fe3O4-polyaniline spheres with sulfonated polystyrene templates[J]. Mater. Chem. Phy. 2008,112(2):319-321.
    [142]Yang, X.Y., Chen, L., Han, B., Yang, X.L., Duan, H.Q. Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers[J]. Polymer.2010,51(12):2533-2539.
    [143]Li, F.R., Yan, W.H., Guo, Y.H., Qi, H., Zhou, H.X. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer[J]. Int. J. Hyperthermia.2009,25(5):383-391.
    [144]Liu, S.H., Xing, R.M., Lu, F., Rana R.K., Zhu, J.J. One-Pot Template-Free Fabrication of Hollow Magnetite Nanospheres and Their Application as Potential Drug Carriers[J]. J. Phys. Chem. C.2009,113(50):21042-21047.
    [145]Guan, N.N., Wang, Y.T., Sun D.J., Xu, J. A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor[J]. Nanotechnology.2009,20(10): 105603-105611.
    [146]Xia, H.B., Foo, P., Yi, J.B. Water-Dispersible Spherically Hollow Clusters of Magnetic Nanoparticles [J]. Chem. Mater.2009,21(12):2442-2451.
    [147]Jiang, C.L., Wang, Y.F. Formation of cobalt hollow nanospheres via surfactant-assisted hydrothermal progress[J]. Mater. Chem. Phys.2009,113(2-3):531-533.
    [148]Luo, S.C., Jiang, J, Liour, S.S., Gao, S.J, Ying, J.Y, Yu, H.H. Magnetic PEDOT hollow capsules with single holes[J]. Chem. Commun.2009:2664-2666.
    [149]Chen, L.B., Zhang, F., Wang, C.C. Rational Synthesis of Magnetic Thermosensitive Microcontainers as Targeting Drug Carriers[J]. Small.2009,5(5):621-628.
    [150]Yan, F., Li, J., Zhang, J.J., Liu, F.Q., Yang, W.S. Preparation of Fe304/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J. Nanopart. Res.2009,11(2):289-296.
    [151]Liu, G.Y., Wang, H., Yang, X.L. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core[J]. Polymer.2009,50(12):2578-2586.
    [1]Mari, P.D., Sinisterra, J.V., Tsai, S.W., Alca ntara, A.R. Carica papaya lipase (CPL):an emerging and versatile biocatalyst[J]. Biotechnol.Adv.2006,24(5):493-499.
    [2]Chang, S.W., Shaw, J.F. Yang, K.H. Chang, S.F., Shieh. C. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(c-glutamic acid) by RSM[J]. Bioresource Technol.2008,99(8):2800-2805.
    [3]Jiang, D.S., Long, S.Y., Huang, J., Xiao, H.Y.. Zhou,J.Y. Immobilization of Pyonoporus sanguineus laccase on magnetic chitosan microspheres[J]. Biochem Eng J.2005,25(1): 15-23.
    [4]Lei, L., Bai, Y.X., Li,Y.F. Yi, L.X., Yang, Y, Xia, C.G. Study on immobilization of lipase onto magnetic microspheres with epoxy groups[J]. J. Magn Magn Mater.2009,321(4): 252-258.
    [5]Magdy, M.M. Elnashar, Enas, N. Danial, and Ghada, E.A. Awad. Novel Carrier of Grafted Alginate for Covalent Immobilization of Inulinase[J]. Ind. Eng. Chem. Res.2009,48(2): 9781-9785.
    [6]Mofidi, N. M., Aghai-Moghadam, M.N., Sarbolouki. Mass preparation and characterization of alginate microspheres[J]. Process Biochem.2000,35(9):885-888.
    [7]Laurienzo, P. Malinconico,, M., Motta, A., Vicinanza. A. Synthesis and characterization of a novel alginate-poly(ethylene glycol) graft copolymer[J]. Carbohyd Polym.2005,62(3): 274-282.
    [8]Tanriseven, A., Dogan, S. Immobilization of invertase within calcium alginate gel capsules[J]. Proc. Biochem.2001,36(11):1081-1083.
