用户名: 密码: 验证码:
玉米秸秆的固体碱活性氧蒸煮机制及其浆料表面特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,人类对能源和材料的需求量日益增加,石油等矿物资源的消耗日趋加快,价格不断上涨,而且按目前的消耗速度,石油将在几十年后被基本耗尽。进入后石油时代,人类迫切需要替代能源和材料,世界各国也在制订相关政策和措施应对即将到来的无石油时代。届时,可再生的植物生物质资源无疑将成为人类唯一的有机碳源,那么如何清洁、有效的利用植物生物质生产人类所需的能源和材料在未来将成为评判国家竞争力大小的重要标准之一,也是国家能源安全的重要保证,本论文正是基于此思想开展了卓有成效的研究工作。此外,我国森林资源相对匮乏,以农业为主,每年产生大量的农业废弃物,有代表性的如玉米秸秆。本论文选取了玉米秸秆作为研究对象,目的是试图将尚未得到充分利用的玉米秸秆用于高附加值产品的生产,进而推动农业的发展,提高农民收入。
     本论文研究了一种新型的玉米秸秆蒸煮预处理工艺—固体碱活性氧蒸煮工艺。该蒸煮工艺能够有效脱除木素,用于植物生物质组分的分离。该蒸煮工艺中活性氧来自于O_2和H_2O_2,固体碱是MgO基的,是一种环境友好型的方法,生产过程使用了绿色的化学品,易于回收再利用,对环保具有重大意义。该蒸煮方法有别于传统的氧脱木素工艺,体现在新的蒸煮方法采用了难溶于水的固体碱替代传统氧脱木素使用的水溶性强碱,从而构建了一个新的氧脱木素介质体系。
     本论文研究了玉米秸秆固体碱活性氧蒸煮法的工艺条件,并得出较佳的蒸煮工艺条件为:蒸煮温度165℃,固体碱量15.4%,氧气初始压力1.0MPa,过氧化氢添加量3.0%,固液比为1:6,保温时间2h。在此蒸煮条件下,玉米秸秆的木素脱除率可达82.1%,浆得率为50.7%。研究结果表明,固体碱是本蒸煮工艺不可缺少的因素,它具有保护碳水化合物的功能,也有利于提高木素脱除率;氧气是脱木素的主要因素,而氧气和过氧化氢的联合蒸煮提高了木素脱除率。
     对玉米秸秆固体碱活性氧蒸煮后的浆料表面形貌和化学特性研究表明,玉米秸秆变成纤维化,浆表面的O/C值上升,XPS谱图中的C1下降,而C2、C3和C4含量均上升,表明浆料表面主要是纤维素和半纤维素,并有部分有机物被氧化。AFM研究则表明,蒸煮后的浆表面具有“点蚀”现象,而经碱法蒸煮所得浆的表面却呈现光滑现象,说明固体碱活性氧比碱法蒸煮更能有效脱除原料表面的抽出物和木素,对浆料表面的破坏比碱法的强。TEM的研究也表明,即固体碱活性氧蒸煮法的宏观作用机制是由表及里,蚕食并分离了纤维细胞的胞间层;碱法蒸煮则无法完全分离胞间层,而是采取渗透的方法脱木素。
     研究结果表明,固体碱对纤维素的保护功能来自Mg~(2+)或含镁基团,而且必须在碱性条件下此保护功能才会启动。固体碱提高脱木素率的原因可能主要来自于其自身能提供电子对的缘故。对脱脂棉和微晶纤维素进行固体碱蒸煮的研究表明,固体碱能有效保护纤维素免于被碳化,但蒸煮后纤维素结晶结构发生变化,聚合度降低,尤其是低聚合度的微晶纤维素受影响更大。根据实验结果,本论文对Mg~(2+)或含镁基团的纤维素保护功能在OH~-参与下的保护途径进行了讨论。
     固体碱活性氧蒸煮升温过程是大量脱木素阶段,脱木素率随着保温时间的增加而增加。固体碱活性氧蒸煮作用部位主要发生在胞间层,木素中的苯基是主要反应中心,蒸煮后木素的苯基被大量脱除,尤其是带有双键共轭结构的苯基。
     研究结果表明,固体碱活性氧蒸煮可以作为植物生物质精炼的预处理工序,它能有效的提高可酶解性,有利于后续的处理。
With the development of society, oil is fast consumed due to the increased demand.Mankind is facing a difficult situation to look for a substitute for the future because the oilwill be used up for decades afterward according to the present rate of consumption. The plantbiomass will be the only carbon resources on the earth when the oil is used up in future,meaning that every country needs more investigation on the utilization of biomass, whichrelates to the development and safety of the country. The research in this dissertation wasperformed based on this situation and some meaningful results were obtained. In China, agreat amount of agricultural wastes was produced every year, especially for corn stalk.Therefore, corn stalk selected as a research object has the great significance for thesustainable development of agriculture.
