用户名: 密码: 验证码:
感应电机无速度传感器转子磁场定向控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究高性能感应电机无速度传感器矢量控制技术符合国家工业现代化的发展趋势,对我国电气自动化水平进一步提高具有重要的意义。针对目前国产矢量变频器产品与进口高性能变频器还存在着较大差距的现状,论文以高性能感应电机无速度传感器矢量控制系统为研究对象,对磁链观测技术、磁场定向鲁棒控制策略以及死区效应补偿等环节进行了深入的理论研究,以及相应的仿真和实验分析。
     在分析传统转子磁链观测器所存在局限性的基础上,提出了两种改进的转子磁链观测器。第一种是基于电压模型的改进磁链观测器,为了更有效地抑制积分环节存在的直流偏移和积分饱和问题,采用一个截止频率可根据输出频率进行自调整的低通滤波器来代替电压模型磁链观测器中的反电动势积分环节,并通过一个补偿器来补偿低通滤波器所产生的磁链幅值和相角观测误差。第二种是基于自适应全阶状态观测器的改进磁链观测器,由于转速自适应观测器是一个非线性并且较复杂的模型,为了便于分析,将两相静止坐标系中的观测器输出误差系统变换到同步旋转坐标系中,再通过推导单输入单输出误差系统来得到满足观测器稳定性的条件。同时采用了一种改进的定子电阻自适应率,通过对定子电阻进行在线辨识以提高磁链观测器对电机参数变化的鲁棒性。通过仿真和实验对这两种改进转子磁链观测器的有效性进行了验证。
     负载转矩扰动和转子时间常数变化可能会导致感应电机无速度传感器转子磁场定向控制发生失调,对如何提高转子磁场定向控制系统抗负载转矩扰动和转子时间常数变化的鲁棒性进行了研究。在分析扰动转矩对感应电机转子磁场定向控制系统动态模型影响的基础上,提出了一种自适应扰动转矩观测器,并对转速控制器进行扰动转矩前馈补偿以提高系统的抗负载扰动能力。然后,采用一种实用的基于无功功率的模型参考自适应方法对转子时间常数进行在线辨识,通过Popov超稳定性理论对辨识系统的稳定性进行了证明,并分析了这种模型参考自适转子时间常数辨识器对涉及到的其它电机参数的敏感性。实验结果验证了所提出的方案可以提高感应电机无速度传感器转子磁场定向控制对负载转矩扰动和转子时间常数变化的鲁棒性。
     由于逆变器死区效应对感应电机相电压状态重构准确性和电流环控制性能有着重要的影响,提出了一种可以同时补偿死区误差电压并消除零电流钳位现象的死区补偿方法。在分析死区效应影响因素以及等效死区时间表达式的基础上,采用平均死区时间补偿法,在两相静止轴系中对等效死区时间所引起的误差电压进行了补偿。为了提高电流极性检测的准确性,利用同步旋转轴系中定子电流的励磁分量和转矩分量经过坐标反变换以后进行低通滤波,然后判断电流在空间坐标系中所处的扇区,从而决定所需要施加的补偿电压。另外,为了改善输出电流波形的质量,将一种零电流钳位效应消除方法结合到上述补偿方法中。通过在11kW感应电机矢量控制系统中进行应用,实验结果证明了所提出的死区补偿算法可以获得较理想的补偿效果。
     采用TMS320F2812 DSP作为主控芯片,研制了系列无速度传感器矢量控制变频器样机,并对系统硬件和软件结构设计的主要环节进行了详细分析。实验结果证明了所研制变频器样机具有较好的性能指标,本设计为实现高性能无速度传感器矢量控制变频器的产品化打下了坚实的基础。
Research of high-performance speed sensorless vector control technology is coincident with the development trend of national industrial modernization. And the research also has important practical significance for the improvement of electrical automation of our country. Nowadays, the national vector-controlled inverter products are still left behind at the high-performance import ones. In this dissertation, researches are focused on high-performance speed sensorless vector controlled induction motor drives. Theory analysis, simulations and experiments are performed concerning rotor flux observer, field-oriented robust control and dead-time compensation.