    [9]Safarikova, M., Royb, I., Gupta, M.N., Safank, I. Magnetic alginate microparticles for purification of amylases[J]. J. Biotechnol.2003,105(3):255-260.
    [10]Natividad O., Manuel P.M., Maria C.P., and Maria D.B. Neutrase Immobilization on Alginate-Glutaraldehyde Beads by Covalent Attachment[J]. J. Agric. Food Chem.2009, 57(1):109-115.
    [11]Yeom, C.K., Lee, K.H. Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation[J]. J. Appl. Polym. Sci.1998,67(2):209-219.
    [12]Le-Tien, C., Millette, M., Lacroix, M., Mateescu, M.A. Modified alginate matrices for the immobilization of bioactive agents[J]. Biotechnol. Appl. Biochem.2004,39(2):189-198.
    [13]Luo, X.G.,and Zhang, L.N. Immobilization of Penicillin G Acylase in Epoxy-Activated Magnetic Cellulose Microspheres for Improvement of Biocatalytic Stability and Activities[J].Biomacromolecules.2010,11(11):2896-2903.
    [14]Finotelli, P.V., Morales, M.A., Rocha-Lea-o, M.H., Baggio-Saitovitch, E.M., Rossi, A.M. Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications[J]. Mater Sci Eng C.2004,24(5):625-629.
    [15]Yoshiyuki, N., Akiko, Y., Kana, E., Yoshiharu, M., Hidemitsu, F., Kazuyuki, H. Preparation and magnetometric characterization of iron oxide-containingalginate/poly(vinyl alcohol) networks[J]. Polymer.2004,45(21):7129-7136.
    [16]Naganagouda, K. Mulimani, V. H. Gelatin blends with alginate:Gel fibers for R-galactosidase immobilization and its application in reduction of non-digestible oligosaccharides in soymilk[J]. Process. Biochem.2006,41(8):1903-1907.
    [17]Massart, R., Cabuil, V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-Yield and particle-size control[J]. J Chim Phys Phys-Chim Biol.1987,84: 967-973.
    [18]Zhu H.G., Srivastava, R., Brown, J. Q. Mcshane, M. J. Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity [J]. Bioconjugate Chem.2005,16(6):1451-1458.
    [19]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal. Biochem.1976,72(1-2): 248-254.
    [20]Watanabe, N., Yasude, O., Yasuji, M., Koichi, Y. Isolation and identification of alkaline lipase producing microorganisms:cultural conditions and some properties of crude enzymes [J]. Agric. Biol. Chem.1977,41(8):1353-1358.
    [21]Bayramoglu, G., Kiralp, S., Yilmaz, M., Toppare, L., Arica, M.Y. Covalent immobilization of chloroperoxidase onto magnetic beads:Catalytic properties and stability[J]. Biochem Eng J.2008,38(2):180-188.
    [22]Jiang, D.S., Long, S.Y., Huang, J., Xiao, H.Y., Zhou, J.Y. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres [J]. Biochem Eng J.2005,25(1): 15-23.
    [23]DemirciogI, L.H., Beyenal, H., TanyolacE, A., Hasirci, N. Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices[J]. Polym Int.1994,35(4):321-327.
    [24]Perrin, D. D., Dempsey, B. Buffers for pH and Metal Ion Control, Chapman and Hall: London, U.K.,1974.
    [25]Jeohn, T.H., Matsuzaki, H., Takahashi, K. Purification and characterization of a detergent-requering membrane-bound metalloendopeptidase from porcine brain[J]. Eur. J. Biochem.1999,260(2):318-324.
    [26]Mateo, C., Palomo, J.M., Femandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques[J]. Enzyme Microb. Technol.2007,40(6):1451-1463.
    [27]Gulay B., Senem K., Meltem Y., Levent T., Yakup Arica,M.. Covalent immobilization of chloroperoxidase onto magnetic beads:Catalytic properties and stability[J]. Biochem Eng J. 2008,38(2):180-188.
    [28]Arica, M.Y. Hasirci, V. Alaeddinoglu. N.G. Covalent immobilization of a-amylase onto PHEMA microspheres, preparation and application to fixed-bed reactor[J]. Biomaterials. 1995,16(10):761-768.