     A novel method of cooking of corn stalk with active oxygen and a solid alkali wasstudied in this dissertation. Lignin can be removed by this method, and it can be used in theprocess of separation of lignocellulose. The active oxygen comes from O_2and H_2O_2, and thesolid alkali is MgO. This method is considered as a clean process for using the green chemicaland the solid alkali can be recycled. Otherwise, this method is different from the traditionaloxygen delignification, that is, a new medium system is built by the novel cooking methodthrough the substitute for the soluble alkali with the insoluble solid alkali.
     The process condition of the novel cooking was studied, and the optimum condition wasobtained: cooking temperature of165°C, solid alkali of15.4%, initial oxygen pressure of1.0MPa, H_2O_2of3.0%, solid-to-liquor ratio of1:6and keeping time of2h. Under the optimumcondition, the rate of delignification was82.1%, and the yield of pulp was50.7%. The resultsshowed that the solid alkali is an indispensable factor because it can protect the carbohydrateand increase the rate of delignification; the main factor of delignification was O_2, but thecombination of O_2and H_2O_2can obviously increase the rate of delignification.
     The results showed that the corn stalk became fibration after cooking and the ratio of O/Con the pulp surface increased. In the XPS after cooking, the intensity of C1decreased, but thatof C2, C3, C4increased showing that cellulose and hemicellulose are the main componentson the surface of pulp, and small amounts of carbohydrate are oxidized. In the pictures ofAFM, the pitting corrosion was observed on the surface of pulp cooked by active oxygen andthe solid alkali, but the surface of pulp cooked by alkaline cooking was glossy, meaning thatthe damage on the surface of pulp cooked by active oxygen and a solid alkali is more seriousthan that of alkaline cooking. TEM showed that the middle layer (ML) of fibrocyte was destroyed completely by active oxygen and the solid alkali cooking, but the alkaline cookingwas less efficient.
     The results showed that the protection of solid alkali resulted from Mg~(2+)or its ionicgroup that must be put into the alkaline condition. The reason of the increase ofdelignification rate by solid alkali was possibly from its capacity that could provide duplet.The results from the cooking of absorbent cotton and microcrystalline cellulose showed thatthe solid alkali could protect cellulose from carbonization, but its crystal structure changedand the degree of polymerization (DP) decreased, especially for the low DP cellulose. Thepossible protective pathways of Mg were discussed in the dissertation.
     The results showed that a great amount of lignin was removed in the temperature riseperiod, and the rate of delignification increased with the increase of keeping time. The part ofdelignification was in the ML, and the reactive center was the benzene ring of lignin. Thebenzene ring of lignin was largely removed after the cooking with active oxygen and a solidalkali, especially for the benzene rings that contain conjugate double bond.
     The results indicate that the cooking with active oxygen and a solid alkali can be apretreatment of biorefinery because it can improve the rate of enzymolysis of cellulose.
