用户名: 密码: 验证码:
基于LTCC工艺的射频无源器件建模与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温共烧陶瓷(LTCC, Low Temperature Co-fired Ceramic)技术作为一种新型的封装技术,可将电路中的各种无源器件,如电容、电感、电阻、滤波器、耦合器、双工器等完全掩埋在介质中,以三维多层电路结构的形式实现小型化贴片产品,同时可与有源器件相结合用于研制各种高集成度、低成本的小功率射频与微波功能模块。掩埋在介质基板内的滤波器、耦合器、双工器等三维射频无源器件不同于常规的微带板无源器件,它们更能充分利用三维空间,这给小型化三维射频无源器件的发展开拓了新的研究方向。本文结合科研课题,对低通滤波器、带通滤波器、功率分配器、定向耦合器进行了深入研究,实现了多款不同功能的射频无源器件。作者的主要工作和成果可以概括为以下几点:
     1.研究了LTCC无源元件建模方法,对LTCC单层电容、多层电容、平面螺旋电感进行建模、仿真和加工验证,分析了单层电容、多层电容、平面螺旋电感等各种结构的无源元件的使用方法和注意事项,通过设立变量的方法建立了传输线、电感、电容、毫米波直流偏置电路等关键无源元件的三维电磁场模型库。
     2.研究了几种高/低通滤波器三维电磁场仿真模型。建立了五阶并联谐振、七阶并联谐振和九阶串联谐振低通滤波器三维电磁场模型。在分析高阶椭圆函数滤波器模型抑制度不高的情况下,提出了一种具有额外传输零点的并联谐振低通滤波器模型,同时建立了采用不同介电常数介质层的高通滤波器模型。
     3.研究了具有传输零点SIR谐振带通滤波器和LC谐振带通滤波器的设计与建模方法,提出了一种改进型的SIR谐振带通滤波器和一种具有传输零点的T型带通滤波器,详细给出了基于LTCC技术的SIR谐振带通滤波器的设计方法,同时采用T型带通滤波器结构,设计实现了一款应用于北斗导航通讯系统的双通道带通滤波器。对部分设计实例中的带通滤波器进行了加工验证,测试结果与仿真结果基本一致。
     4.研究了LTCC小型化功率分配器和定向耦合器三维层叠结构的实现方法,建立了小型化威尔金森功率分配器、90o电桥、90o串联型电桥、180o窄带巴伦、180o宽带巴伦三维电磁场仿真模型。其中功率分配器、90o串联型电桥、180o窄带巴伦器件采用3216的标准封装,可应用于1.616GHz北斗导航通讯系统和2.45GHz无线通讯系统。180o宽带巴伦,可应用于移动电视(CMMB)偶极子天线,解决手机终端内置CMMB天线的问题。
Low Temperature Co-fired Ceramic (LTCC, Low Temperature Co-fired Ceramic)technology, as a new packaging technology, can be used to bury a variety of passivecircuit components in the medium, such as capacitors, inductors, resistors, filters,couplers, diplexers etc. It can achieve the miniaturization of chip products by formingthree-dimensional multi-layer circuit, and can be used to develop the RF andmicrowave modules of highly integrated, low-cost and low-power by combining withsome active devices. Different from the conventional passive devices, the filters,couplers, diplexers and other three-dimensional RF passive components berried in themedium, need to make full use of three-dimensional space, which gives us a newresearch direction for the development of RF passive components. Taking into accountof research projects, the low-pass filters, band-pass filters, power dividers anddirectional couplers are studied in this paper. The main work and results of the authorcan be summarized as follows:
     1. Based on the processing line of modeling method for LTCC passivecomponents are studied in this paper. Specifically, this paper models and simulates thesingle-layer capacitors, multi-layer capacitors, stub inductors, planar spiral inductorsand does some process validation to them. Then it analysis of the use methods andnotes to the single-layer capacitors, multi-layer capacitors, planar spiral inductors andother passive components of variable structures, and after that it establishes a HFSSmodel library of some key components through setting up some variables, whichcontain transmission lines, inductors, capacitors, DC bias circuits of millimeter-wave.
     2. Some high/low pass filters are introduced in this paper. It first researches thethree-dimensional electromagnetic device models of LTCC low pass filters withfive-order parallel resonant, seven-order parallel resonant or nine-order series resonant.In the case of the inhibition of high-order elliptic function LTCC filter is not enough,this paper proposes a new LTCC low pass filter model of parallel resonant withadditional zeros. What’s more, it deals with some LTCC high pass filter models withdifferent medium of different dielectric constant.