    [29]Chang, M.Y., Juang, R.S. Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes[J]. Enzyme Microb Tech.2005,36(1): 75-82.
    [30]Bayramoglu, G., Kaya, B., Arica, M.Y. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres[J]. Food Chem.2005, 92(2):261-268.
    [31]Yang, Y., Bai, Y.X., Li, Y.F., Lei, L, Cui, Y.J., Xia, C.G. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity[J]. Process Bioch.2008,43(11):1179-1185.
    [32]Xi, F.N., Wu, J.M., Jia, Z.S., Lin, X.F. Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochem.2005, 40(8):2833-2840.
    [I]Hong, J., Xu, D.M., Gong, P.J., Sun, H.W., Dong, L., Yao, S. Covalent binding of a-chymotrypsin on the magnetic nanogels covered by amino groups[J] J. Mol. Catal. B-Enzym.2007,45(3-4):84-90.
    [2]Gardossi, L., Bianchi, D., Klibanov, A.M. Selective acylation of peptide catalyzed by lipases in organic solvents[J]. J. Am. Chem. Soc.1991,113(16):6328-6329.
    [3]Jaeger, K., Reetz, M. Trends. Microbial lipase form versatile tools for biotechnology[J]. Biotechnol.1998,16(9):396-403.
    [4]Omprakash, Y., Toyoko, I. Covalent-Bonded Immobilization of Lipase on Poly (phenylene sulfide) Dendrimers and Their Hydrolysis Ability[J]. Biomacromolecules.2005,6(2): 809-814.
    [5]Chang, S.W., Shaw, J.F., Yang, K.H., Chang, S.F., Shieh, C. J. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(c-glutamic acid) by RSM[J]. Bioresour. Technol.2008,99(8):2800-2805.
    [6]Pahujani, S., Kanwar, S., Chauhan, G., Gupta, R. Glutaraldehyde activation of polymer nylon-6 for lipase immobilization:enzyme characteristics and stability[J]. Bioresour. Technol.2008,99(7):2566-2570.
    [7]Jiang, D.S., Long, S.Y., Huang, J., Xiao, H.Y., Zhou, J.Y. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres[J]. Biochem. Eng. J.2005,25(1): 15-23.
    [8]Bellezza, F., Cipiciani, A., Quotadamo, M.A. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles[J]. Langmuir.2005,21(24):11099-11104.
    [9]Liu, X., Lei, L., Li, Y.F., Zhu, H., Cui, Y.J., Hu, H.Y. Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase[J]. Biochem. Eng. J. 2011,56(3):142-149.
    [10]Cui, Y.J., Chen, X., Li, Y.F., Liu, X., Lei, L., Xuan, S.T. Novel magnetic microspheres of P(GMA-b-HEMA):preparation, lipase immobilization and enzymatic activity in two phase[J]. Appl. Microbiol. Biotechnol.2012,95(1):147-156.
    [11]Natividad, O., Manuel, P.M., Maria, C.P., Maria, D.B. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment[J]. J. Agric. Food Chem.2009,57(1): 109-115.
    [12]Schatz, A., Reiser, O., Star, W. J. Nanoparticles as semi-heterogeneous catalyst supports[J]. Chem. Eur. J.2010,16(30):8950-8967.
    [13]Shylesh, S., Schunemann, V., Thiel, W.R. Magnetically separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis[J]. Angew. Chem. Int. Ed.2010,49(20): 3428-3459.
    [14]Hong, J., Gong, P.J., Yu, J.H., Xu, D.M., Sun, H.W., Yao, S. Conjugation of a-chymotrypsin on a polymeric hydrophilic nanolayer covering magnetic nanoparticles[J]. J. Mol. Catal. B-Enzym.2006,42(3-4):99-105.
    [15]Wang, Y.J., Caruso, F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation[J]. Chem. Mater.2005,17(5):953-961.
    [16]Koutsopoulos, S., Oost, J., Norde, W. Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability[J]. Langmuir.2004,20(15):6401-6406.