     Based on the analysis of limitation of conventional rotor flux observer, two different kinds of improved flux observer are proposed. The first one is based on voltage model method. An improved voltage model flux observer with the programmable low-pass filter (LPF) is proposed. LPF is normally used to replace the pure integrator of back electromotive force to avoid dc drift and saturation problems. However, the LPF estimator introduces magnitude and phase observed errors, results in degraded estimation performance at low frequency. In addition, the LPF with fixed cutoff frequency is difficult to provide good estimation for wide speed range. To solve the problems, an improved programmable LPF rotor flux observer with an error-decaying mechanism is introduced. The other one is the improved full-order flux observer. The observer error system is transformed into synchronous rotation frame to avoid nonlinear and complicated dynamics of the observer. And stability conditions can be achieved through the single-input and single-output error system. To improved parameter robustness of the observer, stator resistance is identified synchronously based on an improved adaptive mechanism. The feasibility of the two proposed observers are verified through the experimental results.
     The speed sensorless field-oriented control for induction motor may be detuned due to load torque disturbance and rotor time constant variation. Based on the analysis of dynamic model of field-oriented controlled induction motor considering the load torque disturbance, a novel adaptive disturbance observer is proposed. And disturbance torque feedforward control for speed regulator is designed to obtain satisfactory dynamic response by realizing the compensation for external load disturbance. Then a practical rotor time constant estimation method based on model reference adaptive system with reactive power model is presented. Convergence of the estimator is proved using the Popov’s super-stability theory. And the sensitivity of motor parameters to the model is analyzed. The experimental results verify the validity of the proposed robust control schemes for speed sensorless field-oriented controlled induction motor drives.
     Since dead-time effect of the inverter has great influence on phase voltage reconstruction and current controller for speed sensorless vector control system. A novel dead-time compensation strategy is presented to compensate dead-time error voltage and eliminate zero-current clamping effect. The factors influencing dead-time effect are analyzed, and the expression of equivalent dead time is deduced. The average dead-time compensation technique is adopted to compensate error voltage at the stationary frame. To improve the accuracy of current polarity detection, magnetizing and torque current components are transformed into the synchronous rotation frame. Therefore, compensating voltage vector can be determined according to the sector which the current vector locates according to the filtered current components. In addition, a zero-current clamping phenomenon eliminating scheme is adopted to improve the compensation performance. The proposed compensation method was implemented in the vector controlled induction motor. Experimental results demonstrate the feasibility of the dead-time compensation strategy.
     Based on the above works, a vector-control driver for series induction motors with TMS320F2812 DSP has been developed. The key parts of hardware and software structures have been designed. Experimental results show that the inverter prototype achieves satisfactory performance. And the research has built stable base for the industrialization of the high-performance speed sensorless vector control inverter.
