用户名: 密码: 验证码:
近地表土壤中无线通信特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术的高速发展,各种智能网络广泛应用到人们的日常生活中,为人们的生活提供了极大的便利。尤其是近些年物联网的出现和发展,使人们的生活变得更加智能化,同时为地下无线通信发展带来了前所未有的契机。智能农业、智能工业和勘探业的发展需求为地下高频电磁波短距离通信的发展提供了机会。由于土壤中传输环境的复杂性,地下无线通信是一个很有挑战性的研究领域。但是随着通信技术的发展和土壤建模技术的不断进步,地下无线通信是一个发展前景十分乐观。
     本文主要研究近地表土壤中的无线通信特性,主要包括电磁波的传输模型,信道模型和非均匀土壤中电磁波的传输仿真解决方案。
     首先,分析讨论了使用最陡降速分析法、特殊函数分析法建立电磁波传输模型的方法和过程,并重点分析讨论了无线地下通信系统中波源的摆放方式对接收端收到的电磁波能量的影响。
     第二,介绍了地下无线通信信道的分析模型,信道建模指标和信道仿真的指标,建立了高频电磁波在地下无线通信的传输路径图,并丰富和完善了近地表土壤中高频电磁波地下无线通信的信道特性。
     第三,本文将微元法成功应用于非均匀土壤中的电磁波的理论分析中,使用微元法对电磁波在非均匀土壤中的传输特性进行了详细的分析。根据结合土壤的空间分布特性,利用Kriging插值法,对地下无线通信中的土壤进行了建模;
     最后,提出了高频电磁波在不均匀土壤中传输的仿真方案,讨论了ADI-FDTD算法和实现的关键设置,并对我国两种典型的土壤样本-东北季节性冻土和内蒙古砂质土壤进行了相关仿真,验证了微元法理论分析的结论。
     本文的研究工作可以为地下无线通信系统的设计和架构提供一定的应用价值。
With the development of technologies and network developed, the times of Intelligent Network has come. People can enjoy a more comfortable and convenient life in their daily life with the help of all kinds of Intelligent Networks devices. Especially the concept of "Internet of Things" has been proposed and rapidly developed in the latest years. Wireless Underground Network communication has become more and more popular for its application scenarios ranges from Intelligent Agriculture, Intelligent mining and intelligent traffic controlling. Though WSN has obviously important application Scenarios it is more than a challenging area considering the complexity of the soil. However, with the effort of so many experts spend in WSNs; it must have a bright future.
     Firstly, the propagation model of electric magnetic has been discussed in the paper using "steepest drop speed" and "Special function" method. What's more, the section focuses on the influence of sources in the wireless communication systems.
     Secondly, the channel model of the electric magnetic propagation in the soil has been studied. Valuable conclusions in wireless underground communication systems have been summarized. The conclusions in the paper have value in the design of wireless underground communication systems.
     Thirdly, the theoretical method of the solution called "micro element" has been successfully applied in the paper. The propagation of electric magnetic in the non-uniform soil has been discussed using "micro element". Combined with the spatial character of soil and feature of Kriging interpolation, the model of soil in wireless underground communication systems has been made.
     Finally, the solution of electric magnetic wave propagation in non-uniform soil has been proposed in the paper. Moreover, the key setting of ADI-FDTD has been discussed. Two classical kinds of soil type have been the example using the solution, verifying the result of the "micro element" methods.
     The paper will provide valuable advice for the design and implementation of wireless underground communication systems.
引文
[1]李莉,董树松,温向明等.无线传感器网络中提供QOS保障的关键问题[J].传感器世界,2006,12(12):28-32.
    [2]李莉.无线地下传感器网络关键技术的研究[D].北京邮电大学,2008.
    [3]Li Li Mehmet C.Vuran, Ian F.Akyidiz. Characteristics of Underground Channel for Wireless Underground Sensor Networks The sixth Annual Mediterranean Ad Hoc Networking WorkShop,Corfu,Greece, June 12-15,2007
    [4]A.R.Silva M.C. Vuran,Communication with Aboveground Devices in Wireless Underground Sensor Networks:An Empirical Study[C],to appear in IEEE ICC'10,Cape Town, South Africa, May 2010
    [5]A.R.Silva M.C. Vuran,Empirical Evaluation of Wireless Underground Communication in Wireless Underground Sensor Networks//Proceeding of IEEE Int. Conference on Distributed Computing in Sensor Systems. Marina DelRey.CA. June 2009
    [6]Z.Sun I.F.Akyildiz, Underground Wireless Communication using Magnetic Induction[C]//Proceeding of IEEE ICC 2009 Dresden,Germany. June 2009
    [7]Z.Sun I.F.Akyildiz, Magnetic Induction Communication for Wireless Underground Sensor Networks, to appear in IEEE Trans. Antenna and Propagation 2010
    [8]Z.Sun I.F.Akyildiz Channel Modeling of Wireless Networks in Tunes[C]//Proceeding of IEEE Globecom'08,New Orleans, USA, November 2008
    [9]Z.Sun I.F.Akyildiz Channel Modeling and Analysis for Wireless Networks in Underground Mines and Road Tunnels to appear in IEEE Trans. Antenna and Propagation 2010
    [10]陶晋宜.甚低频电磁波穿透地层无线通信系统若干问题的探讨[J].太原理工大学学报,2000,31(6):690-693,709.