    [17]Pessela, B.C.C., Mateo, C., Carrascosa, A.V., Vian, A., Garcia, J.L., Rivas, G., Alfonso, C., Guisan, J.M., Lafuente, R.F. One-step purification, covalent immobilization, and additional stabilization of a thermophilic poly-His-tagged beta-galactosidase from Thermussp strain T2 by using novel heterofunctional chelate-epoxy Sepabeads[J]. Biomacromolecules. 2003,4(1):107-113.
    [18]Jaejoon, H., Annes, O.G., Stephane, S., Monique, L. Alginate and Chitosan Functionalization for Micronutrient Encapsulation[J]. J. Agric. Food. Chem.2008,56(7): 2528-2535.
    [19]Liu, J.W., Zhang, Y., Wang, C.Y., Xu, R.Z., Chen, Z.P., Gu, N. Magnetically Sensitive Alginate-Templated Polyelectrolyte Multilayer Microcapsules for Controlled Release of Doxorubicin[J]. J. Phys. Chem. C.2010,114(17):7673-7679.
    [20]Xie, H.G., Zheng, J.N., Li, X.X., Liu, X.D., Zhu, J.; Wang, F., Xie, W.Y., Ma, X.J. Effect of Surface Morphology and Charge on the Amount and Conformation of Fibrinogen Adsorbed onto Alginate/Chitosan Microcapsules[J]. Langmuir.2010,26(8):5587-5594.
    [21]Silva, J.A., Macedo, G.P., Rodrigues, D.S., Giordano, R.L.C., Goncalves, L.R.B. Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies [J]. Biochem. Eng. J.2012,60:16-24.
    [22]Amorim, R.V.S., Melo, E.S., Carneiro-da-Cunha, M.G., Ledingham, W.M., Campos-Takaki, G.M. Chitosan from Syncephalastrum racemosum used as a film support for lipase immobilization[J]. Bioresour. Technol.2003,89(1):35-39.
    [23]Yi, S.S., Noh, J.M., Lee, Y.S. Amino acid modified chitosan beads:Improved polymer supports for immobilization of lipase from Candida rugosa[J]. J. Mol. Catal. B-Enzym. 2009,57(1-4):123-129.
    [24]Huang, X.J., Ge, D., Xu, Z.K. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization[J]. Eur. Polym. J.2007,43(9):3710-3718.
    [25]Wang, J.Z., Zhao, G.H., Li, Y.F., Liu, X., Hou, P.P. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers[J]. Appl. Microbiol. Biotechnol.2012, 97(2):68.1-92.
    [26]Kuo, C.H., Liu, Y.C., Chang, C.M.J., Chen, J.H., Chang C., Shieh, C.J. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles[J]. Carbohyd. Polym. 2012,87(4):2538-2545.
    [27]Wu, Y., Wang, Y.J., Luo, G.S., Dai, Y.Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution[J].Bioresour. Technol.2009,100(14):3459-3464.
    [28]Ye, Z., Bo. L., Natalija, G., Ricardas, M., Andra, D., Per, M.C.J. Chitosan-N-poly(ethylene oxide) brush polymers for reduced nonspecific protein adsorption[J]. J. Colloid.Interface. Sci.2007,305(1):62-71.
    [29]Zheng, J.N., Xie, H.G., Yu, W.T., Liu, X.D., Xie, W.Y., Zhu, J., Ma, X. Chitosan-g-MPEG-Modified Alginate Chitosan Hydrogel Microcapsules A Quantitative Study of the Effect of Polymer Architecture on the Resistance to Protein Adsorption[J]. J. Langmuir.2010,26(22):17156-17164.
    [30]Stephanie, P., Susan, M., De, P., Janos, V., Nichol, D.S., Marcus, T. Poly(L-lysine)-g-Poly(Ethylene Glycol) assembled monolayers on niobjum oxide surfaces:a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS[J]. Langmuir.2003,19(22):9216-9225.
    [31]Zhu, H., Srivastava, R., Srivastava, R., McShane, M. J. Spontaneous Loading of Positively Charged Macromolecules into Alginate-Templated Polyelectrolyte Multilayer Microcapsules[J]. Biomacromolecules.2005,6(4):2221-2228.
    [32]Massart, R, Cabuil, V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-Yield and particle-size control[J]. J. Chim. Phys. Phys-Chim. Biol.1987. 84:967-973.
