用户名: 密码: 验证码:
流动注射化学发光分析法的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流动注射-化学发光分析方法是分析化学研究中被广泛使用的高效的测试手段,它具有灵敏度高、响应快、操作简便和动态分析范围宽等优点。在本论文中,我们利用流动注射-化学发光分析方法的优势,建立了一些更有效的分析方法来检测一些化学和生物物质,并利用具有独特性能的纳米粒子来提高所建立的分析方法的灵敏度。此外,我们还探讨了在待测物测定过程中的反应机理。主要研究内容包括:
     (1)高灵敏的流动注射化学发光法检测血液中的血红蛋白
     在这一章中,我们建立了一个高灵敏的流动注射化学发光分析体系用于定量检测血红蛋白。该方法是基于血红蛋白和碲化镉量子点能增强过氧化氢-亚铁氰化钾-荧光素发光体系的信号来检测血红蛋白的含量。
     (2)利用流动注射化学发光法检测杀虫剂中的氨基硫脲成分
     在这一章中,我们成功的建立了一个简单快速的流动注射化学发光分析体系用于检测杀虫剂中的氨基硫脲成分。主要机理是氨基硫脲成分可以抑制在酸性介质中高锰酸钾-亚硫酸钠反应所产生的化学发光信号。
     (3)利用高锰酸钾-鲁米诺-碲化镉纳米粒子化学发光体系检测药品中的生物素
     由于生物素和亲和素间具有高的亲和力,因此表面修饰有亲和素的聚苯乙烯微球可以吸附生物素。利用生物素能增强高锰酸钾-鲁米诺-碲化镉纳米粒子体系的化学发光信号的特性,建立了对生物素定量分析的新方法。
     (4)利用高锰酸钾-鲁米诺-流动注射-化学发光体系检测葡萄糖
     我们利用葡萄糖可以增强高锰酸钾-鲁米诺碱性体系中的化学发光信号的这一特性,建立了对葡萄糖检测的分析方法。在优化条件下,化学发光信号和葡萄糖浓度具有良好的线性关系,本方法对葡萄糖的检测范围是2.3×10-87.2×10-5M,检出限(3σ)是1.2×10-9M,11次测量的相对标准偏差为2.12%。
The chemiluminescence analysis in combination with flow-injection techniqueappears as a potent versatile tool for analytical chemistry. This versatility is due to itsmultiple advantages such as sensitivity, rapidity, simplicity and the wideness of itdynamic analytical range. In this study, these benefits are put to good use to developmore efficient methods for different chemical or biological compounds determination.The main content includes:
     (1) Sensitive flow‐injection chemiluminescence determination of hemoglobin in the human blood.
     In this work, a sensitive and simple flow-injection chemiluminescence methodwas developed for quantitative analysis of hemoglobin. The method is based onthe ability of hemoglobin to enhance the chemiluminescent signal generated byH2O2-K4Fe(CN)6-fluorescein alkaline system enhanced by CdTe quantum dots.Under the optimized conditions, hemoglobin has be detected in concentrationrange of7.35×10-9-2.5×10-6mol.L-1with a detection limit (3σ) of1.8×10-9mol.L-1,and the relative standard deviation(for5×10-7mol.L-1hemoglobin) of2.06%(n=11). The present chemiluminescence method has been successfully appliedfor the determination of hemoglobin in three kinds of blood samples taken frominfant, adult man, adult woman and two reference samples. Compared withprevious reports, the chemiluminescence method described in this work is simpleand rapid with high sensitivity.
     (2) Flow‐injection chemiluminescence determination of thiosemicarbazyl compounds in the insecticides
     In this work a simple and rapid flow-injection chemiluminescence method isreported for the thiosemicarbazyl compounds determination in the insecticides. It was found that the thiosemicarbazyl compounds have the behavior to inhibit theCL signal generated by KMnO4-Na2SO3system in the acidic medium. Thelinearly correlation between the generated CL and the concentration logarithmwas detected in the range of7.3×10-9-5.4×10-7M for thiosemicarbazide,and6.8×10-9-3.6×10-7M for the thiosemicarbazone; with the relative standarddeviations (for12measurements) of2.3%and2.6%respectively. The limits ofdetection (3б) are2.2×10-10M and1.8×10-10M respectively. The influences ofdifferent physic-chemical parameters have been studied. The sample throughput is100samples/h. The proposed method has been used to determine thethiosemicarbazide in the synthetic samples with satisfactory result. To prove thepractice use of the method, it was applied to determine the thiosemicarbazide andthiosemicarbazone concentrations in the insecticides.
     (3) Determination of biotin in pharmaceutical formulations by potassiumpermanganate-luminol-CdTe nanoparticles chemiluminescence system
     In this work, a sensitive flow–injection chemiluminescence method has beendeveloped for the determination of biotin in the pharmaceutical formulations. Theaffinity between avidin and biotin was used to adsorb biotin on the surface ofpolystyrene, with subsequent quantification of biotin based on its ability toenhance the chemiluminescence (CL) signal generated by the redox reaction ofpotassium permanganate-luminol-CdTe nanoparticles chemiluminescence system.The investigations prove that apart from3-aminophthalate, the CdTe quantum dots(QDs) play both of catalytic and emitter roles Under optimum conditions, thelinear range for the determination of biotin was1×10-2ng/mL to25ng/mL with adetection limit of7.3×10-3ng/mL (S/N=3). The relative standard deviation of5ng/L biotin was2.06%(n=7). The proposed method was successfully used todetermine the biotin concentration in the pharmaceutical formulations and therecovery was between96.4and104%. The proposed method is simple, convenient,rapid and sensitive.