     3. The design and modeling methods of SIR and LC band pass filter are presentedin this paper. It not only puts forward an improved SIR band pass filter and a T-typeLC filer with transmission zeros, but also gives an detail design method of designingthe SIR band pass filter based on the LTCC technology. At the same time, it does process validation to some of the band pass filters in the previous design examples,and the text results are consistent with the simulation results, so that these band passfilters can be applied to modern communications systems.
     4. The implementation methods of the miniaturized LTCC power dividers anddirectional couplers are described in this paper. In details, it designs thethree-dimensional electromagnetic models of the Wilkinson power divider,90°bridge,90°series-bridge,180°balun,180°broad band balun, and implements theminiaturization of them. Some devices, such as power divider,90°series-bridge,180°balun use a standard of3216package, so that they can be applied to the Beidounavigation system of1.616GHz and can be used for the wireless communicationsystem of2.45GHz. Mainly used in the mobile TV (CMMB) dipole antenna, the180°broad band balun solves the problem of built-in antenna in mobile TV (CMMB).
引文
[1.1] Ickes N., Gammie G., Sinangil M. E.etc. A28nm0.6V low power DSP formobile applications. Solid-State Circuits,2012,47(1):35-46.
    [1.2] Pilo H., Arsovsi I., Batson K., etc. A64Mb SRAM in32nm high-k metal-gateSOI technology with0.7V operations enabled by stability, write-ability andread-ability enhancements, Solid-State Circuits,2012,47(1):107-116.
    [1.3] McIntyre H., Arekapudi S., Busta E., etc. Design of the two-core x86-64AMD“Bulldozer” module in32nm SOI CMOS solid-state circuits. Solid-StateCircuits,2012,47(1):164-176.
    [1.4] Riedlinger R., Arnold R., Biro L., etc. A32nm,3.1Billion transistor,12widetssue itanium processor for mission-critical servers. Solid-State Circuits,2012,47(1):177-193.
    [1.5] Dong Gun Kam, Duixian Liu, Natarajan, etc. Organic packages with embeddedphased-array antennas for60-GHz wireless chipsets components. Packaging andManufacturing Technology,2011,47(1):1806-1814.
    [1.6] Dong Gun Kam, Duixian Liu, Natarajan, etc. LTCC packages with embeddedphased-array antennas for60GHz communications microwave and wirelesscomponents letters. Microwave and Wireless Components Letters,2011,21(11):142-144.
    [1.7] Unander T., Siden J., Nilsson H. E. etc. Designing of RFID-based sensorsolution for packaging surveillance applications.IEEE Sensors Journal,2011,21(11):3009-3018.
    [1.8] Ohshima D., Sasaki H., Mori, K., etc. Electrical design and techniques for anembedded high-pin-count LSI chip package components.Packaging andManufacturing Technology,2011,1(10):1543-1552.
    [1.9] Shamim A., Bray J.R., Hojjat N., etc. Ferrite LTCC-based antennas for tunableSoP applications components. Packaging and Manufacturing Technology,2011,1(7):999-1006.
    [1.10] Nnebe I., Soojae Park, Feger C., etc. Using single-wall carbon nanotubes andraman spectroscopy to measure local stresses in first-level flip-chip organicpackages components. Packaging and Manufacturing Technology,2011,1(10):1601-1607.
    [1.11] Pham A. V. Packaging with liquid crystal polymer. Microwave Magazine,2011,12(5):83-91.
    [1.12] Long X., Liao R., Zhou J., Zeng Z., etc. Multiple-chip package embedded oncompound board for light emitting diode. Electronics Letters,2011,47(20):1142-1144.
    [1.13] Samanta K.K., Robertson I.D. Advanced multilayer thick-filmsystem-on-package technology for miniaturized and high performance CPWmicrowave passive components. Packaging and Manufacturing Technology,2011,1(11):1695-1705.
    [1.14] Shafique M.F., Robertson I.D. Laser prototyping of multilayer LTCC microwavecomponents for system-in-package applications. Microwaves Antennas andPropagation,2011,5(8):864-869.
    [1.15] Ghaffar F.A., Khalid M.U. Salama K.N., etc.24-GHz LTCC fractal antennaarray SOP with integrated fresnel lens. Antennas and Wireless PropagationLetters,2011,10(6):705-708.