引文
[1]詹怀宇等.纤维化学与物理[M].北京:科学出版社,2005:40-137
    [2] Park S., Baker J.O., Himmel M.E., et al. RCeseealrlcuh lose crystallinity index:measurement techniques and their impact on interpreting cellulase performance [J].Biotechnology for Biofuels,2010,3:10-15
    [3] Hayashi J., Sufoka A., Ohkita J., et al. Confirmation of existence of cellulose III (I), III(II), IV (I), and IV (II) by x-ray method [J]. J Polym Sci Polym Lett,1975,13:23-27
    [4] Gardiner E.S., Sarko A. Packing analysis of carbohydrates and polysaccharides.16.Thecrystal-structures of cellulose IV1and cellulose IV11[J]. Can J Chem,1985,63:173-180
    [5]杨淑蕙.植物纤维化学[M].第3版,北京:中国轻工业出版社,2001:69-201
    [6]张琳,尹少华.焚烧秸杆:外部性及政府管制分析[J].华商,2007,Z2:2-3月B版
    [7]王勇,孟晓林.秸秆废弃物的生物学特性及其开发利用[J].山西农业科学,2009,37(12):42-44
    [8]陈洪雷,王岱.玉米秸秆在制浆造纸工业中的应用研究[J].华东纸业,2009,40(2):15-18
    [9]郑凤英,张英珊.我国秸杆资源的利用现状及其综合利用前景[J].西部资源,2007,1:25-26
    [10] Weinstock I.A., Atalla R. H., Reiner R.S., et al. A new environmentally benigntechnology for transforming wood pulp into paper Engineering polyoxometalates ascatalysts for multiple processes [J]. Journal of Molecular Catalysis A: Chemical,1997,116:59-84
    [11] García S.G., Hospido A., Moreira M.T., etc. Environmental impact assessment of totalchlorine free pulp from Eucalyptus globulus in Spain [J]. Journal of Cleaner Production,2009,17:1010–1016
    [12] Moreir M.T., Feijoo G., Alvarez R.S., et al. Biobleaching of oxygen delignified kraft pulpby several white rot fungal strains [J]. Journal of Biotechnology,1997,53:237-251
    [13] Martfnez J. M., Reguant J., Salvad J., et al.. Soda-anthraquinone pulping of a softwoodmixture: applying a pseudo-kinetic severity parameter [J]. Bioresource Technology,1997,60:161-167
    [14] Jiménez L., Pérez I., García J.C., et al. Influence of oxygen bleaching variables ofenzyme-treated soda pulp from wheat straw on the quality of black liquor [J]. ProcessBiochemistry,2000,35:685–691
    [15]李忠正.草类制浆技术与装备发展前景[J].湖北造纸,2009,4:12-16
    [16] Zhang C., Wen Z., Chen J.. An integrated model for technology forecasting to reducepollutant emission in China’s pulp industry [J]. Resources, Conservation and Recycling,2009,54:62–72
    [17] David R. Morris, Frank R. Steward, Chris A. Gilmore. Comparative analysis of theconsumption of energy of two wood pulping processes [J]. Energy Conversion&Management,2000,41:1557-1568
    [18] Lei Y.C, Liu S.J., Li J., et al. Effect of hot-water extraction on alkaline pulping of bagasse[J]. Biotechnology Advances,2010,28:609-612
    [19] Kü ü k M.M., Demirba A. Kinetic study on hydrolysis of biomass (Ailanthus altissimachips) by using Alkaline-glycerol solution [J]. Energy Conversion&Management,1999,40:1397-1403
    [20] Martin R. S., Perez C.,Briones R.. Simultaneous production of ethanol and kraft pulpfrom pine (pinus radliata) using steam explosion [J]. Bioresource Technology,1995,53:217-223
    [21] Montane D., Farriol X., Salvado J., et al. Application of steam xplosion to thefractionation and rapid vapor-phase lkaline pulping of wheat straw [J]. Biomass andBioenergy,1998,14(3):261-276
    [22] Sun R.C., Fang J.M., Tomkinson J.. Delignification of rye straw using hydrogen peroxide [J]. Industrial Crops and Products,2000,12:71–83