引文
1高景德,王祥珩,李发海.交流电机及其系统的分析.北京:清华大学出版社, 1993
    2陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社, 1998
    3李永东.交流电机数宇控制系统.北京:机械工业出版社, 2002
    4 Joachim Holtz. Sensorless Control of Induction Motor Drives. Proceedings of the IEEE, 2002, 90(8): 1359-1394
    5 Radu Bojoi, Paolo Guglielmi, and Gian-Mario Pellegrino. Sensorless Direct Field-Oriented Control of Three-Phase Induction Motor Drives for Low-Cost Applications. IEEE Trans. on Industry Applications, 2008, 44(2): 475-481
    6冯垛生,曾岳南.无速度传感器矢量控制原理与实践.北京,机械工业出版社, 2006
    7李永东,李明才.感应电机高性能无速度传感器控制系统——回顾、现状与展望.电气传动, 2004, (1): 4-10
    8杨耕,陈伯时.交流感应电动机无速度传感器的高动态性能控制方法综述.电气传动, 2001, (3): 3-8
    9赵争鸣,袁立强,孟朔,李崇坚.通用变频器矢量控制与直接转矩控制特性比较.电工技术学报, 2004, 19(4): 81-84
    10 Rong-Jong Wai. Fuzzy Sliding-Mode Control Using Adaptive Tuning Technique. IEEE Trans. on Industrial Electronics, 2007, 54(1): 586-594
    11 Jordi Catalai Lopez, Luis Romeral, Antoni Arias, and Emiliano Aldabas. Novel Fuzzy Adaptive Sensorless Induction Motor Drive. IEEE Trans. on Industrial Electronics, 2006, 53(4): 1170-1178
    12 Amuliu Bogdan Proca, Ali Keyhani, and John M. Miller. Sensorless Sliding-Mode Control of Induction Motors Using Operating Condition Dependent Models. IEEE Trans. on Energy Conversion, 2003, 18(2): 205-212
    13 Amuliu Bogdan Proca, and Ali Keyhani. Sliding-Mode Flux Observer with Online Rotor Parameter Estimation for Induction Motors. IEEE Trans. on Industrial Electronics, 2007,54(2): 716-723
    14赵德宗,张承进,郝兰英.一种无速度传感器感应电机鲁棒滑模控制策略.中国电机工程学报, 2006, 26(22): 122-127
    15 Murat Barut, Seta Bogosyan, and Metin Gokasan. Speed-Sensorless Estimation for Induction Motors Using Extended Kalman Filters. IEEE Trans. on Industrial Electronics, 2007,54(1): 272-280
    16 H. Rehman. Fuzzy Logic Enhanced Robust Torque Controlled Induction Motor Drive System. IEE Proc. Control Theory Applications, 2004, 151(6): 754-762
    17 Miroslaw Wlas, Zbigniew Krzeminski, Jaroslaw Guzinski, Haithem Abu-Rub, and Hamid A. Toliyat. Artificial-Neural-Network-Based Sensorless Nonlinear Control of Induction Motors. IEEE Trans. on Energy Conversion. 2005, 20(3): 520-528
    18冼成瑜,王明渝,刘和平.基于多模糊控制器的感应电动机矢量控制系统实验研究.电工技术学报, 2004, 19(11): 31-35
    19 Makoto Iwasaki, and Nobuyuki. Robust Speed Control of IM with Torque Feedforward Control. IEEE Trans. on Industrial Electronics, 1993, 40(6): 553-560
    20 Guchuan Zhu, Louis-A. Dessaint, Ouassima Akhrif, and Azeddine Kaddouri. Speed Tracking Control of a Permanent-Magnet Synchronous Motor with State and Load Torque Observer. IEEE Trans. on Industrial Electronics, 2000, 47(2): 346-355
    21 Kyeong-Hwa Kim and Myung-Joong Youn. A Nonlinear Speed Control for a PM Synchronous Motor Using a Simple Disturbance Estimation Technique. IEEE Trans. on Industrial Electronics, 2002, 49(3): 524-535
    22 Joachim Holtz. Sensorless Control of Induction Machines—With of Without Signal Injection?. IEEE Trans. on Industrial Electronics, 2006, 53(1): 7-30
    23王宇,邓智泉,王晓琳.一种新颖的电机磁链辨识算法.中国电机工程学报, 2007, 27(6): 39-44