    [1.16] Chung D. J., Amadjikpe A. L., Papapolymerou J., etc. Multilayer integration oflow-Cost60-GHz front-end transceiver on organic LCP. Antennas and WirelessPropagation Letters,2011,10(11):1329-1332.
    [1.17]杨邦朝,张经国.多芯片组件(MCM)技术及其应用.成都:电子科技大学出版社,2001.
    [1.18]今中佳彦(日).多层低温共烧陶瓷技术.北京:科技出版社,2010.
    [1.19]王钧,施建俊,李征凡.微波MCM电路的设计与制作.电讯技术,1998,12(6):17-19.
    [1.20]刘永宁.微波多层电路与低温共烧陶瓷(LTCC).现代雷达,2000,2(6):83-86.
    [1.21]严伟,洪伟,薛羽.低温共烧陶瓷微波多芯片组件.电子学报,2002,30(5):711-714.
    [1.22]王悦辉,周济等.低温共烧陶瓷无源集成技术及其应用.材料导报.2005,19(9):83-90.
    [1.23] Anh-Vu H.Pham, Vikram Krishnamurthy, D.Bates, etc. Development of integralpassive components for multilayer organic MCMs at millimeter wave frequencie.IEEE Transactions on Advanced Packaging.19(3),2002:98-101.
    [1.24] B.G.Choi, M.G.Stubbsr, etc. A Ka-band narrow bandpass filter using LTCCtechnology. IEEE Microwave and Wireless Components Letters,2003,13(9):388-389.
    [1.25] Sutono A, Chen Y J, Laskar J. High-Q LTCC-based passive library for wirelesssystem-on-package (SOP) module development. IEEE Transactions onMicrowave Theory and Techniques,2001,49(10):1715-1724.
    [1.26] Rauscher C. Design of dielectric-filled cavity filters with ultrawide stopbandCharacteristics. IEEE Transactions on Microwave Theory and Techniques,2005,53(5):1777-1786.
    [1.27]信息产业部电子43所情报中心“杜邦生瓷带线路设计指南”.混合微电子技术,2000,11(2):11-25.
    [1.28] K.H. Drue, H. Thust, et al. RF models of passive LTCC components in the lowGigahertz-range. Applied Microwave and Wireless,1998,15(10):26-35.
    [1.29] R. Kulke, G. Mollenbeck, W. Simon, etc. Point-to-multipoint transceiver inLTCC for26GHz IMAPS-nordic.Applied Microwave and Wireless, Berlin,March,2002:50-53.
    [1.30] Maruhashi K., Ito M., Kishimoto S., etc.60-GHz-band LTCC moduletechnology for wireless gigabit transceiver applications.Radio-FrequencyIntegration Technology,2005,2(1):131-134.
    [1.31] T. Baras, A.F. Jacob. Integration of wideband LTCC image rejection mixers atK-band. ITG Special Session, Berlin, March,2010:86-89.
    [1.32] T. Baras, A. F. Jacob. Temperature drift compensation technique for a hybridLTCC oscillator at20GHz. European Microwave Week, Rom,2009:467-470.
    [1.33] T. Baras, A. F. Jacob. Integrated LTCC synthesizer and signal converter modulesat K-band. IEEE Trans on Microwave Theory and Techniques,2009,57(1):71-79.
    [1.34] S. Brosius, C. Friesicke, T. Baras, A. Molke, etc. Satellite transponder systemsfor on-orbit evaluation of LTCC-technology at K-band. Project Status Seminaron Ceramic Microwave Circuits for Satellite Communications (KERAMIS2),Ilmenau University of Technology, Berlin, March,2009:348-351.
    [1.35] T. Baras, A. F. Jacob. Manufacturing reliability of LTCC millimeter wavepassive components. IEEE Trans on Microwave Theory and Techniques.2008,56(11):574-2581.
    [1.36] T. Baras, A. F. Jacob. K-band frequency synthesizer with subharmonic signalgeneration and LTCC frequency tripler. European Microwave Week, Amsterdam,March,2008:7-30.
    [1.37] T. Baras, S. Brosius, A. F. Jacob. K-band/S-band satellite transponder system foron-orbit evaluation of LTCC technology. European Microwave Week, March,2008:27-30.
    [1.38] T. Baras, A. F. Jacob. Vertically integrated voltage-controlled oscillator in LTCCat K-band. IMS: International Microwave Symposium,2008:15-20.
    [1.39] T. Baras, A. Molke, A.F. Jacob, etc. Environmental evaluation of LTCC surfacemount technology for satellite applications. German Microwave Conference,TU-Hamburg-Harburg, March,2008:211-214.