    [23] Jiménez L., de la Torre M. J., Bonilla J. L., et al. Organosolv pulping of wheat straw byuse of acetone-water mixtures [J]. Process Biochemistry,1998,33(4):4111-4118
    [24] Jiménez L., de la Torre,M. J., Maestre F., et al. Organosolv pulping of wheat straw by useof phenol [J]. Bioresource Technology,1997,60:199-205
    [25]张建安,张小勇,韩润林等.麦草碱-氧蒸煮脱木素[J].化工冶金,1999,20(2):210-214
    [26]张建安,刘德华,张小勇等.碱-氧-蒽醌蒸煮麦草脱木素[J].化工学报,2001,52(10):916-920
    [27] Reinstaller A.. Policy entrepreneurship in the co-evolution of institutions, preferences,and technology Comparing the diffusion of totally chlorine free pulp bleachingtechnologies in the US and Sweden [J]. Research Policy,2005,34:1366–1384
    [28]张辉.节能促低碳,中国纸业依然任重道远[J].中华纸业,2010,31(1):14-21
    [29] García S.G., Moreira M.T., Artal G., etc. Environmental impact a ssessment of non-woodbased pulp production by soda-anthraquinone pulping process [J]. Journal of CleanerProduction,2010,18:137–145
    [30] EVTUGUIN D.V., ANDREOLETY J.P., GANDINI A.. Polyurethanes based onoxygen-organosolv lignin [J]. Eur. Polym. J.1998,34(8):1163-1169
    [31] KUBO S., URAKI Y. and SANO Y.. Preparation of carbon fibers from foftwood ligninby atmospheric acetic acid pulping [J]. Carbon,1998,36(7-8):1119-1124
    [32] Adilson, Goncalves R., PriscilaBenar. Hydroxymethylation and oxidation of Organosolvlignins and utilization of the products [J]. Bioresource Technology,2001,79:103-111
    [33] Mancera A., Fierro V., Pizzi A.,et al. Physicochemical characterisation of sugar canebagasse lignin Oxidized by hydrogen peroxide [J]. Polymer Degradation and Stability,2010,95:470-476
    [34] Shen D.K., Gu S., Luo K.H., et al. The pyrolytic degradation of wood-derived ligninfrom pulping process [J]. Bioresource Technology,2010,101:6136-6146
    [35] Betancur M., Bonelli P.R., Velásquez J.A., et al. Potentiality of lignin from the Kraftpulping process for removal of trace nickel from wastewater: Effect ofdemineralisation[J]. Bioresource Technology,2009,100:1130-1137
    [36] Sun R.C., Tomkinson J., Ma P.L., et al. Comparative study of hemicelluloses from ricestraw by alkali and hydrogen peroxide treatments [J]. Carbohydrate Polymers,2000,42:111–122
    [37] Ibrahim M. M., El-Zawawy W.K., Abdel-Fattah Y. R., et al. Comparison of alkalinepulping with steam explosion for glucose production from rice straw [J]. CarbohydratePolymers,2011,83:720–726
    [38] Sánchez R, Rodriguez A, Garcia JC, et al. Exploitation of hemicellulose, cellulose andlignin from Hesperaloe funifera [J]. Bioresoure Technology,2011,102(2):1308-1315
    [39] Helmerius J., von Walter J.V., Rova U., et al. Impact of hemicellulose pre-extraction forbioconversion on birch Kraft pulp propertie s[J]. Bioresource Technology,2010,101:5996-6005
    [40] Chen X.W., Lawoko M., van Heiningen A.. Kinetics and mechanism of autohydrolysis ofhardwoods [J]. Bioresource Technology,2010,101:7812-7819
    [41]陈嘉翔.制浆化学[M].北京:轻工业出版社,1990:364-394
    [42]黄放辉,雷利荣,陈中豪.氧脱木素段对漂白纸浆厂的影响[J].纸和造纸,2008,27(4):1-2
    [43]刘瑞恒,付时雨,詹怀宇.氧脱木素过程中氧自由基的产生及其脱木素选择性[J].中国造纸学报,2008,23(1):90-94
    [44]郭延柱,孔凡功,秦梦华,等.多金属氧酸盐为催化剂的麦草NaOH-AQ浆氧脱木素的研究[J].中华纸业,2008,22:31-34