    [33]Mooney, K. E., Nelson, J. A., Wagner, M. Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction[J]. J. Chem. Mater.2004,16(16):3155-3161.
    [34]Finotelli, P. V., Morales, M. A., Rocha-Leao, M. H., Baggio-Saitovitch, E. M., Rossi, A. M. Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications[J]. Mater Sci Eng C.2004,24(5):625-629.
    |35] Yoshiyuki, N., Akiko, Y., Kana, E., Yoshiharu, M., Hidemitsu, F., Kazuyuki, H. Preparation and magnetometric characterization of iron oxide-containing alginate/poly(vinyl alcohol) networks[J]. Polymer.2004,45(21):7129-7136.
    [36]Bayramoglu, G., Kiralp, S., Yilmaz, M., Toppare, L., Arica, M. Y. Covalent immobilization of chloroperoxidase onto magnetic beads:Catalytic properties and stability [J]. Biochem Eng J.2008,38(2):180-188.
    [37]Mendes, A. A., Castro, H. F., Rodrigues, D. S., Adriano, W. S., Tardioli, P. W.. Mammarella, E. J., Giordano, R. C., Giordano, R. L. C. Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels:influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts[J]. J. Ind. Microbiol. Biotechnol.2011,38(8):1055-1066.
    [38]DemirciogI, L. H., Beyenal, H., TanyolacE, A., Hasirci, N. Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices[J]. Polymer Int.1994,35(4):321-27.
    [39]Arica, M. Y, Hasirci, V., Alaeddinoglu, N. G. Covalent immobilization of a-amylase onto PHEMA microspheres, preparation and application to fixed-bed reactor[J]. Biomaterials. 1995,16(10):761-768.
    [40]Bayranglu, G., Kiralp, S., Yilmaz, M., Toppore, L., Arica, M. Y. Appl. Microbiol.Biotechnol.2013,97(3):1149-1159.
    [41]Xi, F.N., Wu, J., M., Jia, Z.S.; Lin, X.F. Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead[J]. Process Biochem.2005. 40(8):2833-2840.
    [42]Chang, M. Y., Juang, R. S. stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes[J]. Enzyme Microb Tech.2005,36(1):75-82.
    [1]Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly [J]. Nature.2002,420:395-398.
    [2]Werner, W., Wolfgang, R. Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers[J]. Prog. Surf. Sci.2002,7(1-3):1-151.
    [3]Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., Rechenberg, B. Superparamagnetic nanoparticles for biomedical appli-cations:possibilities and limitations of a new drug delivery system[J]. J. Magn. Magn. Mater.2005,293(1): 483-496.
    [4]Sonvico, F., Dunbernet, C., Colombo, P., Couvreur, P. Metallic Colloid Nanotechnology, Applications in Diagnosis and Therapeutics[J]. Curr. Pharm.Des.2005,11(16): 2091-2105.
    [5]Dobson. Magnetic nanoparticles for drug delivery[J]. J. Drug. DeV. Res.2006,67(1): 55-60.
    [6]Liu, X., Chen, X., Li, Y.F., Cui, Y.J., Zhu, H., Zhu, W.W. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase[J], J. Nanopart. Res.2012, DOI:10.1007/s11051-012-0763-2.
    [7]Deng, H., Li, X.L., Peng, Q., Wang, X., Chen, J.P., Li, Y.D. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew. Chem., Int. Ed.2005,44(18):2782-2785.
    [8]Xuan, S.H., Wang, F., Wang, Y.X.J., Yu, J.C., Leung, K.C.F. Facile synthesis of size-controllable monodispersed ferrite nanospheres[J]. J. Mater. Chem.2010,20(24): 5086-5094.
    [9]Zhang, D.H., Liu, Z.Q., Han, S., Li, C, Lei, B., Stewart, M.P., Tour, J.M., Zhou, C.W. Single Crystalline Magnetite Nanotubes[J]. Nano Lett.2004,4(11):2151-2155.
    [10]Jia, C.J., Sun, L.D., Yan, Z.G., Pang, Y.C., You, L.P., Yan, C.H. Iron Oxide Tube-in-Tube Nanostructures[J]. J. Phys. Chem. C.2007,111(35):13022-13027.