    [1.40] T. Baras, A.F. Jacob. Thermal packaging concept for LTCC microwave powerapplications. German Microwave Conference, TU-Hamburg-Harburg, March,2008:111-114.
    [1.41] T. Baras, A. Molke, A. Schwarz, etc. Environmental Evaluation of LTCCSurface Mount Technology for Satellite Applications. German MicrowaveConference, TU-Hamburg-Harburg, March,2008:1-4.
    [1.42] T. Baras, J. Müller, A.F. Jacob. K-band LTCC star mixer with broadband IFoutput network. IEEE Trans. on Microwave Theory and Techniques,2008,55(12):2766-2772.
    [1.43] T. Baras, A. F. Jacob. Design and manufacturing reliability of passivecomponents for LTCC millimeterwave hybrid circuits. European MicrowaveWeek (EUMW),2007:660-663.
    [1.44] T. Baras, J. Müller and A. F. Jacob. K-band LTCC star mixer with broadband IFoutput network. IEEE International Microwave Symposium, June,2007:122-125.
    [1.45] T. Baras, M. Corrales Hernandez, A. F. Jacob. Electrical and thermo-mechanicalevaluation of2nd-level-interconnects for LTCC modules. Intl. Microelectronicsand Packaging Symposium, October,2006:221-227.
    [1.46] T. Baras and A. F. Jacob. Compact vertical bias networks for LTCC millimeterwave circuits. European Microwave Conference, September,2006:112-114.
    [1.47] T. Baras, F. Muhammad, A.F. Jacob. Compact broadband filters for hybridcircuits using flip-chip-technology. Proc. March,2006:227-230.
    [1.48] T.Baras, A.F. Jacob. Advanced broadband2nd-level-interconnects for LTCCmulti-chip-modules. European Microwave Conference, April,2005:115-117.
    [1.49] G. Vogt, K.-H. Drüe, S. Humbla, J. Müller, etc. Efficient design of multilayermicrowave modules using an element-wise simulation technique. GermanMicrowave Conference, TU-Hamburg-Harburg, March,2009:235-237.
    [1.50] S. Humbla, K.-H. Drüe, R. Stephan, etc. Qualification of a compact Ka-bandswitch matrix for experimental on-orbit verification. Proceedings of theEuropean Microwave Association,2008:52–58.
    [1.51] Tang C W, Lin Y C, Change C Y. Realization of transmission zeros in comlinefilters using an auxiliary inductively coupled ground plane. IEEE Transactionson Microwave Theory and Techniques,2003,51(10):2112-2118.
    [1.52] S. Humbla, R. Stephan, M. Hein. On-orbit Ka-band switch matrix experiment.16th International Student Seminar: Microwave and Optical Applications ofNovel Phenomena and Technologies, June,2009:9-17.
    [1.53] S. Humbla, J. Müller, R. Stephan, etc. Reconfigurable Ka-band switch matrix foron-orbit verification. European Microwave Conference, Sep.2009:610-613.
    [1.54] S. Humbla, J. Mueller, R. Stephan, etc. LTCC Ka-band switch matrix system foron-orbit verification.42nd International Symposium on Microelectronics,November,2009:1-5.
    [1.55] S. Humbla, D. St pel, J.F. Trabert, etc. Reconfigurable Ka-band switch matrixfor on-orbit verification. Project Status Seminar on Ceramic Microwave Circuitsfor Satellite Communications (KERAMIS2), Sept.2009:223-227.
    [1.56] S. Humbla, K.-H. Drüe, R. Stephan, etc. Qualification of a compact Ka-bandswitch matrix for on-orbit-verification. German Microwave Conference, March,2008:35-38.
    [1.57] J.F. Trabert, K.-H. Drüe, J. Müller, etc. High Performance3-DimensionalHybrid-integrated switch matrix for Ka-band satellite communicationapplications based on ceramic multilayer technology. IMAPS, San Jose, USA,November,2007:11-15.
    [1.58] K.-H. Drüe, M. Hein, J. Müller, etc. LTCC multilayer technology enables verycompact20GHz switch unit for space applications. European Microelectronicsand Packaging Conference Proceedimgs, Oulu, Finland,2007:500-504.
    [1.59] J. Müller, R. Perrone, K.-H. Drüe, etc. Comparison of high-resolution patterningtechnologies for LTCC microwave circuits. A Proceedings IMAPS/ACerS3rdInternational Conference on Ceramic Interconnect and Ceramic MicrosystemsTechnologies (CICMT),2007:98-103.