    24 Ohmori Y, Fujita H, Mitsuhashi T. A Spatial Vector Controlled Inverter for Induction Motor Drive Without Speed Sensor. Proc IPEMC’94. Beijing, China, 1994: 466-471
    25 Hu J and Wu B. New Integration Algorithms for Estimating Motor Flux Over a Wide Speed Range. IEEE Trans. on Power Electronics, 1998,13(5): 969-977
    26 Bose B K and Patel N R. A Programmable Cascaded Low-Pass Filter-Based Flux Synthesis for a Stator Flux-Oriented Vector-Controlled Induction Motor Drive. IEEE Trans. on Industrial Electronics, 1997, 44(1): 140-143
    27 Shin M H, Hyun D S, Cho S B, and Choe S Y. An Improved Stator Flux Estimation for Speed Sensorless Control of Induction Motors. IEEE Trans. on Power Electronics, 2000, 15(2): 312-318
    28 Holtz J and Quan J. Drift and Parameter Compensated Flux Estimator for Persistent Zero Stator Frequency Operation of Sensorless Controlled Induction Motors. IEEE Trans. on Industry Applications, 2003, 39(4): 1052-1060
    29张旭,瞿文龙.一种低速下磁链观测补偿的新方法.电工电能新技术, 2003, 22(3): 50-53
    30 K D Hurst, Thomas G, Griva Giovanni, et al. Zero-Speed Tacholess IM Torque Control: Simply a Matter of Stator Voltage Integration. IEEE Trans. on Industry Applications, 1998, 34(4): 790-795
    31韦立祥,刘丛伟,孙旭东,李发海.一种消除电压型磁链观测器中直流偏置误差的新方法.清华大学学报(自然科学版) , 2001, 41(9): 51-54
    32 T. G. Habetler, et al. Stator Resistance Tuning in a Stator Flux-Oriented Drive Using an Instantaneous Hybrid Flux Estimator. IEEE Trans. on Power Electronics, 1998, 13(1): 125-132
    33巫庆辉,邵诚.基于U-I模型的感应电机定子磁链估计的仿真研究.系统仿真学报, 2007, 19(1): 89-92
    34杨文强,贾正春.异步电机转子磁链观测器的准确度分析与设计.华中科技大学学报, 2001, 29(2): 11-13
    35 Marcello Montanari, Sergei M. Peresada, Carlo Rossi, and Andrea Tilli. Speed Sensorless Control of Induction Motors Based on a Reduced-Order Adaptive Observer. IEEE Trans. on Control Systems Technology, 2007, 15(6): 1049-1064
    36 Hossein Madadi Kojabadi, Liuchen Chang, and Rajamani Doraiswami. A MRAS-Based Adaptive Pseudoreduced-Order Flux Observer for Sensorless Induction Motor Drives. IEEE Trans. on Power Electronics, 2005, 20(4): 930-938
    37 Kazuhiro Ohyama, Greg M. Asher, and Mark Sumner. Comparative Analysis of Experimental Performance and Stability of Sensorless Induction Motor Drives. IEEE Trans. on Industrial Electronics, 2006, 53(1): 178-186
    38郑泽东,李永东,王琛琛.异步电机全阶自适应磁链观测和速度辨识研究.电气传动, 2006, 36(7): 7-10
    39 Kubota H. DSP-Based Speed Adaptive Flux Observer of Induction Motor. IEEE Trans. on Industry Applications, 1993, 29(2): 344-348
    40 Yang Geng, Chin Tunghai. Adaptive-Speed Identification Scheme for an Inverter Induction Motor Drive. IEEE Trans. Industry Electronics, 1993,29 (4): 820-825
    41 Noguchi T, Kondo S, Valigi P. Field-Oriented Control of an Induction Motor with Robust On-Line Tuning of Its Parameters. IEEE Trans. on Industry Applications, 1997, 33(1): 35-42
    42 Karanayil B, Rahman M F, Grantham C. Rotor Resistance Identification Using Artificial Neural Networks for an Indirect Vector Controlled Induction Motor Drive. IECON, 2001:1315-1320
    43 Donald R. McGaughey, Mohammed Tarbouchi, Ken Nutt, and Aziz Chikhani. Speed Sensorless Estimation of AC Induction Motors Using the Fast Orthogonal Search Algorithm. IEEE Trans. on Energy Conversion, 2006, 21(1): 112-120