     (4) Flow-injection chemiluminescence determination of glucose using potassiumpermanganate-luminol system
     In this work, a new flow-injection chemiluminescence method was developed for thedetermination of glucose in physiologic liquids, which is based on the enhancementeffect of glucose on the chemiluminescence signal generated by KMnO4-luminolsystem in alkaline medium. Under optimized conditions, a linear correlation wasestablished between the chemiluminescence intensity and the glucose concentration inthe range of2.3×10-8to7.2×10-5M with a detection limit (3σ) of1.2×10-9M. Therelative standard deviation for11measurements is2.12%. The method was applied todetermine the glucose concentration in the human serum samples and the results areconsistent with those obtained by the standard spectrometric method.
引文
1. Elo Harald, H.(2004) The impact of flow injection on modern chemicalanalysis: has it fulfilled our expectations? And where are we going?, Talanta64,1076-1083.
    2. Grudpan, K., Christian, G. D., and McKelvie, I. D.(2011) How did flowinjection analysis, and its related techniques, develop in various parts of theglobe? Reflections of prominent FIA practitioners, Talanta84,1200-1204.
    3.(1989) Chapter7Utilization of the Concentration Gradient, In Techniques andInstrumentation in Analytical Chemistry (Bo, K., and Gil, E. P., Eds.), pp124-139, Elsevier.
    4. Marshall, G., Wolcott, D., and Olson, D.(2003) Zone fluidics in flow analysis:potentialities and applications, Analytica Chimica Acta499,29-40.
    5. Hillard, S. W.(1997), VT.
    6. Valcarcel, M. L. d. C., M.D.(1987) Flow Injection Analysis, principles andapplications, Horwood ed., Ellis Horwood: England,1987.
    7. Betteridge D.(1978) Flow injection analysis, Anal. Chem. Volume50,832A-846A.
    8. Chalk S. J, Tyson J. F.(1994) Flow injection analysis, Anal Chem Volume66,660-666.
    9. Mohr, S., Terry, J. M., Adcock, J. L., Fielden, P. R., Goddard, N. J., Barnett,N. W., Wolcott, D. K., and Francis, P. S.(2009) Precision milled flow-cellsfor chemiluminescence detection, Analyst134,2233-2238.
    10. Tucker, D. J., Toivola, B., Pollema, C. H., Ruzicka, J., and Christian, G. D.(1994) The fountain cell: a new tool for chemiluminescence analysis by flowinjection, Analyst119,975-979.
    11. Scudder, K. M., Pollema, C. H., and Ruzicka, J.(1992) The fountain cell: atool for flow-based spectroscopies, Anal Chem64,2657-2660.
    12. Camp n s-Falcó, P., Tortajada-Genaro, L. A., and Bosch-Reig, F.(2001) Anew flow cell design for chemiluminiscence analysis, Talanta55,403-413.
    13. Terry, J. M., Adcock, J. L., Olson, D. C., Wolcott, D. K., Schwanger, C., Hill,L. A., Barnett, N. W., and Francis, P. S.(2008) Chemiluminescence Detectorwith a Serpentine Flow Cell, Anal Chem80,9817-9821.
    14. Silva, H. A. D. F. O., and álvares-Ribeiro, L. M. B. C.(2002) Optimization ofa flow injection analysis system for tartaric acid determination in wines,Talanta58,1311-1318.
    15. Peterson, K. L., Logan, B. K., Christian, G. D., and Ruzicka, J.(1997)Sequential-injection extraction for sample preparation, Analytica ChimicaActa337,99-106.
    16. Hauser, P. C., Rupasinghe, T. W. T., and Cates, N. E.(1995) A multi-wavelength photometer based on light-emitting diodes, Talanta42,605-612.
    17. Hauser, P. C., and Chiang, D. W. L.(1993) A photometric detector based on ablue light-emitting diode, Talanta40,1193-1200.
    18.(1989) Chapter4Detectors in FIA, In Techniques and Instrumentation inAnalytical Chemistry (Bo, K., and Gil, E. P., Eds.), pp66-83, Elsevier.
    19. Yang, C., Zhang, Z., and Wang, J.(2009) A new luminol chemiluminescencereaction using a tetravalent nickel-periodate complex as the oxidant,Microchimica Acta167,91-96.
    20. Du, J., Lu, J., and Zhang, X.(2006) Flow-Injection ChemiluminescenceDetermination of Cobalt Using a Cobalt(II)(1,10-Phenanthroline)<sub>3</sub> Complex-Catalyzed Lucigenin-Periodate Reaction, Microchimica Acta153,21-25.
    21. Lee, S., Jeon, C., and Wabaidur, S.(2008) Flow-Injection ChemiluminescenceDetermination of Aspartic Acid in Tea Leaves Using Tris (2,2′-bipyridyl)Ruthenium (II)–Ce(IV) System, J Fluoresc18,655-660.
    22. Voloshin, A. I., Shavaleev, N. M., and Kazakov, V. P.(2000) Water enhancesphotoluminescence intensity of europium (III), terbium (III) and samarium (III)tris-beta-diketonates in toluene solutions and chemiluminescence intensity ofeuropium (III) and samarium (III) tris-beta-diketonates in the reaction withdioxetane, Journal of Photochemistry and Photobiology A: Chemistry136,203-208.