    [1.60] K.-H. Drüe, J. Müller, R. Perrone, etc. LTCC multilayer technology enables verycompact20GHz switch unit for space applications.16th EuropeanMicroelectronics and Packaging Conference and Exhibition, Oulu, Finland, June2007:17-20.
    [1.61] J. Müller, J. Pohlner, D. Schwanke, etc. Development and evaluation of hermeticceramic microwave packages for space applications. Ceramic Interconnect andCeramic Microsystems Technology (CICMT) Baltimore/MD, April,2005:10-13.
    [1.62] G. Reppe, J. Müller, J. Pohlner, etc. Development and evaluation of fine linestructuring methods for microwave packages in satellite applications. Process of15th European Microelectronics and Packaging Conference, June,2005:12-15.
    [1.63] R. Perrone, H. Thust, S. Rentsch, etc. Development and evaluation ofphotodefined elements for microwave modules in LTCC for space applications.Process of15th European Microelectronics and Packaging Conference, June,2005:12–15.
    [1.64] J. F. Trabert, M. Hein, J. Müller, etc. High functional density low-temperatureco-fired ceramic modules for satellite communications.35th EuropeanMicrowave Conference,2005:481-484.
    [1.65] C. Günner, G. M llenbeck, M. Faa en, etc. Microwave circuit technology forsatellite communication. Project Status Seminar on Ceramic Microwave Circuitsfor Satellite Communications (KERAMIS2), Ilmenau University of Technology,Sept.2009:223-228.
    [1.66] R. Kulke, G. M llenbeck, C. Günner, etc. Ceramic microwave circuits forsatellite communication. Journal of Microelectronics and Electronic Packaging,2009,6(1):27-31.
    [1.67] I. Wolff. From Antennas to Microwave Systems-LTCC as an Integratingtechnology for space applications. Eucap:3rd European Conference on Antennasand Propagation, Berlin, Germany, March,2009:3-8.
    [1.68] M. Rittweger, R. Kulke, R. Follmann, etc. Innovative technologies for RFcircuitry in satellite payload. Eucap:3rd European Conference on Antennas andPropagation, Berlin, Germany, March,2009:484-486.
    [1.69] R. Kulke. Keramische Mikrowellenschaltungen für die Satellitenkommunikation.Deutsche Keramische Gesellschaft, DKG-Handbuch "Keramische Werkstoffe",Kap, November,2008:228-231.
    [1.70] R. Kulke, C. Günner, G. M llenbeck, etc. Protoflight model development forspaceborne LTCC RF-modules. IMAPS,41st International Symposium onMicroelectronics, Rhode Island, November,2008:1001-1006.
    [1.71] R. Follmann, D. K ther, T. Kohl, etc. A single SiGe chip fractional-N275MHz-20GHz PLL with integrated20GHz VCO. IMS: International MicrowaveSymposium, Atlanta, June,2008:115-117.
    [1.72] R. Kulke, G. M llenbeck, C. Günner, etc. Ceramic microwave circuits forsatellite communication. Ceramic Interconnect and Ceramic MicrosystemsTechnologies, Munich, April,2008:121-124.
    [1.73] R. Kulke, G. M llenbeck, C. Günner, etc. LTCC multi-chip modules for Ka-bandmultimedia satellite technology. German Microwave Conference,TU-Hamburg-Harburg, March,2008:110-112.
    [1.74] R. Kulke, O. Kersten, J. Winkler, etc. Packaged microwave components forKa-band multimedia satellite communication: amplifier, oscillator and switchmodules.1st MacroNano-Colloquium on LTCC RF and MicrosystemInterconnect, Technische Universit t Ilmenau, Nov.2006:129-132.
    [1.75] R. Kulke, O. Kersten, J. Winkler, etc. Packaged microwave components formultimedia satellite communication. IMAPS (Wireless/RF Session),Proceedings, San Diego, USA, Oct.2006:241-245.
    [1.76] R. Lenz, H.-V. Heyer, R. Kulke, etc. Application of the SiMs SiGe PLL in a20GHz synthesizer payload module of the German Keramis program. MicrowaveTechnology and Techniques Workshop2008, Innovation and Challenges,ESA-ESTEC, Noordwijk, May,2008:156-159.
    [1.77] R. Lenz, H.-V. Heyer, G. M llenbeck, etc. A SiGe low noise local oscillatorMMIC with fractional-N frequency synthesis at10GHz and18GHz. GermanMicrowave Conference, TU-Hamburg-Harburg, March,2008:57-61.