    [11]Cao S.W., Zhu,Y.J. Surfactant-Free Preparation and Drug Release Property of Magnetic Hollow Core/Shell Hierarchical Nanostructures[J]. J. Phys. Chem. C.2008,112(32): 12149-12156.
    [12]Cheng, K., Peng, S., Xu, C.J., Sun, S.S. Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin[J]. J. Am. Chem. Soc.2009,131(30): 10637-10644.
    [13]Liao, M.Y., Huang, C.C., Chang, M.C., Lin, S.F., Liu, T.Y., Su, C.H., Yeh, C.S., Lin, H.P. Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor[J]. J. Mater. Chem.2011,21(22): 7974-7981.
    [14]Li, Z.Q., Xie, Y., Xiong, Y.J., Zhang, R. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant[J]. New. J. Chem. 2003,27(10):1518-1521.
    [15]Vasquez, Y., Sra, A.K., Schaak, R.E. One-pot Synthesis of Hollow Superparamagnetic Co-Pt Nanospheres[J]. J. Am. Chem. Soc.2005,127(36):12504-12505.
    [16]Zhang, Y., Li, G., Zhang, L. Synthesis of indium hollow spheres and nanotubes by a simple template-free solvothermal process[J]. Inorg. Chem. Commun.2004,7(3): 344-346.
    [17]Guo, L., Liang, F., Wen, X.G., Yang, S.H., He, L., Zheng, W.Z., Chen, C.P., Zhong, Q.P. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution[J]. Adv. Funct. Mater.2007,17(3):425-430
    [18]Kim, S. W., Kim, M., Lee, W. Y, Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J. Am. Chem. Soc.2002,124(26):7642-7643.
    [19]Caruso, F. Nanoengineering of Particle Surfaces[J]. F. Adv. Mater.2001,13(1):11-22.
    [20]Walsh, D., Lebeau, B., Mann, S. Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges[J]. Adv. Mater.1999,11(4):324-328.
    [21]Zhang, X.J., Li, D. Metal-Compound-Induced Vesicles as Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres[J]. Angew. Chem, Int. Ed.2006,45(36):5971-5974.
    [22]Qiao, R., Zhang, X.L., Qiu, R., Ju, C.K., Young, S.K. Preparation of Magnetic Hybrid Copolymer-Cobalt Hierarchical Hollow Spheres by Localized Ostwald Ripening[J]. Chem. Mater.2007,19(26):6485-6491.
    [23]Hu, P., Yu, L.J., Zuo, A.H., Guo, C.Y., Yuan, F.L. Fabrication of Monodisperse Magnetite Hollow Spheres[J]. J. Phys. Chem.C.2009,113(3):900-906.
    [24]Jia, B.P., Gao, L. Morphological Transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field[J]. J. Phys. Chem. C.2008,112(3):666-671.
    [25]Yang, H.G., Zeng, H.C. Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites[J]. Angew. Chem., Int. Ed.2004, 43(44):5930-5933.
    [26]Yin, YD., Rioux, R.M., Erdonmez, C.K, Hughes, S., Somorjai, G.A., Alivisatos, A.P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Science. 2004,304(5671):711-714.
    [27]Cheng, W., Tang, K.B., Qi, Y.X., Sheng, J., Liu, Z.P. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres[J], J. Mater. Chem.2010,20(9):1799-1805.
    [28]Yan, A.G, Liu, X.H., Yi, R., Shi, R.G., Zhang, N., Qiu, G.Z. Selective Synthesis and Properties of Monodisperse Zn Ferrite Hollow Nanospheres and Nanosheets[J]. J. Phys. Chem. C.2008,112(23):8558-8563.
    [29]Gardossi, L, Bianchi, D., Klibanov, A.M. Selective acylation of peptides catalyzed by lipases in organic solvents[J]. J. Am. Chem. Soc.1991,113(16):6328-6329.
    [30]Jaeger, K., Reetz, M. Microbial lipases form versatile tools for biotechnology[J]. Trends. Biotechnol.1998,16(9):396-403.