    [11]列霍夫斯基赫分层介质中的波(第二版)科学出版社,1985年6月146-195
    [12]陶晋宜.甚低频电磁波穿透地层无线通信系统天线装置的研究[J].太原理工大学学报,1999,,30(2):139-143.
    [13]潘威炎,张红旗,李凯等.地下水平电偶极子在均匀球形地面产生的侧面波[J].电波 科学学报,2002,17(3):216-223,236.
    [14]张红旗,潘威炎.垂直电偶极子在有介质导电平面上激起的场[J].电波科学学报,2000,15(1):13-19.
    [15]朱秀芹,潘威炎,官伯然等.垂直电偶极子在负折射媒质中激起的场[J].电波科学学报,2006,21(2):177-183.
    [16]朱秀芹,潘威炎,官伯然等.垂直电偶极子在负折射媒质涂覆基底上产生的场[J].电波科学学报,2008,23(4):678-685.
    [17]彭怀云,樊文生,潘威炎等.沿不规则不均匀地面传播的侧面波[J].电波科学学报,2006,21(4):497-502.
    [18]斯公才,张国强.侧面波的研究.科技通报,1992,8(3):140-144.
    [19]司徒梦天.解决地下通信技术难题的方案及关键设备[J].中国工程科学,2001,3(7):64-69.
    [20]张清毅,朱建铭.透地通信信道特性的研究[J].电波科学学报,1999,(1):36-40.
    [21]向新,罗奕,易克初等.穿透岩层地下电流场通信信道分析[J].煤田地质与勘探,2005,33(4):77-79.
    [22]Z.Sun I.F.Akyildiz Channel Modeling and Analysis for Wireless Networks in Underground Mines and Road Tunnels In IEEE Trans. Antenna and Propagation 2010
    [23]Mehmet C. Vuran Ian F. Akyildiz.Channel model and analysis for wireless underground sensor networks in soil medium In Physical Communication.2010
    [24]吴湛击,邹自明,孟德香等.一种新的多径相关瑞利信道的数学模型:理论分析及仿真比较[J].电子与信息学报,2004,26(12):1933-1937.
    [25]涂峰,黄瑞光.水声信道的建模与仿真研究[J].微计算机信息(测控仪表自动化),2003,19(5):76-77.
    [26]宋晓晋,宋铁成,沈连丰等.移动通信衰落信道的建模与仿真[J].东南大学学报(自然科学版),2005,35(3):338-342.
    [27]Weng Cho Chew Waves and Fields in inhomogeneous media IEEE PRESS
    [28]Xin Dong; Vuran, M.C.;, "A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves," Global Telecommunications Conference (GLOBECOM2011),2011 IEEE, vol., no., pp.1-6,5-9 Dec.2011
    [29]Maekawa, T.; Shimada, T.; Inoue, S.; Jitsumori, A.; Okumura, N.; Akizuki, K. "Electric field analysis in the Earth considering attenuation of electromagnetic waves propagated in lossy media," Magnetics, IEEE Transactions on, vol.28, no.2, pp.1477-1480, Mar 1992
    [30]Allen Taflove Computational Electrodynamics (Third Edition) ARTECH HOUSE 200551-103
    [31]Ronold W.P.King Lateral-Wave Propagation of Electromagnetic Waves in the Lithosphere IEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICS VOL.GE-17. NO.31979
    [32]高本庆时域有限差分法国防工业出版社199522-29
    [33]van Beers, W.C.M.;, "Kriging metamodeling in discrete-event simulation:an overview," Simulation Conference,2005 Proceedings of the Winter, vol., no., pp.7 pp.,4-7 Dec.2005
    [34]李晓军,王长虹,朱合华等Kriging插值方法在地层模型生成中的应用[J].岩土力学,2009,30(1):157-162.
    [35]Kerwin, W.S.; Prince, J.L.;, "The kriging update model and recursive space-time function estimation," Signal Processing, IEEE Transactions on, vol.47, no.11, pp.2942-2952,Nov1999
    [36]Weimin Sun; Jinliang He; Yanqing Gao; Rong Zeng; Weihan Wu; Qi Su;, "Optimal design analysis of grounding grids for substations built in nonuniform soil," Power System Technology,2000. Proceedings. Power Con 2000. International Conference on, vol.3, no., pp.1455-1460 vol.3,2000
    [37]Song, W.; Hao, Y.; Parini, C.G.;, "ADI-FDTD algorithm in curvilinear co-ordinates," Electronics Letters, vol.41, no.23, pp.1259-1261,10 Nov.2005 doi:10.1049/el:20052865
    [38]Jiunn-Nan Hwang; Fu-Chiarng Chen;, "A modified PML conductivity profile for the ADI-FDTD method with split-field PML," Antennas and Propagation Society International Symposium,2007 IEEE, vol., no., pp.3093-3096,9-15 June 2007
    [39]Binke Huang Yansheng Jiang Wenbing Wang.A hybrid 2D ADI-FDTD subgridding scheme IEEE 2003
    [40]Jiang, H.; Tsunekawa, K.;, "Proposal of non-uniform mesh FDTD with uniaxial PML (UPML)," Wireless Communication Technology,2003. IEEE Topical Conference on, vol., no., pp.412-415,15-17 Oct.2003
    [41]Wrenger, J.P., Numerical reflection from FDTD-PMLs:a comparison of the split PML with the unsplit and CFS PMLs. Antennas and Propagation, IEEE Transactions on,2002.50(3):p.258-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700