    23. Elbanowski, M., Mak owska, B., Staninski, K., and Kaczmarek, M.(2000)Chemiluminescence of systems containing lanthanide ions, Journal ofPhotochemistry and Photobiology A: Chemistry130,75-81.
    24. Gudgin Dickson, E. F., Pollak, A., and Diamandis, E. P.(1995) Time-resolveddetection of lanthanide luminescence for ultrasensitive bioanalytical assays,Journal of Photochemistry and Photobiology B: Biology27,3-19.
    25. Elbanowski, M., and Ma kowska, B.(1996) The lanthanides as luminescentprobes in investigations of biochemical systems, Journal of Photochemistryand Photobiology A: Chemistry99,85-92.
    26. Varnavski, O. P., Mohamed, M. B., El-Sayed, M. A., and Goodson, T.(2003)Relative Enhancement of Ultrafast Emission in Gold Nanorods, The Journalof Physical Chemistry B107,3101-3104.
    27. Mostafa, E.-S., and Stephan, L.(2003) Optical Spectroscopy of SurfacePlasmons in Metal Nanoparticles, In Semiconductor and Metal Nanocrystals,CRC Press.
    28. Lai, C. Y., Liang, B. Q., Wang, X. L., Zhu, J., and Li, F.(2012) Determinationof carbon dioxide by the enhancement of luminol-potassium permanganatechemiluminescence and its application for the biodegradation analysis ofcellulose acetate-g-poly (p-dioxanone) copolymer, Anal Lett45,75-84.
    29. Liu, W. W., Cao, W., Liu, W. H., Du, K., and Gong, P. X.(2012)Determination of phenol by flow-injection with chemiluminescence detectionbased on the hemin-catalysed luminol-hydrogen peroxide reaction,Spectrochim Acta A85,283-287.
    30. Liu, Y., Fu, Z., and Wang, L.(2011) Capillary electrophoresis analysis ofisoniazid using luminol-periodate potassium chemiluminescence system,Luminescence: the journal of biological and chemical luminescence26,397-402.
    31. Zeng, H. J., Yang, R., Wang, Q. W., Li, J. J., and Qu, L. B.(2011)Determination of melamine by flow injection analysis based onchemiluminescence system, Food Chem127,842-846.
    32. Shi, W., Wang, H., and Huang, Y.(2011) Luminol-silver nitratechemiluminescence enhancement induced by cobalt ferrite nanoparticles,Luminescence: the journal of biological and chemical luminescence26,547-
    552.
    33. Lu, C., Li, Q. Q., Chen, S., Zhao, L. X., and Zheng, Z. X.(2011) Goldnanorod-catalyzed luminol chemiluminescence and its selective determinationof glutathione in the cell extracts of Saccharomyces cerevisiae, Talanta85,476-481.
    34. Haghighi, B., and Bozorgzadeh, S.(2011) Enhancedelectrochemiluminescence from luminol at multi-walled carbon nanotubesdecorated with palladium nanoparticles: A novel route for the fabrication of anoxygen sensor and a glucose biosensor, Analytica Chimica Acta697,90-97.
    35. Nieman, T. A.(1988) Immobilized and solid-state reagent systems for luminolchemiluminescence in flow systems, Microchimica Acta96,239-247.
    36. Li, Y., Li, Y., and Yang, Y.(2011) Flow-Injection ChemiluminescenceDetermination of Lisinopril Using Luminol?KMnO4Reaction Catalyzed bySilver Nanoparticles, Appl. Spectrosc.65,376-381.
    37. Marquette, C., and Blum, L.(2006) Applications of the luminolchemiluminescent reaction in analytical chemistry, Analytical andBioanalytical Chemistry385,546-554.
    38. Grinberg A. A.(1920) Did incision of the Three Gorges begin in the Eocene?Reply, Zh. Russ. Fiz.-Khim. O-va (J. Russ. Phys.-Chem. Soc.)52,151–185.
    39. Adcock, J. L., Francis, P. S., and Barnett, N. W.(2007) Acidic potassiumpermanganate as a chemiluminescence reagent—A review, Analytica ChimicaActa601,36-67.
    40. Stauff J. and Jaeschke, W.(1975) Applications of the luminolchemiluminescent reaction in analytical chemistry, Atmos Environ9,1038–
    1039.
    41. Manzoori, J., Amjadi, M., and Hassanzadeh, J.(2011) Enhancement of thechemiluminescence of permanganate-formaldehyde system by gold/silvernanoalloys and its application to trace determination of melamine,Microchimica Acta175,47-54.
    42. Hu, Y. F., Li, G. K., and Zhang, Z. J.(2011) A flow injectionchemiluminescence method for the determination of lincomycin in serumusing a diperiodato-cuprate (III)-luminol system, Luminescence26,313-318.
    43. Chen, L. H., and Ji, X. H.(2011) Chemiluminescence Flow Sensor withImmobilized Reagent for the Determination of Oleanolic Acid UsingLuminol-Potassium Permanganate System, Sens. Lett.9,1410-1414.
    44. Su, R., Lin, J.-M., Qu, F., Chen, Z., Gao, Y., and Yamada, M.(2004)Capillary electrophoresis microchip coupled with on-line chemiluminescencedetection, Analytica Chimica Acta508,11-15.
    45. Gorman, B. A., Barnett, N. W., and Bos, R.(2005) Detection of pyrrolizidinealkaloids using flow analysis with both acidic potassium permanganate andtris(2,2′-bipyridyl)ruthenium(II) chemiluminescence, Analytica Chimica Acta541,117-122.