    44 Schauder, C. Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers. Proceedings of the IEEE-IAS Annual Meeting, 1989: 493-499
    45 Tajima, H. and Hroi, Y. Speed Sensorless Field-Orientation Control of the Induction Machine. IEEE Trans. on Industry Applications, 1993, 29(1): 175-180
    46 F. Z. Peng, T. Fukao, and J. S. Lai. Low-Speed Performance of Robust Speed Identification Using Instantaneous Reactive Power for Tacholeless Vector Control of Induction Motors. IEEE Trans. on Industry Applications, 1994, 30(5): 509-514
    47 Lennart Harnefors. Globally Stable Speed-Adaptive Observer for Sensorless Induction Motor Drives. IEEE Trans. on Industrial Electronics.2007, 54(2): 1243-1245
    48 S. Suwankawin and S. Sangwongwanich. A Speed-Sensorless IM Drive with Decoupling Control and Stability Analysis of Speed Estimation. IEEE Trans. on Industry Electronics, 2002, 49: 444–455
    49 H. Tajima, G. Guidi, and H. Umida. Consideration about Problems and Solutions of Speed Estimation Method and Parameter Tuning for Speed Sensorless Vector Control of Induction Motor Drives. IEEE Trans. on Industry Applications, 2002, 38(5): 1282–1289
    50 H. Kubota, I. Sato, Y. Tamura, K. Matsuse, H. Ohta, and Y. Hori, Regenerating-Mode Low-Speed Operation of Sensorless Induction Motor Drive with Adaptive Observer. IEEE Trans. on Industry Applications, 2002, 38(4): 1081–1086
    51 H. Hofmann and S. R. Sanders. Speed-Sensorless Vector Torque Control of Induction Machines Using a Two-Time-Scale Approach. IEEE Trans. on Industry Applications, 1998, 34(1): 169–177
    52 Marko Hinkkanen and Jorma Luomi. Stabilization of Regenerating-Mode Operation in Sensorless Induction Motor Drives by Full-Order Flux Observer Design. IEEE Trans. on Industry Electronics, 2004, 51(6): 1318-1328
    53 Masaru Hasegawa. Robust-Adaptive-Observer Design Based onγ-Positive Real Problem for Sensorless Induction-Motor Drives. IEEE Trans. on Industry Electronics, 2006, 53(1): 76-85
    54 Surapong Suwankawin and Somboon Sangwongwanich. Design Strategy of an Adaptive Full-Order Observer for Speed-Sensorless Induction-Motor Drives—Tracking Performance and Stabilization. IEEE Trans. on Industry Electronics, 2006, 53(1): 96-119
    55 K. L. Shi, T. F. Chan, Y. K. Wong, and S. L. Ho. Speed Estimation of an Induction Motor Drive Using an Optimized Extended Kalman Filter. IEEE Trans. on Industry Electronics, 2002, 49(1): 124-133
    56 S. Bolognani, R. Oboe, and M. Zigliotto. Sensorless Full-Digital PMSM Drive with EKF Estimation of Speed and Rotor Position. IEEE Trans. on Industry Electronics, 1999, 46(4): 184-191
    57 Leite. A. V, Esteves Araujo. R, and Freitas. D. A New Approach for SpeedEstimation in Induction Motor Drives Based on a Reduced-Order Extended Kalman Filter. IEEE International Symposium on Industrial Electronics, 2004, 2: 1221-1226
    58李洁,钟彦儒.无轨迹卡尔曼滤波器在感应电机转速估计中的应用研究.电工技术学报, 2006, 21(2): 45-50
    59 S. Kim, T. Park, J. Yoo, and G. Park, Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation, IEEE Trans. on Industry Electronics, 48(3): 609–614