    [31]Omprakash, Y, Toyoko, I. Covalent-Bonded Immobilization of Lipase on Poly(phenylene sulfide) Dendrimers and Their Hydrolysis Ability[J]. Biomacromolecules.2005,6(5): 2809-2814.
    [32]Chang, S.W., Shaw, J.F., Yang, K.H., Chang, S.F., Shieh, C.J. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(y-glutamic acid) by RSM[J]. Bioresour. Technol.2008,99(8):2800-2805.
    [33]Pahujani, S., Kanwar, S., Chauhan, G., Gupta, R. Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization:Enzyme characteristics and stability[J]. Bioresour. Technol.2008,99(7):2566-2570.
    [34]Jiang D.S., Long S.Y., Huang J, Xiao H.Y., Zhou J.Y. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres[J]. Biochem. Eng. J.2005,25(1): 15-23.
    [35]Lu, A.H., Salabas, E.L., Schiith, F. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angew. Chem. Int. Ed.2007,46(8):1222-1244.
    [36]Xu, X., Asher, S.A. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals[J]. J. Am. Chem. Soc.2004,126(25):7940-7945.
    [37]Ding, Y., Hu, Y., Jiang, X., Zhang, L., Yang, C. Polymer-Monomer Pairs as a Reaction System for the Synthesis of Magnetic Fe3O4-Polymer Hybrid Hollow Nanospheres[J]. Angew. Chem. Int. Ed.2004,43(46):6369-6372.
    [38]Wang, G.Z., Saeterli, R., Rorvik, P.M., Helvoort, A.T.J, Holmestad, R., Grande, T., Einarsrud, M.A. The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography [J]. Chem. Mater.2007,19(17): 2213-2217.
    [39]Zeng, H.C. Synthetic architecture of interior space for inorganic nanostructures[J]. J. Mater. Chem.2006,16(7):649-662.
    [40]Wang, Y., Zhu, Q.S., Tao, L., Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties [J]. CrystEngComm.2011, 13(22):4652-4657.
    [41]Qu, X.F., Yao, Q.Z., Zhou, G.T., Fu, S.Q., Huang, J.L. Formation of Hollow Magnetite Microspheres and Their Evolution into Durian-like Architectures[J]. J. Phys. Chem. C. 2010,114(19):8734-8740.
    [42]Mooney, K.E., Nelson, J. A., Wagner, M. Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem Mater[J]. J. Chem. Mater.2004,16(16): 3155-3161.
    [43]Peng, S., Sun, S.H. Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles[J]. Angew. Chem., Int. Ed.2007,46(22):4155-4158.
    [44]Li, X.H., Zhang, D.H., Chen, J.S. Synthesis of Amphiphilic Superparamagnetic Ferrite/Block Copolymer Hollow Submicrospheres[J]. J. Am. Chem. Soc.2006,128(26): 8382-8383.
    [45]Yu, D.B, Sun, X.Q., Zou, J.W., Wang, Z.R., Wang, F., Tang K. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres[J]. J. Phys. Chem. B.2006,110(43):21667-21671.
    [46]Arica, M.Y., Hasirci, V., Alaeddinoglu N.G. Covalent immobilization of a-amylase onto PHEMA microspheres, preparation and application to fixed-bed reactor[J]. Biomaterials. 1995,16(10):761-768.
    [47]DemirciogI, L.H., Beyenal, H., TanyolacE, A., Hasirci, N. Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices[J]. Polymer Int.1994,35(4):321-27.
    [1]Boland, W., Frossl, C., Lorenz, M. Esterolytic and Lipolytic Enzymes in Organic-Synthesis[J]. Synthesis.1991,12:1049-1072.
    [2]Malcata, F.X., Reyes, H.R., Garcia, H.S., Hill, J.G. Immobilized lipase reactor for modification of fats and oils[J]. J. Am. Oil Chem. Soc.1990,67(12):890-910.
    [3]Bryjak, J., Bachmann, K., Pawlow, B., Maliszewska, I., Trochimczuk, A., Kolarz, B.N. Immobilization of lipase on various acrylic copolymers[J]. Chem. Eng. J.1997,65(3): 249-256.