    46. Slezak, T., Francis, P. S., Anastos, N., and Barnett, N. W.(2007)Determination of synephrine in weight-loss products using high performanceliquid chromatography with acidic potassium permanganatechemiluminescence detection, Analytica Chimica Acta593,98-102.
    47. Adcock, J. L., Francis, P. S., Smith, T. A., and Barnett, N. W.(2008) Thecharacteristic red chemiluminescence from reactions with acidic potassiumpermanganate: further spectroscopic evidence for a manganese(ii) emitter,Analyst133,49-51.
    48. Chen, G., Huang, F., Wu, X., Zhao, Z., and Duan, J.(2003)Chemiluminescence determination of melatonin and some of its derivativesusing potassium permanganate and formaldehyde system, Analytical andBioanalytical Chemistry376,873-878.
    49. Sun, Y., Tang, Y., Yao, H., and Zheng, X.(2004) Potassium permanganate–glyoxal chemiluminescence system for flow injection analysis ofcephalosporin antibiotics: cefalexin, cefadroxil, and cefazolin sodium inpharmaceutical preparations, Talanta64,156-159.
    50. Adcock, J., Francis, P., and Barnett, N.(2009) Emitting Species inChemiluminescence Reactions with Acidic Potassium Permanganate: A Re-Evaluation Based on New Spectroscopic Evidence, J Fluoresc19,867-874.
    51. Khan, A. U.(1989) Near infrared emission of singlet oxygen generated in thedark, Journal of Bioluminescence and Chemiluminescence4,200-207.
    52. Pons, O. R., Gregorio, D. M. n., Mateo, J. V. G. a., and Calatayud, J. M. n.(2001) Flow-injection analysis study of the chemiluminescent behaviour ofproflavine and acriflavine, Analytica Chimica Acta438,149-156.
    53. Deftereos, N. T., Calokerinos, A. C., and Efstathiou, C. E.(1993) Flowinjection chemiluminometric determination of epinephrine, norepinephrine,dopamine and L-dopa, Analyst118,627-632.
    54. Sultan, S. M., Abdennabi, A. M. S., and Almuaibed, A. d. M.(1999)Chemiluminescence method for the assay of perphenazine in drug formulationusing permanganate in sulphuric acid with flow injection technique and achemometrical optimization approach, Talanta49,1051-1057.
    55. Timotheou-Potamia, M., and Calokerinos, A. C.(2007) Chemiluminometricdetermination of vanillin in commercial vanillin products, Talanta71,208-
    212.
    56. Barnett, N. W., Hindson, B. J., and Lewis, S. W.(1998) Determination of5-hydroxytryptamine (serotonin) and related indoles by flow injection analysiswith acidic potassium permanganate chemiluminescence detection, AnalyticaChimica Acta362,131-139.
    57. Wang, Z., Zhang, Z., Fu, Z., and Zhang, X.(2004) Sensitive flow-injectionchemiluminescence determination of terbutaline sulfate based on enhancementof the luminol–permanganate reaction, Analytical and Bioanalytical Chemistry378,834-840.
    58. Costin, J. W., Barnett, N. W., Lewis, S. W., and McGillivery, D. J.(2003)Monitoring the total phenolic/antioxidant levels in wine using flow injectionanalysis with acidic potassium permanganate chemiluminescence detection,Analytica Chimica Acta499,47-56.
    59. Chen, H., Lu, C., Li, R., Guo, G., and Lin, J.-M.(2010) Chemiluminescencebehavior of sodium hydrogen carbonate in the potassium permanganate-hydrogen peroxide reaction, SCIENCE CHINA Chemistry53,1784-1792.
    60. Foglia, T. A., and Jones, K. C.(1997) Quantitation of Neutral Lipid MixturesUsing High Performance Liquid Chromatography with Light ScatteringDetection, Journal of Liquid Chromatography&Related Technologies20,1829-1838.
    61. McDermott, G. P., Jones, P., Barnett, N. W., Donaldson, D. N., and Francis, P.S.(2011) Stable Tris(2,2'-bipyridine)ruthenium(III) for ChemiluminescenceDetection, Anal Chem83,5453-5457.
    62. McDermott, G. P., Jones, P., Barnett, N. W., Donaldson, D. N., and Francis, P.S.(2011) Stable Tris(2,2′-bipyridine)ruthenium(III) for ChemiluminescenceDetection, Anal Chem83,5453-5457.
    63. Gerardi, R. D., Barnett, N. W., and Lewis, S. W.(1999) Analyticalapplications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescentreagent, Analytica Chimica Acta378,1-41.
    64. Yin, X.-B., Dong, S., and Wang, E.(2004) Analytical applications of theelectrochemiluminescence of tris (2,2′-bipyridyl) ruthenium and its derivatives,TrAC Trends in Analytical Chemistry23,432-441.
    65. Gorman, B. A., Francis, P. S., and Barnett, N. W.(2006) Tris(2,2[prime orminute]-bipyridyl)ruthenium(ii) chemiluminescence, Analyst131,616-639.
    66. Miao, W.(2008) Electrogenerated Chemiluminescence and Its BiorelatedApplications, Chemical Reviews108,2506-2553.
    67. Gámiz-Gracia, L., García-Campa a, A. M., Huertas-Pérez, J. F., and Lara, F. J.(2009) Chemiluminescence detection in liquid chromatography: Applicationsto clinical, pharmaceutical, environmental and food analysis—A review,Analytica Chimica Acta640,7-28.