    [1.78] D. Schwanke. Manufacturing of LTCC circuits for on-orbit-verificationexperiments and LTCC technology developments. Project Status Seminar onCeramic Microwave Circuits for Satellite Communications (KERAMIS2),Ilmenau University of Technology, Sept.2009:432-435.
    [1.79] G. Reppe, A. Rebs, A. Schwarz. Thick-and thin film technologies on fired LTCC.Project Status Seminar on Ceramic Microwave Circuits for SatelliteCommunications (KERAMIS2), Ilmenau University of Technology, Sept.2009:667-669.
    [1.80] St. Roemer. Keramis2-an example of integration and verification processes ofspace products. Project Status Seminar on Ceramic Microwave Circuits forSatellite Communications (KERAMIS2), Ilmenau University of Technology,Sept.2009:458-461.
    [2.1]邢孟江.基于LTCC技术的建模与应用研究.西安:西安电子科技大学.2008.
    [2.2]谢拥军,王鹏. Ansoft HFSS基础及应用.西安:西安电子科技大学出版社.2007.
    [2.3] David M. Pozar.微波工程.第三版,北京:电子工业出版社.2006.
    [2.4]李小珍,邢孟江,朱樟明.可重构的低温共烧陶瓷电容高频等效电路模型,半导体技术.2008,33(1):83-85.
    [2.5] Jens Müller, Daniel Josip. Integrated capacitors using LTCC. IEEE Transactionson Microwave Theory and Techniques,2002,15(1):29-30.
    [2.6] S.Lee, J.Choi, G.S. May, etc. Modeling and analysis of3-D solenoidembedded Inductors. IEEE Transactions on Advanced Packaging,2002,25(1):34-41.
    [2.7] KeunHeo, JuHwanLim, JeDoMun. Characterization and wideband modeling ofminiaturized LTCC helical inductors. IEEE Microwave and WirelessComponents Letters,2007,17(3):160-162.
    [2.8]任军,扬帆,郑薇.宽带硅衬底RF片上螺旋电感物理模型.电子学报,2006,34(8):1517-1521.
    [2.9]王彦峰,黄庆安,廖小平. RF螺旋电感参数的提取方法.半导体学报,2005,26(8):1591-1594.
    [2.10] Tzyy-sheng Horng, Jiang-ming Wu, Li-Qun Yang. A novel modified-Tequivalent circuit for modeling LTCC embedded inductors with a largebandwidth. IEEE Transactions on Microwave Theory and Techniques.2003,12(51):2327-2333.
    [3.1]森荣二.LC滤波器设计与制作.北京:科学出版社.2004.
    [3.2] H. Jantunen, S. Leppavuori, A. Turunen. Multilayer resonators and a bandpassfilter fabricated from a novel Low-Temperature Co-Fired Ceramic. Journal ofElectronic Materials,2002,31(3):191-195.
    [3.3] J. J. Yu, B. T. Tan, S. T. Chew. LTCC broadband deep embedded interconnectswith appliacation for embedded bandpass filter. Microwave and OpticalTechnology Letters,2005,38(3):179-181.
    [3.4] Ching-Wen Tang, Chien-Chung Tseng, Huei-Hung Liang. Develop of ultra-wideband LTCC filter. IEEE Transactions on Microwave Theory and Techniques,2008,11(3):320-322.
    [3.5] Joong-Keun Lee, Chan-Sei Yoo, Hyun-Chul Jung. Design of bandpass filter for900MHz zigBee application using LTCC high Q inductor. IEEE Transactions onMicrowave Theory and Techniques,2007,53(12):217-219.
    [3.6] Tang C W. Harmonic-suppression LTCC filters with the step-impedance quarterwavelength open stub. IEEE Transactions on Microwave Theory and Techniques,2004,52(2):617-624.
    [3.7] Tang C W, Lin Y C, Change C Y. Realization of transmission zeros in comlinefilters using an auxiliary inductively coupled ground plane. IEEE Transactionson Microwave Theory and Techniques,2003,51(10):2112-2118.
    [3.8] Ranbabu K, Romemann J. Simplified analysis technique for the initial design ofLTCC filters with all-capacitive coupling. IEEE Transactions on MicrowaveTheory and Techniques,2005,53(5):1781-1791.
    [3.9] Tung W, Chiang Y, Cheng J. A new compact LTCC bandpass filter usingnegative coupling. IEEE Transactions on Microwave Theory and Techniques,2005,15(10):641-643.