    [45] Ana P.M. Tavares, Jose A.F. Gamelas, Armindo R. Gaspar, etc. A novel approach for theoxidative catalysis employing polyoxometalate–laccase system: application to theoxygen bleaching of kraft pulp[J]. Catalysis Communications,2004,5:485–489
    [46] Korpi H., Lahtinen P., Sippola V., et al. An efficient method to investigate metal–ligandcombinations for oxygen bleaching [J]. Applied Catalysis A: General,2004,268:199–206
    [47] Zhang D.C., Chai X.S., Pu Y.Q., et al. Lignocellulosic fiber charge enhancement bycatalytic oxidation during oxygen delignification [J]. Journal of Colloid and InterfaceScience,2007,306:248–254
    [48] Gamelas J.A.F., Tavares A.P.M., Evtuguin D.V., et al. Oxygen bleaching of kraft pulpwith polyoxometalates and laccase applying a novel multi-stage process [J]. Journal ofMolecular Catalysis B: Enzymatic,2005,33:57–64
    [49]刘明友,王俊文.表面活性剂与过氧化氢强化氧脱木素工艺的优化[J].造纸科学与技术,2010,29(1):12-15
    [50]刘明友,关庆芳.过氧乙酸预处理与表面活性剂强化的氧脱木素[J].纸和造纸,2010,29(5):23-25
    [51]张彬,董元锋,刘温霞.过氧化氢强化两段氧脱木素[J].中国造纸,2010,29(5):14-16
    [52] Vu T. H. M., Pakkanen H., Alén R.. Delignification of bamboo (Bambusa procera acher)Part1. Kraft pulping and the subsequent oxygen delignification to pulp with a low kappanumber [J]. Industrial Crops and Products,2004,19:49–57
    [53] Salmela M., Alén R., Vu M. T. H.. Description of kraft cooking and oxygen–alkalidelignification of bamboo by pulp and dissolving material analysis [J]. industrial cropsand products,2008,28:47–55
    [54] Leh C.P., Wan Rosli W.D., Zainuddin Z., et al. Optimisation of oxygen delignification inproduction of totally chlorine-free cellulose pulps from oil palm empty fruit bunch fibre[J]. industrial crops and products,2008,28:260–267
    [55]李正国,王海毅.荻苇浆氧脱木素和ECF漂白技术的研究及应用[J].中华纸业,2008,15:53-55
    [56]高慧,詹怀宇.硫酸盐竹浆氧脱木质素和全无氯漂白的研究[J].林产化学与工业,2009,29(4):41-46
    [57]闫德勇,刘明友.麦草AS-AQ法蒸煮及后续氧脱木素的研究[J].上海造纸,2008,39(2):12-17
    [58]冯新利,王三保,李伟然等.麦草爆破浆鼓泡塔氧脱木素[J].湖北造纸,2008,1:12-15
    [59]王秋梅,颜进华,李军等.亚硫酸盐浆强化氧脱木素漂白[J].纸和造纸,2008,28(8):23-26
    [60]江守乐,詹怀宇,李建文,等.硫酸盐竹浆助剂强化的氧脱木素[J].中华纸业,2008,10:22-25
    [61] Susilo J.,Bennington C. P. J.. Modelling kappa number and pulp vixcosity in industrialoxygen delignification systems [J]. Trans IChemE, Part A, Chemical EngineeringResearch and Design,2007,85(6):872-881
    [62]袁成强,刘玉,陈嘉川等.麦草浆氧脱木素中木素结构的变化[J].中国造纸学报,2009,24(1):56-59
    [63]许利编译.硫酸盐桉木浆蒸煮卡伯值对氧脱木素效果的影响[J].国际造纸,2010,29(1):10-15
    [64]郭三川,詹怀宇,罗小林,等.速生桉木及其KP和氧脱木素浆中木素结构的变化[J].中国造纸学报,2009,24(3):28-32)
    [65] Wójciak A., Kasprzyk H., Sikorska E., et al. Changes in chromophoric composition ofhigh-yield mechanical pulps due to hydrogen peroxide bleaching under acidic andalkaline conditions [J]. Journal of Photochemistry and Photobiology A: Chemistry,2010,215:157–163
    [66] Villaverde J. J., Ligero P., Vega A. D.. Bleaching Miscanthus x giganteus Acetosolv pulpswith hydrogen peroxide/acetic acid.Part1:Behaviour in aqueous alkaline media [J].Bioresource Technology,2009,100:4731-4735
    [67]黎松涛,王习文.高锰酸钾预处理与表面活性剂强化氧脱木素的研究[J].中华纸业,2008,24:58-60
    [68]钟林新,付时雨,彭新文.活化、催化过氧化氢漂白与脱木素体系的研究进展[J].中华纸业,2009,30(5):74-79
    [69]刘艳兰,陈克复,李军,等.麦草浆过氧化氢强化氧脱木素的研究[J].中国造纸,2009,28(9):13-16
    [70]郑禄彬,王公慰,张盈珍等译.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992:1-57
    [71] Wen, ZZ; Yu, XH; Tu, ST, et al. Biodiesel production from waste cooking oil catalyzedby TiO2-MgO mixed oxides [J]. BIORESOURCE TECHNOLOGY,2010,101(24):9570-9576