    68. Rauhut M. M., Bollyky L. J., Roberts B. G., Loy M., Whitman R. H.,Iannotta A. V., Semsel A. M., and Clarke R. A.(1967) Chemiluminescencefrom reactions of electronegatively substituted aryl oxalates with hydrogenperoxide and fluorescent compounds,” Journal of American Chemical Sociaty89,6515-6522.
    69. Chen, R., Zhang, L., Gao, J., Wu, W., Hu, Y., and Jiang, X.(2011)Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy, Journal of Biomedicine andBiotechnology2011:679492-679501.
    70. Silva, S. M., Wagner, K., Weiss, D., Beckert, R., Stevani, C. V., and Baader,W. J.(2002) Studies on the chemiexcitation step in peroxyoxalatechemiluminescence using steroid-substituted activators, Luminescence17,362-369.
    71. Stevani, Cassius V., Silva, Sandra M., and Baader, Wilhelm J.(2000) Studieson the Mechanism of the Excitation Step in PeroxyoxalateChemiluminescence, European Journal of Organic Chemistry2000,4037-
    4046.
    72. Evmiridis, N. P., Thanasoulias, N. K., and Vlessidis, A. G.(1998)Chemiluminescence (CL) emission generated during oxidation of pyrogalloland its application in analytical chemistry. I. Effect of oxidant compound,Talanta46,179-196.
    73. Evmiridis, N. P.(1987) Effect of hydroxylamine on chemiluminescenceintensity generated during the oxidation of pyrogallol with periodate, Analyst
    112.
    74. Thanasoulias, N. K., Vlessidis, A., and Evmiridis, N. P.(1999) Influence ofoxidant-species scavengers on the chemiluminescence (CL) emissiongenerated during the oxidation of pyrogallol by hydrogen peroxide, AnalyticaChimica Acta401,197-207.
    75. Nakano, S., Fukuda, M., Kageyama, S., Itabashi, H., and Kawashima, T.(1993) Flow injection determination of chromium(III) by pyrogallolchemiluminescence, Talanta40,75-80.
    76. Safavi, A., and Baezzat, M. R.(1998) Flow injection chemiluminescencedetermination of pyrogallol, Analytica Chimica Acta368,113-116.
    77. Slawinska, D., and Slawinski, J.(1975) Chemiluminescent flow method fordetermination of formaldehyde, Anal Chem47,2101-2109.
    78. Du, J., Li, Y., and Lu, J.(2001) Flow injection chemiluminescencedetermination of polyhydroxy phenols using luminol–ferricyanide/ferrocyanide system, Talanta55,1055-1058.
    79. Cló, E., Snyder, J. W., Voigt, N. V., Ogilby, P. R., and Gothelf, K. V.(2006)DNA-Programmed Control of Photosensitized Singlet Oxygen Production, JAm Chem Soc128,4200-4201.
    80. Edwards, A. M., and Silva, E.(2001) Effect of visible light on selectedenzymes, vitamins and amino acids, Journal of Photochemistry andPhotobiology B: Biology63,126-131.
    81. Tsukagoshi, K., Fukumoto, K., Nakajima, R., Yamashita, K., and Maeda, H.(2007) Characterization of chemiluminescence from singlet oxygen underlaminar flow conditions in a micro-channel and its quenching with beverages,Talanta72,607-611.
    82. Almeida, E. A., Miyamoto, S., Martinez, G. R., Medeiros, M. H. G., and DiMascio, P.(2003) Direct evidence of singlet molecular oxygen [O2(1Δg)]production in the reaction of acetonitrile with hydrogen peroxide in alkalinesolutions, Analytica Chimica Acta482,99-104.
    83. Harada, Y., Suzuki, K., Hashimoto, M., Tsukagoshi, K., and Kimoto, H.(2009)Chemiluminescence from singlet oxygen that was detected at two wavelengthsand effects of biomolecules on it, Talanta77,1223-1227.
    84. Montano, L. A., and Ingle, J. D.(1979) Investigation of the lucigeninchemiluminescence reaction, Anal Chem51,919-926.
    85. Okajima, T., and Ohsaka, T.(2003) Chemiluminescence of lucigenin byelectrogenerated superoxide ions in aqueous solutions, Luminescence18,49-
    57.
    86. Totter, J. R.(1975) Light production in alkaline mixtures of reducing agentsand dimethylbiacridylium nitrate, Photochem Photobiol22,203-211.
    87. Hyrsl, P., Lojek, A., Ciz, M., and Kubala, L.(2004) Chemiluminescence oflucigenin is dependent on experimental conditions, Luminescence19,61-63.
    88. Maskiewicz, R., Sogah, D., and Bruice, T. C.(1979) Chemiluminescentreactions of lucigenin.1. Reactions of lucigenin with hydrogen peroxide, J AmChem Soc101,5347-5354.
    89. Mihalatos, A. M., and Calokerinos, A. C.(2002) Determination ofhalogenated hydrocarbons by flow injection ozone chemiluminescence,Analytica Chimica Acta451,189-194.
    90. Fujiwara, K., Uchida, M., Chen, M. M., Kumamoto, Y., and Kumamaru, T.(1993) Ozone gas-phase chemiluminescence for silane and its application tothe determination of silicate in natural waters, Anal Chem65,1814-1818.
    91. Marley, N. A., and Gaffney, J. S.(1998) A comparison of flame ionization andozone chemiluminescence for the determination of atmospheric hydrocarbons,Atmos Environ32,1435-1444.