    [3.10] Y.H. Jeng, S.F. R. Chang, and H.K. Lin. A high stopband-rejection LTCC filterwith multiple transmission zeros. IEEE Transactions on Microwave Theory andTechniques,2006,15(10):633-638.
    [3.11] Joshi, H. Chappell. Dual-band lumped-element bandpass filter. IEEETransactions on Microwave Theory and Techniques,2006,54(12):4169-4177.
    [3.12] Tang, C.-W. Development of LTCC bandpass filters with transmission zeros.IEEE Microwave and Wireless Components Letters,2007,43(21):1149-1150.
    [3.13] Lap Kun Yeung, Ke-Li Wu. A compact second-order LTCC bandpass filter withtwo finite transmission zeros. IEEE Transactions on Microwave Theory andTechniques,2003,51(2):337-341.
    [3.14] Lap Kun Yeung, Ke-Li Wu, et al. Low-Temperature cofired ceramic LC filtersfor RF applications. IEEE Microwave Magazine,2008,9(5):118-128.
    [3.15] Stefan Stalf. Printed inductors in RF consumer applications. IEEE Transactionson consumer electronics,2001,47(3):426-435.
    [3.16] Rambabu, K., Bornemann, J. Simplified analysis technique for the initialdesign of LTCC filters with all-capacitive coupling. IEEE Transactions onMicrowave Theory and Techniques,2005,53(5):1787-1791.
    [4.1]路德维格(美).射频电路与应用.北京:科学出版社,2008.
    [4.2] Doumanis E., Goussetis G., Kosmopoulos S.A., etc. Inline interdigital pseudoelliptic helical resonator filters. Microwave and Wireless Components Letters,2011,21(8):400-402.
    [4.3] Li L., Wei Q.-F., Li Z.-F., etc. Compact concavo-convex cavity filters usingmultilayer substrate integrated waveguide. Electronics Letters,2011,47(8):500-502.
    [4.4] Kazemi M.J., Dadash M.S., Safian R., etc. Design and implementation of aband-pass filter using dielectric resonators with a new excitation structure.Microwaves Antennas and Propagation,2011,5(12):1416-1423.
    [4.5] Hizan H.M., Hunter I.C., Abunjaileh A.I., etc. Integrated dual-band radiatingbandpass filter using dual-mode circular cavities. Microwave and WirelessComponents Letters,2011,21(5):246-248.
    [4.6] Hoft M., Yousif F. Orthogonal coaxial cavity filters with distributedcross-coupling. Microwave and Wireless Components Letters,2011,21(10):519-521.
    [4.7] Boria V.E., Soto P., Cogollos S. Distributed models for filter synthesis.Microwave Magazine,2011,12(6):87-100.
    [4.8] Bastioli S. Non-resonating mode waveguide filters. Microwave Magazine,2011,12(6):77-86.
    [4.9] Yatsuda H., Horishima T., Eimura T., etc. Miniaturized SAW filters using aflip-chip technique. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,1996,43(1):125-130.
    [4.10] Panek P. Time-interval measurement based on SAW filter excitation, IEEETransactions on Instrumentation and Measurement,2008,57(11):2582-2588.
    [4.11] Zheng Wu, Lei Gu, Xin Li. Post-CMOS compatible micromachining techniquefor on-chip passive RF filter circuits. IEEE Transactions on Components andPackaging Technologies,2009,32(4):759-765.
    [4.12] Ntagwirumugara E., Gryba T., Zhang V.Y., etc. Analysis of frequency responseof IDT/ZnO/Si SAW filters using the coupling of modes model. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(10):2011-2015.
    [4.13] Jones R.E., Ramiah C., Kamgaing T., etc. System-in-a-package integration ofSAW RF Rx filter stacked on a transceiver chip. IEEE Transactions onAdvanced Packaging,2005,28(2):310-319.
    [4.14] Panek P. Random errors in time interval measurement based on SAW filterexcitation. IEEE Transactions on Instrumentation and Measurement,2008,57(6):1244-1250.
    [4.15] Rukhlenko A.S. Iterative WLS design of SAW bandpass filters. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(10):1930-1935.
    [4.16] King Yuen Wong, Wai Yip Tam. Analysis of the frequency response of SAWfilters using finite-difference time-domain method. IEEE Transactions onMicrowave Theory and Techniques,2005,53(11):3364-3370.
    [4.17] Rui Zhang, Mansour, R.R.. Low-cost dielectric-resonator filters with improvedspurious performance. IEEE Transactions on Microwave Theory and Techniques,2007,55(10):2168-2175.