    [4]Sinisterra, J.V., in:F.X. Makata (Ed.), Engineering of/with Lipases, Kluwer Academic Publishers, Dordiecht,1996,73-101.
    [5]Herault, D., Saluzzo, C., Lemaire, M. Preparation of monodisperse enantiomerically pure glycidyl methacrylate-ethylene glycol dimethacrylate copolymers in dispersion copolymerization functionalization[J]. React. Funct. Polym.2006,66(5):567-577.
    [6]乌云高娃,卢冠忠,郭扬龙,王筠松,魏东芝.聚甲基丙烯酸缩水甘油酯固定化青霉素酰化酶性质的研究.华东理工大学学报,2002,28(12):633-636.
    [7]薛屏,卢冠忠,郭耘,郭杨龙,王筠松.亲水性交联聚合物载体的合成及其固定化青霉素酰化酶.分子催化,2003,17(5):371-375.
    [8]Miletic, N., Vukovic, Z., Nastasovic, A., Loos, K. Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-Versatile immobilization supports for biocatalysts[J]. J. Mol. Catal. B. Enzym.2009,56 (4):196-201.
    [9]Imhof, A. Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells[J]. Langmuir.2001,17(12):3579-3585.
    [10]Lin, C.R., Chen, I.H., Wang, C.C., Chen, M.L. Synthesis and characterization of magnetic hollow nanocomposite spheres[J]. Acta. Materialia.2011,59(17):6710-6716.
    [11]Shiho, H., Kawahashi, N. Titanium compounds as coatings on polystyrene latices and as hollow spheres[J]. Colloid. Polym. Sci.2000,278(3):270-274.
    [12]Tissot, I., Reymond, J.P., Lefebvre, F., Bourgeat-Lami, E. SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles[J]. Chem. Mater.2002, 14(3):1325-1331.
    [13]Caruso, F., Caruso, R.A., Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science.1998,282(5391):1111-1114.
    [14]Caruso, F., Spasova, M., Susha, A., Giersig, M., Caruso, R.A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential lay-ering approach[J]. Chem. Mater.2001,13(1):109-116.
    [15]Wang, X.C., Liu, J., Feng, X.F., Guo, M.J., Sun, D.L. Fabrication of hollow Fe3O4-polyaniline spheres with sulfonated polystyrene templates. Mater. Chem. Phys.2008, 112(2):319-321.
    [16]Sadasivan, S., Sukhorukov, G.B. Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method[J]. J. Colloid. Interf. Sci.2006,304(2):437-441.
    [17]Xu, F.J., Cai, Q.J., Li, Y.L., Kang, E.T., Neoh, K.G. Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization[J]. Biomacromolecules,2005,6(2):1012-1020.
    [18]Milosavic, N., Prodanovic, R., Jovanovic, S. Immobilization of glucoamylase via its carbohydrate moiety on macroporous poly(GMA-co-EGDMA)[J]. Enzyme Microb. Tech. 2007,40(5):1422-1426.
    [19]刘雪奇,Fe3O4纳米磁粉及高分子核壳结构磁微球的制备与性能研究[硕士论文].四川大学.2005.
    [20]Qu, X.F., Yao, Q.Z., Zhou, G.T., Fu, S.Q., Huang, J.L. Formation of Hollow Magnetite Microspheres and Their Evolution into Durian-like Architectures[J]. J. Phys. Chem. C.2010, 114(19):8734-8740.
    [21]Mooney, K.E., Nelson, J.A., Wagner, M. Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction[J]. Chem. Mater. J. Chem. Mater.2004,16(16): 3155-3161.
    [22]Yang, X.Y., Chen, L., Han, B., Yang, X.L., Duan, H.Q. Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers[J]. Polymer.2010,51(12):2533-2539.
    [23]Arica, M.Y., Hasirci, V., Alaeddinoglu, N.G. Covalent immobilization of a-amylase onto PHEMA microspheres, preparation and application to fixed-bed reactor[J]. Biomaterials. 1995,16(10):761-768.
    [24]DemirciogI, L.H., Beyenal, H., TanyolacE, A., Hasirci, N. Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices[J]. Polymer. Int.1994,35(4):321-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700