    92. Rauhut, M. M.(19895) Chemiluminescence, In Kirk-Othmer ConciseEncyclopedia of Chemical Technology (3rd ed)(In Grayson, M. E., Ed.), p247, John Wiley and Sons.
    93. Assegid, K., Ahmed, F., Ahamed, S., and Hussam, A.(2011) Development ofa gas phase chemiluminescence system for the measurement of arsenic indrinking water, Analytical Methods3.
    94. Fujiwara, K., Watanabe, Y., Fuwa, K., and Winefordner, J. D.(1982) Gasphase chemiluminescence with ozone oxidation for the determination ofarsenic, antimony, tin, and selenium, Anal Chem54,125-128.
    95. Ye, Y., Sang, J., Ma, H., and Tao, G.(2010) Gas-phase chemiluminescencewith ozone oxidation for the determination of total tin in environmentalsamples using flow injection hydride generation and cryotrapping, AnalyticaChimica Acta677,149-155.
    96. Toda, K., and Dasgupta, P. K.(2007) New applications of chemiluminescencefor selective gas analysis, Chemical Engineering Communications195,82-97.
    97. Fujiwara, K., Bower, J. N., Bradshaw, J. D., and Winefordner, J. D.(1979)Analytical and spectral features of gas-phase chemiluminescence spectrometryof arsenic and antimony, Analytica Chimica Acta109,229-239.
    98. Lee, J.(1989)“Bioluminescence.” The Science of PhotobiologyIn “Bioluminescence.” The Science of Photobiology (ed., E. K. C. S. n., Ed.), pp391-
    417.(396). Plenum Press,, New York.
    99. Travis, J.(1996.)“Following the Inner Light.”,(1996., S. N. O. O., Ed.)19Apr.2001ed., Science Services, Inc.,199619Apr.2001.
    100. Travis, J.(2001.) Onion, Amanda.“One Potato, New Potato.”ABCNEWS.COM18Apr.2001.,(1996., S. N. O. O., Ed.)19Apr.2001ed.,Science Services, Inc.,199619Apr.2001.
    101. Andrew W, K.(1999) A review of recent trends in analytical applications ofelectrogenerated chemiluminescence, TrAC Trends in Analytical Chemistry18,47-62.
    102. Li, Q., Zhang, L., Li, J., and Lu, C.(2011) Nanomaterial-amplifiedchemiluminescence systems and their applications in bioassays, TrAC Trendsin Analytical Chemistry30,401-413.
    103. Li, S.-F., Zhang, X.-M., Du, W.-X., Ni, Y.-H., and Wei, X.-W.(2008)Chemiluminescence Reactions of a Luminol System Catalyzed by ZnONanoparticles, The Journal of Physical Chemistry C113,1046-1051.
    104. Wang, Z. P., Li, J., Liu, B., Hu, J. Q., Yao, X., and Li, J. H.(2005)Chemiluminescence of CdTe nanocrystals induced by direct chemicaloxidation and its size-dependent and surfactant-sensitized effect, J Phys ChemB109,23304-23311.
    105. Poznyak, S. K., Talapin, D. V., Shevchenko, E. V., and Weller, H.(2004)Quantum Dot Chemiluminescence, Nano Lett4,693-698.
    106. Wallace, W. T., and Whetten, R. L.(2002) Coadsorption of CO and O2onSelected Gold Clusters: Evidence for Efficient Room-Temperature CO2Generation, J Am Chem Soc124,7499-7505.
    107. Zhang, Z.-F., Cui, H., Lai, C.-Z., and Liu, L.-J.(2005) Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications, AnalChem77,3324-3329.
    108. Wang, L., Ling, B., Chen, H., Liang, A., Qian, B., and Fu, J.(2010) Flowinjection chemiluminescence determination of6-mercaptopurine based on anew system of potassium permanganate–thioacetamide–sodiumhexametaphosphate, Luminescence25,431-435.
    109. Yu, X., and Bao, J.(2009) Determination of norfloxacin using goldnanoparticles catalyzed cerium(IV)–sodium sulfite chemiluminescence, JLumin129,973-978.
    110. Cui, H., Zhang, Z.-F., and Shi, M.-J.(2005) Chemiluminescent ReactionsInduced by Gold Nanoparticles, The Journal of Physical Chemistry B109,3099-3103.
    111. Xu, S.-L., and Cui, H.(2007) Luminol chemiluminescence catalysed bycolloidal platinum nanoparticles, Luminescence22,77-87.
    112. Duan, C.-F., and Cui, H.(2009) Time-tunable autocatalytic lucigeninchemiluminescence initiated by platinum nanoparticles and ethanol, ChemCommun,2574-2576.
    113. Niazov, T., Shlyahovsky, B., and Willner, I.(2007) PhotoswitchableElectrocatalysis and Catalyzed Chemiluminescence Using PhotoisomerizableMonolayer-Functionalized Surfaces and Pt Nanoparticles, J Am Chem Soc129,6374-6375.
    114. Guo, J.-Z., Cui, H., Zhou, W., and Wang, W.(2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide,Journal of Photochemistry and Photobiology A: Chemistry193,89-96.
    115. Chen, H., Gao, F., He, R., and Cui, D.(2007) Chemiluminescence of luminolcatalyzed by silver nanoparticles, J Colloid Interf Sci315,158-163.
    116. Haghighi, B., and Bozorgzadeh, S.(2010) Flow injection chemiluminescencedetermination of isoniazid using luminol and silver nanoparticles,Microchemical Journal95,192-197.