    [4.18] Mansour R. High-Q tunable dielectric resonator filters. Microwave Magazine,2009,10(6):84-98.
    [4.19] Memarian M., Mansour R.R. Quad-mode and dual-mode dielectric resonatorfilters. IEEE Transactions on Microwave Theory and Techniques,2009,57(12):3418-3426.
    [4.20] Kazemi M.J., Dadash M.S., Safian R. Design and implementation of a band-passfilter using dielectric resonators with a new excitation structure. Microwaves,Antennas and Propagation,2011,5(12):1416-1423.
    [4.21] Eng Hock L., Kwok Wa Leung. Use of the dielectric resonator antenna as a filterelement. IEEE Transactions on Antennas and Propagation,2008,56(1):5-10.
    [4.22] Rauscher C. Design of dielectric-filled cavity filters with ultrawide stopbandCharacteristics. IEEE Transactions on Microwave Theory and Techniques,2005,53(5):1777-1786.
    [4.23] Amari S., Bekheit M. New dual-mode dielectric resonator filters. Microwaveand Wireless Components Letters,2005,15(3):162-164.
    [4.24] Rui Zhang, Mansour R.R. Dual-band dielectric-resonator filters. IEEETransactions on Microwave Theory and Techniques,2009,57(7):1760-1766.
    [4.25] Chi Wang, Zaki K.A. Dielectric resonators and filters, Microwave Magazine,2007,8(5):115-127.
    [4.26]苏汉章,基于LTCC技术的射频关键无源元件的设计.2011年,西安电子科技大学,硕士论文.
    [4.27] Lap Kun Yeung, Ke Li Wu, etc. A compact second-order LTCC bandpass filterwith two finite transmission zeros. IEEE Trans on MTT,2003,51(2):337-441.
    [4.28] Chen C.H, Chiu C.T, etc. Design of miniature bandpass filters on an organiclaminate substrate using a modified T prototype. Proceedings of the38thEuropean Microwave Conference, Birlin, may, Academic Press,2008:725-728.
    [5.1] Hennings A., Semouchkina E., Baker A., etc. Design optimization andimplementation of bandpass filters with normally fed microstrip resonatorsloaded by high-permittivity dielectric. IEEE Transactions on Microwave Theoryand Techniques,2006,54(3):1253-1261.
    [5.2]苏汉章,基于LTCC技术的射频关键无源元件的设计.2011年,西安电子科技大学,硕士论文.
    [5.3] Song K., Fan Y., Zhang Y.. Radial cavity power divider based on substrateintegrated waveguide technology. Electronics Letters,2006,42(19):1100-1101.
    [5.4] Dakui Wu, Yong Fan, Zongrui He. Vertical transition and power divider usingsubstrate integrated circular cavity. Microwave and Wireless ComponentsLetters,2009,19(6):371-373.
    [5.5] Bialkowski M.E., Bornemann J., Waris V.P.. Simplified mode-matchingtechniques for the analysis of coaxial-cavity-coupled radial E-plane powerdividers. IEEE Transactions on Microwave Theory and Techniques,1995,43(8):1875-1880.
    [5.6] Kaijun Song, Yong Fan, Yonghong Zhang. Eight-way substrate integratedwaveguide power divider with low insertion loss. IEEE Transactions onMicrowave Theory and Techniques,2008,56(6):1473-1477.
    [5.7]王巍,李文宬,等.采用遗传算法的双频Wilkinson功分器的优化设计.西安电子科技大学学报,2010,37(2):353–357.
    [5.8]李刚,雷继兆,梁昌洪.一种新的三工器设计方法.西安电子科技大学学报,2010,37(1):91–95.
    [5.9] Brzezina, G., Roy, L. etc. Extremely unequal Wilkinson power divider with dualtransmission lines. Electronics Letters,2010,46(1):90-91.
    [5.10] Yu Liang Chen, Hung Hsuan Lin. Novel broadband planar balun using multiplecoupled lines. IEEE MTT-S International Microwave Symposium Digest,2006:1571-1574.
    [6.1] Tummala R.R., Sundaram V., Chatterjee R. etc. Trend from ICs to3D ICs to3Dsystems. Custom Integrated Circuits Conference,2009:439-444.
    [6.2] Tummala R., Wong C.P., Markondeya Raj P. etc. Nanopackaging research atGeorgia Tech. Nanotechnology Magazine,2009,3(4):20-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700