    [72] Anderson, JA; Beaton, A; Galadima, A, et al..Role of Baria Dispersion in BaO/Al2O3Catalysts for Transesterification[J]. CATALYSIS LETTERS,2009,131(1-2):213-218
    [73] Kouzu, M; Hidaka, J; Komichi, Y, et al. A process to transesterify vegetable oil withmethanol in the presence of quick lime bit functioning as solid base catalyst [J]. FUEL,2009,88(10):1983-1990
    [74]杨学林,袁金磊,黄永茂等.非均相固体碱催化棉籽油制备生物柴油及其性能[J].粮油加工,2010,2:24-28
    [75]卢春华.固体碱的研究及应用[J].技术与教育,2010,1:13-15
    [76] Liu M., Zanna S., Ardelean H., et al. A first quantitative XPS study of the surface filmsformed, by exposure to water,on Mg and on the Mg–Al intermetallics: Al3Mg2andMg17Al12[J]. Corrosion Science,2009,51:115–1127
    [77] Rudrake A., Karan K., Horton J. H., et al. A combined QCM and XPS investigation ofasphaltene adsorption on metal surfaces [J]. Journal of Colloid and Interface Science,2009,332:22–31
    [78] Johansson L.S., Campbell J.M., Fardim P., et al. An XPS round robin investigation onanalysis of wood pulp fibres and filter paper [J]. Surface Science,2005,584:126–132
    [79] Johansson L.S., Campbell J.M., Koljonen K., et al. Evaluation of surface lignin oncellulose fibers with XPS [J]. Applied Surface Science,1999,144(145):92–95
    [80] Fardim P., Gustafsson J., Schoultz S. von, et al. Extractives on fiber surfaces investigatedby XPS, ToF-SIMS and AFM [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2005,255:91–103
    [81] Gustafsson J., Ciovica L., Peltonen J.. The ultrastructure of spruce kraft pulps studied byatomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J].Polymer,2003,44:661–670
    [82] Yu Y.Z., Koljonen K., Paulapuro H.. Surface chemical composition of some non-woodpulps [J]. Industrial Crops and Products.2002,15:123–130
    [83]黄国红,敖日格勒,冯玉等. AFM及其在植物纤维分析方面的应用[J].中华纸业,2009,50(15):69-76
    [84] Gidh A. V., Decker S. R., See C. H.,et al. Characterization of lignin using multi-anglelaser lightscattering and atomic force microscopy [J]. Analytica Chimica Acta,2006,555:250–258
    [85] Daniel G., Volc J., Niku-Paavola M.L.. Cryo-FE-SEM&TEM immuno-techniques revealnew details for understanding white-rot decay of lignocellulose [J]. C. R. Biologies,2004,327:861–871
    [86] Lewiner F., Klein J. P., Puel F., et al. On-line ATR FTIR measurement of supersaturationduring solution crystallization processes. Calibration and applications on threesolute/solvent systems [J]. Chemical Engineering Science,2001,56:2069-2084
    [87]张新爱,关润伶.玉米秸秆包装材料的开发研究[J].包装工程,2010,31(11):56-58
    [88]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2008:35-229
    [89]王金主,王元秀,李峰等.玉米秸秆中纤维素、半纤维素和木质素的测定[J].山东食品发酵,2010,3:44-47
    [90] Goswami T, Saikia CN, Baruah RK,et al. Characterization of pulp obtained from populusdeltoids plants of different ages using IR, XRD and SEM [J]. Bioresoure Technology,1996,57:209-214.
    [91] Hou Q.X., Liu W., Liu Z.H., et al. Characteristics of antimicrobial fibers prepared withwood periodate oxycellulose [J]. Carbohyd Polym,2008,74:235-340.
    [92] Yoon J.J., Kim Y.K.. Degradation of crystalline cellulose by the brown-rot basidiomycetefomitopsis palustris [J]. J Microbio,2005,6:487-492.