    117. Lee, I., Han, S. W., and Kim, K.(2001) Production of Au-Ag alloynanoparticles by laser ablation of bulk alloys, Chem Commun,1782-1783.
    118. Agrawal, V. V., Mahalakshmi, P., Kulkarni, G. U., and Rao, C. N. R.(2005)Nanocrystalline Films of Au Ag, Au Cu, and Au Ag Cu Alloys Formed atthe Organic Aqueous Interface, Langmuir22,1846-1851.
    119. Wang, C., Yin, H., Chan, R., Peng, S., Dai, S., and Sun, S.(2009) One-PotSynthesis of Oleylamine Coated AuAg Alloy NPs and Their Catalysis for COOxidation, Chemistry of Materials21,433-435.
    120. Li, S. F., Zhang, X. M., Yao, Z. J., Yu, R., Huang, F., and Wei, X. W.(2009)Enhanced Chemiluminescence of the Rhodamine6G-Cerium(IV) System byAu-Ag Alloy Nanoparticles, J Phys Chem C113,15586-15592.
    121. Li, N., Wang, W., Tian, D., and Cui, H.(2010) pH-dependent catalyticproperties of Pd-Ag nanoparticles in luminol chemiluminescence, ChemCommun46,1520-1522.
    122. Resch, U., Weller, H., and Henglein, A.(1989) Photochemistry and radiationchemistry of colloidal semiconductors.33. Chemical changes and fluorescencein CdTe and ZnTe, Langmuir5,1015-1020.
    123. Mohamed Ali, E., Zheng, Y., Yu, H.-h., and Ying, J. Y.(2007) UltrasensitivePb2+Detection by Glutathione-Capped Quantum Dots, Anal Chem79,9452-
    9458.
    124. Ruedas-Rama, M. J., and Hall, E. A. H.(2008) Azamacrocycle ActivatedQuantum Dot for Zinc Ion Detection, Anal Chem80,8260-8268.
    125. Ge, S., Zhang, C., Yu, F., Yan, M., and Yu, J.(2011) Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modifiedchemiluminescence sensor for deltamethrin detection, Sensors and ActuatorsB: Chemical156,222-227.
    126. Liu, J., Chen, H., Lin, L., Lu, C., and Lin, J.(2010) Sensitizedchemiluminescence reaction between hydrogen peroxide and periodate ofdifferent types of Mn-doped ZnS quantum dots, Chinese Sci Bull55,3479-
    3484.
    127. Wang, Z., Li, J., Liu, B., Hu, J., Yao, X., and Li, J.(2005) Chemiluminescenceof CdTe Nanocrystals Induced by Direct Chemical Oxidation and Its Size-Dependent and Surfactant-Sensitized Effect, The Journal of PhysicalChemistry B109,23304-23311.
    128. Lin, J.-M., and Liu, M.(2008) Chemiluminescence from the Decomposition ofPeroxymonocarbonate Catalyzed by Gold Nanoparticles, The Journal ofPhysical Chemistry B112,7850-7855.
    129. Zhang, Z.-F., Cui, H., and Shi, M.-J.(2006) ChemiluminescenceAccompanied by the Reaction of Gold Nanoparticles with PotassiumPermanganate, ChemInform37, no-no.
    130. Wild D,. The Immunoassay Handbook,3rd Edition,20juin2005. ElseverScience.
    131. Gill, R., Zayats, M., and Willner, I.(2008) Semiconductor Quantum Dots forBioanalysis, Angewandte Chemie International Edition47,7602-7625.
    132. Daniel, M.-C., and Astruc, D.(2003) Gold Nanoparticles: Assembly,Supramolecular Chemistry, Quantum-Size-Related Properties, andApplications toward Biology, Catalysis, and Nanotechnology, ChemicalReviews104,293-346.
    133. Qi, H., Peng, Y., Gao, Q., and Zhang, C.(2009) Applications ofNanomaterials in Electrogenerated Chemiluminescence Biosensors, Sensors9,674-695.
    134. Gómez-Hens, A., Fernández-Romero, J. M., and Aguilar-Caballos, M. P.(2008) Nanostructures as analytical tools in bioassays, TrAC Trends inAnalytical Chemistry27,394-406.
    135. Ding, C., Wang, Z., Zhong, H., and Zhang, S.(2010) Ultrasensitivechemiluminescence quantification of single-nucleotide polymorphisms byusing monobase-modified Au and CuS nanoparticles, Biosensors and
    136. Li, X., Li, W., and Zhang, S.(2010) Chemiluminescence DNA biosensorbased on dual-amplification of thrombin and thiocyanuric acid-goldnanoparticle network, Analyst135,332-336.
    137. Tian, D., Duan, C., Wang, W., and Cui, H.(2010) Ultrasensitiveelectrochemiluminescence immunosensor based on luminol functionalizedgold nanoparticle labeling, Biosensors and Bioelectronics25,2290-2295.
    138. Fan, A., Lau, C., and Lu, J.(2005) Magnetic Bead-Based ChemiluminescentMetal Immunoassay with a Colloidal Gold Label, Anal Chem77,3238-3242.
    139. Duan, C.-F., Yu, Y.-Q., and Cui, H.(2008) Gold nanoparticle-basedimmunoassay by using non-stripping chemiluminescence detection, Analyst133,1250-1255.
    140. Wang, Z., Hu, J., Jin, Y., Yao, X., and Li, J.(2006) In Situ AmplifiedChemiluminescent Detection of DNA and Immunoassay of IgG UsingSpecial-Shaped Gold Nanoparticles as Label, Clinical Chemistry52,1958-
    1961.