    60 B. Raison, F. Francois, G. Rostaing, and J. Rogon. Induction Drive Speed Monitoring by Neural Networks, in Proc. IEEE Int. Conf. IECON, Nagoya, Japan, 2000: 859–863
    61 Lazhar Ben-Brahim, Susumu Tadakuma, and Alper Akdag. Speed Control of Induction Motor without Rotational Transducers. IEEE Trans. on Industry Applications, 1999, 35(4): 844-850
    62 Baburaj Karanayil, Muhammed Fazlur Rahman, and Colin Grantham. Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive. IEEE Trans. on Industrial Electronics, 2007, Feb., 54(1): 167-176
    63 M. Ishida and K. Iwata. A New Slip Frequency Detector of an Induction Motor Utilizing Rotor Slot Harmonics. IEEE Trans. on Industry Applications, 1984, 20: 575–582
    64 K. D. Hurst and T. G. Habetler. A Comparison of Spectrum Estimation Techniques for Sensorless Speed Detection in Induction Machine Drives. Conf. Rec. IEEE-IAS Annual Meeting 1995, 1: 553–559
    65 Ferrah. A., Bradley. K.J., Hogben-Laing. P.J., Woolfson. M.S., Asher. G.M., Sumner. M., Cilia. J., and Shuli. J.A Speed Identifier for Induction Motor Drives Using Real-Time Adaptive Digital Filtering. IEEE Trans. on Industry Applications, 1998, 34(1): 156- 162
    66 R. D. Lorenz. Sensorless Drive Control Methods for Stable High Performance Zero Speed Operation. Proc. Eur. Conf. Power Electronics and Applications-Power Electronics and Motion Control (EPE-PEMC), Kosice, Slovakia, 2000, 1: 1–11
    67 J. I. Ha and S. K. Sul. Sensorless Field-Orientation Control of an InductionMachine by High-Frequency Signal Injection. IEEE Trans. on Industry Applications, 1999, 35(1): 45–51
    68 Qiang Gao, Greg Asher, and Mark Sumner. Sensorless Position and Speed Control of Induction Motors Using High-Frequency Injection and Without Offline Pre-commissioning. IEEE Trans. on Industrial Electronics, 2007, 54(5): 2474-2481
    69秦峰,贺益康,刘毅,章玮.两种高频信号注入法的无速度传感器运行研究.中国电机工程学报, 2005, 25(5): 116-121
    70 Hamid A. Toliyat, Emil Levi, and Mona Raina. A Review of RFO Induction Motor Parameter Estimation Techniques. IEEE Trans. on Energy Conversion, 2003, 18(2): 271-283
    71 Myoung-Ho Shin and Dong-Seok Hyun. Online Identification of Stator Transient Inductance in Rotor-Flux-Oriented Induction Motor Drive. IEEE Trans. on Industrial Electronics, 2007, 54(4): 2018-2023
    72 Silverio Bolognani, Luca Peretti, and Mauro Zigliotto. Parameter Sensitivity Analysis of an Improved Open-Loop Speed Estimate for Induction Motor Drives. IEEE Trans. on Power Electronics, 2008, 23(4): 2127-2135
    73 J. Stephan and M. Bodson, Real-Time Estimation of the Parameters and Fluxes of Induction Motors. IEEE Trans. on Industry Applications, 1994, 30(3): 746–759
    74 Kaiyu Wang, John Chiasson, Marc Bodson, and Leon M. Tolbert. A Nonlinear Least-Squares Approach for Identification of the Induction Motor Parameters. IEEE Trans. on Automatic Control, 2005, 50(10): 1622-1628
    75 Maurizio Cirrincione, Marcello Pucci, Giansalvo Cirrincione, and Gerard-Andre Capolino. Constrained Minimization for Parameter Estimation of Induction Motors in Saturated and Unsaturated Conditions. IEEE Trans. on Industry Electronics, 2005, 52(5): 1391-1402