    [93]Sun Y., Lin L.. Hydrolysis behavior of bamboo fiber in formic acid reaction system [J]. JAgric Food Chem,2010,58:2253-2259
    [94]陈嘉翔,詹怀宇,余家鸾.现代制浆漂白技术与原理[M].广州:华南理工大学出版社,2000:11-12
    [95]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989:1-147
    [96] Schwanninger M., Rodrigues J.C., Pereira H.,et al. Effects of short-time vibratory ballmilling on the shape of FT-IR spectra of wood and cellulose [J]. Vib. Spectrosc,2004,36:23–40
    [97] Fardim P., Gustafsson J., Von Schoultz S., et al. Extractives on fiber surfaces investigatedby XPS, ToF-SIMS and AFM [J]. Colloids Surf. A,2005,255:91–103
    [98] Laine J., Stenius P., Carlsson G., et al.. Surface characterization of unbleached kraft pulpsby means of ESCA [J]. Cellulose,1994,1:145–160
    [99] Rjiba N., Nardin M., Dréan J.Y., et al. A study of the surface properties of cotton fibersby inverse gas chromatography [J]. J. Colloid Interf. Sci.,2007,314:373–380
    [100] Inari G.N., Pétrissans M., Dumarcay S., et al. Limitation of XPS for analysis of woodspecies containing high amounts of lipophilic extractives [J]. Wood Sci. Technol.2011,45:369–382
    [101] Gustalfsson J., Ciovica L., Pltonen J.. The ultrastructure of spruce kraft pulps studied byatomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J].Polymer,2003,44:661–670
    [102] Raghavan D., VanLandingham M., Gu X., et al. Characterization of heterogeneousregions in polymer systems using tapping mode and force microscopy [J]. Langmuir,2000,16:9448–9459
    [103]百度百科.氢氧化镁[OL]. http://baike.baidu.com/view/189209.htm,2012
    [104]徐寿昌.有机化学[M].第2版,北京:高等教育出版社,1993:221-311
    [105]泉美治,小川雅彌,加藤俊二等.仪器分析导论第四册[M].第2版.李春鸿,刘振海译.北京:化学工业出版社,2005:1-12.
    [106] sterberg M.O., Schmidt U., Jaaskela-inen A.S..Combining confocal Ramanspectroscopy and atomic force microscopy to study wood extractives on cellulosesurfaces.Colloids and Surfaces A: Physicochem [J]. Eng. Aspects,2006,291:197–201
    [107] Jahn A., Schroder M.W., Futing M.,et al.Characterization of alkali treated flax fibres bymeans of FT Raman spectroscopy and environmental scanning electron microscopy [J].Spectrochimica Acta Part A,2002,58:2271–2279
    [108] Popescu C.M., LarssonPer T., Vasilea C.. Carbon-13CP/MAS solid state NMR andX-ray diffraction spectroscopy studies onlime wood decayed by Chaetomium globosum[J]. Carbohydrate Polymers,2011,83:808–812
    [109] Larsson Per T., Westermark U., Iversen T.. Determination of the cellulose I a allomorphcontent in a tunicate cellulose by CP/MAS13C-NMR spectroscopy [J]. CarbohydrateResearch,1995,278:339-343
    [110] Hult E.L., Liitia T., Liisa S., et al. A CP/MAS13C-NMR study of cellulose structure onthe surface of refined kraft pulp fibers [J]. Carbohydrate Polymers,2002,49:231-234
    [111] Larsson Per T., Westlund P.O.. Line shape in CP/MAS13C NMR spectra of cellulose I[J]. Spectrochimica Acta Part A.2005,62:539-546
    [112] Sun S.N., Li M.F., Yuan T.Q., et al. Sequential extractions and structuralcharacterization of lignin with ethanol and alkali from bamboo (Neosinocalamus affinis)[J]. Industrial Crops and Products.2012,37:51–60
    [113]詹小明,夏黎明.纤维素酶在玉米芯上的吸附及其水解作用[J].林产化学与工业,2005,25(3):76-80
    [114]陈洪雷.玉米秸秆废弃物在制浆造纸领域中的应用[D].济南:山东轻工业学院,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700