    76 Habibur Rehman, Adnan Derdiyok, Mustafa K. Giiven, Longya Xu. An MRAS Scheme for On-Line Rotor Resistance Adaptation of an Induction Machine, IEEE PESC’01 Conference, Vanconver, Canada, June, 2001: 817-822
    77 Mineo Tsuji, Shuo Chen, Katsuhiro Izumi, and Eiji Yamada. A Sensorless Vector Control System for Induction Motors Using q-Axis Flux with Stator Resistance Identification. IEEE Trans. on Industrial Electronics, 2001, 48(1): 185-194
    78 Xing Yu, Matthew W. Dunnigan, and Barry W. Williams. A Novel Rotor Resistance Identification Method for an Indirect Rotor Flux-Orientated Controlled Induction Machine System. IEEE Trans. Power Electronics, 2002, 17(3): 353-364
    79 R. Lessmeier, W. Schumacher, and W.Leonhard. Microprocessor -Controlled AC-Servo Drives with Synchronous or Induction Motor: Which is Preferable?. IEEE Trans. Industry Applications, 1990, 22(6): 812-819
    80 Robert D. Lorenz, and Donald B. Lawson. A Simplified Approach to Continuous On-Line Tuning of Field-Oriented Induction Machine, IEEE Trans. Industry Applications, 1990, 26(3): 420-424
    81 L. J. Garces. Parameter Adaption for the Speed-Controlled Static AC Drive with a Squirrel-Cage Induction Motor. IEEE Trans. Industry Applications, 1980, 16(2): 173-178
    82 Suman Maiti, Chandan Chakraborty, Yoichi Hori, and Minh C. Ta. Model Reference Adaptive Controller-Based Rotor Resistance and Speed Estimation Techniques for Vector Controlled Induction Motor Drive Utilizing Reactive Power. IEEE Trans. on Industry Electronics, 2008, 55(2): 594-601
    83 H. Bin, Q. Wenlong, and L. Haifeng, A Novel On-Line Rotor Resistance Estimation Method for Vector Controlled Induction Motor Drive, Proc. Conf. Rec. IEEE IPEMC Conf., 2004, 2:655–660
    84 Shyh-Shing Perng, Yen-Shin Lai and Chang-Huan Liu. Sensorless Vector Controller for Induction Motor Drives with Parameter Identification. Proceedings of the 24th Annual Conference of the IEEE, 1998, 2: 1008-1013
    85凌强,徐文立,陈峰.关于感应电机转速观测和转子电阻辨识的研究.中国电机工程学报, 2001, 21(9): 58-62
    86金海,黄进.基于模型参考方法的感应电机磁链的自适应观测及参数辨识.电工技术学报, 2006, 21(1): 65-69
    87 Pavel Vaclavek, and Petr Blaha. Lyapunov-Function-Based Flux and Speed Observer for AC Induction Motor Sensorless Control and Parameters Estimation. IEEE Trans. on Industry Electronics, 2006, 53(1): 138-145
    88黄志武,桂卫华,年晓红,刘心昊,单勇腾.一种新型的基于观测器的无速度传感器感应电动机定子电阻辨识方案.电工技术学报, 2006, 21(12): 13-20
    89 Li Chang Zai, Christopher L.Demarco, Thomas A. Lipo. An Extended Kalman Filter Approach to Rotor Time Constant Measurement in PWM Induction Motor Drives. IEEE Trans. on Industry Application, 1992, 28(1): 96-104
    90沈安文,李涛.感应电机无速度传感器矢量控制中转子电阻辨识研究.微电机, 2006, 39(5): 6-9
    91 M.G.Simoes and B.K.Bose. Neural Network Based Estimation of Feedback Signals for a Vector Controlled Induction Motor. IEEE Trans. on Industry Application, 1995, 31(3): 620-629
    92王亮,王公宝,马伟明,吴旭升.基于小波变换和神经网路的同步电机参数辨识新方法.中国电机工程学报, 2007, 27(3):1-6
    93 Miroslaw Wlas, Zbigniew Krzeminski, and Hamid A. Toliyat. Neural-Network-Based Parameter Estimations of Induction Motors. IEEE Trans. on Industrial Electronics, 2008, 55(4): 1783-1794
    94 Takashi Sukegawa, Kenzo Kamiyama, Katsuhiro Mizuno, Takayuki Matsui and Toshiaki Okuyama. Fully Digital, Vector-Controlled PWM VSI-Fed AC Drives with an Inverter Dead-Time Compensation Strategy. IEEE Trans. on Industrial Electronics, 1991, 27(3): 552-559
    95孙向东,钟彦儒.一种新颖的死区补偿时间测量方法.中国电机工程学报, 2003, 23(2):103-107
    96吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿.中国电机工程学报, 2006, 26(12): 101-105
    97 Jong-Woo Choi, and Seung-Ki Sul. Inverter Output Voltage Synthesis Using Novel Dead Time Compensation. IEEE Trans. on Power Electronics, 1996, 11(2): 221-227
    98孙向东,钟彦儒,段龙.基于定子电压矢量定向的死区效应补偿方法在通用变频调速器中的应用.电气传动自动化, 2003, 25(2): 1-6
    99张震,李世毅,温旭辉.异步电机矢量控制中死区效应补偿.微电机, 2003, 36(1): 22-24
    100王庆义,尹泉,刘杰,万淑芸.一种基于定子电流重构的死区补偿技术.电力电子技术, 2006, 40(2): 73-75
    101 Naomitsu Urasaki, Tomonobu, Senjyu, Katsumi Uezato, and Toshihisa Funabashi. An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives. IEEE Trans. on Power Electronics, 2005, 20(5): 1150-1160
    102 N. Urasaki, T. Senjyu, T. Kinjo, T. Funabashi and H. Sekine. Dead-Time Compensation Strategy for Permanent Magnet Synchronous Motor Drive Taking Zero-Current Clamp and Parasitic Capacitance Effects into Account. IEE Proc. Electrical Power Application, 2005, 152(4): 845-853
    103 David Leggate, and Russel J Kerkman. Pulse-Based Dead-Time Compensator for PWM Voltage Inverters. IEEE Trans. on Industrial Electronics, 1997, 44(2): 191-197
    104胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法.中国电机工程学报, 2005, 25(3): 13-17
    105 Lazhar Ben-Brahim. On the Compensation of Dead Time and Zero Current Crossing for a PWM-Inverter-Controlled AC Servo Drive. IEEE Trans. on Industrial Electronics, 2004, 51(5): 1113-1117
    106 Jong-Woo Choi, and Seung-Ki Sul. A New Compensation Strategy Reducing Voltage/Current Distortion in PWM VSI Systems Operating with Low Output Voltages. IEEE Trans. on Industrial Electronics, 1995, 31(5): 1001-1995
    107 Alfredo R, Munoz, and Thomas A. Lipo. On-Line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives. IEEE Trans. on Power Electronics, 1999, 14(4): 683-689
    108徐小增,李叶松,秦忆.矢量控制感应电机参数变化的影响研究.华中科技大学学报(自然科学版), 2003, 31(7): 43-45
    109程超,程善美.基于矢量控制的电机参数辨识及自调整策略.微电机, 2000, 33(6): 19-21
    110 Ciro Attaianese, Vito Nardi, and Giuseppe Tomasso. A Self-Commissioning Algorithm for VSI-Fed Induction Motors. IEEE Trans. on PowerElectronics, 2002, 17(6): 1017-1023
    111 Manuele Bertoluzzo, Giuseppe S. Buja, and Roberto Menis. Self-Commissioning of RFO IM Drives: One-Test Identification of the Magnetization Characteristic of the Motor. IEEE Trans. on Industry Applications, 2001, 37(6): 1801-1806
    112 Jul-Ki Seok, and Seung-Ki Sul. Induction Motor Parameter Tuning for High-Performance Drives. 2001, 37(1): 35-41
    113 A. Gastli. Identification of Induction Motor Equivalent Circuit Parameters Using the Single-Phase Test. IEEE Trans. on Energy Conversion, 1999, 14(1): 51-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700