    [1] Linberg R, Conover CD, Sum KL and Shorr RG. Hemoglobin based oxygencarriers: how much hemoglobin is too much? Artif cells blood substitute immobile.Biotecnol.1998;26:133-138
    [2] Sari M, De Pee S, Martini E, Herman S, Sugiatmi, Bloem W M and YipR. Estimating the prevalence of anemia: a comparison of three methods. Bull.W.H.O.2001;79:506-511.
    [3] Stone JE, Simmons WK, Jutsum PJ and Gurney JM. An evaluation of methods ofscreening for anaemia. Bull. W.H.O.1984;62:115-120.
    [4] Ranganathan H, Gunasekaran N, Member and IEEE. Simple method forestimation of hemoglobin in human blood using color analysis. IEEE T. Inf.Technol. B.2006;10:657-662.
    [5] Bhaskaram P, Balakrishna N, Radhakrishna KV, and Kamala K. Validation ofhemoglobin estimation using hemocue. Indian J. Pediatr.2003;70:25-28.
    [6] Pathak P, Kapoor S K, Dwivedi SN, Singh P and Kapil U. Comparison ofhemoglobin estimates from filter paper cyanmethemoglobin and hemoCuemethods Ind. J. Comm. Med.2004;29:149-150.
    [7] Bernard N, Samuel BN, Nimako S, Denise D, Ali I, Juergen M and Yaw A S.hemoglobin estimation by the hemoCue portable hemoglobin photometer in aresource poor setting. Clin. Pathol.2011;11:5-10.
    [8] Prakash S, Kapil U, Singh G, Dwivedi SN and Tandon M. Utility of Hemocue inestimation of hemoglobin against standard blood cell counter method. Assoc.Physicians India1999;47:995-997.
    [9] Von Schenck H, Falkensson M and Lundberg B. Evaluation of " Hemocue," a newdevice for determining hemoglobin. Clin. Chem.1986;32:526-529.
    [10] Morris SS, Ruel MT, Cohen RJ, Dewey KG, De la Briere B and HassanMN. Precision, accuracy, and reliability of hemoglobin assessment with use ofcapillary blood. Am. J. Clin. Nutr.1999;69:1243-1248.
    [11] Chen PP, Short TG, Leung DH and Oh TE. A clinical evaluation of the hemocuehaemoglobinometer using capillary, venous and arterial samples. Anaesth. Intens.Care1992;20:497-500.
    [12] Rippmann CE, Nett PC, Popovic D, Seifert B, Pasch T and Spahn D. Hemocuean accurate bedside method of hemoglobin measurement? j Clin. Monit. Comput.1997;13:373-377.
    [13] Neville RG. Evaluation of portable haemoglobinometer in general practice. BMJClin. Res. Ed.)1987;294:1263-1265.
    [14] Rashmi T, Anupam V, Prashant P and Rajendra C. Quality evaluation of fourhemoglobin screening methods in a blood donor setting along with theircomparative cost analysis in an Indian scenario. Asian J. Transfus. Sci.2009;3:66-69.
    [15] Sawanta RB, Bharuchab ZS and Rajadhyaksha SB. Evaluation of hemoglobin ofblood donors deferred by the copper sulphate method for hemoglobin estimation.Transfus. Apher. Sci.2007;36:143-148.
    [16] Ross DG, Gilfulan AC, Houston DE and Heaton WA. Evaluation ofhemoglobin screening methods in prospective blood donors. Vox Sang1986;50:78-80.
    [17] Radke H, Polat G, Kalus U, Salama A and Kiesewetter H. Hemoglobin screeningin prospective blood donors: comparison of different blood samples and differentquantitative methods. Transfus. Apher. Sci.2005;33:31-35.
    [18] Balasubramaniam P and Malathi A. Comparative study of hemoglobin estimatedby drabkin's and sahli's methods. J. Postgrad. Med.1992;38:8-9.
    [19] Staley Alstead. Observations on sahli's h moglobinometer. Postgrad. Med.J.1940;16:278-286.
    [20] Moharram NMM, Aouad RE, Busaidy SA, Fabricius A, Heller S, Wood WG,Wolf HU, and Heuck CC. International collaborative assessment study of theAHD method for the measurement of blood haemoglobin. EMHJ–EasternMediterranean Health Journal2006;12:722-734.
    [21] Keiji T and Shukuro I. Spectrophotometric determination of trace amounts ofhemoglobin using the oxidative decomposition reaction of a copper(II)-phthalocyanine complex. Clin. Chim. Acta1999;283:129-138.
    [22] Liu M, Shi G, Zhang L, Cheng Y and Litong JJ. Litong. Quantum dots modifiedelectrode and its application in electroanalysis of hemoglobin. Electrochem.Commun.2006;8:305-310.
    [23] Chawla S and Pundir CS. An electrochemical biosensor for fructosyl valine forglycosylated hemoglobin detection based on core-shell magnetic bionanoparticlesmodified gold electrode. Biosens. Bioelecron.2011;26:3438-3443.
    [24] Olsson T, Bergstr m K, and Thore A. A sensitive method for determination ofserum hemoglobin based on iso-luminol chemiluminescence. Clin. Chim. Acta1982;122:125-133.
    [25] Sun C, Liu B, and Li J. Sensitized chemiluminescence of CdTe quantum-dots onCe(IV)-sulfite and its analytical applications. Talanta2008;75:447-454.
    [26] Cristina B, Ivan P and Kelvin R. Nanomaterials and nanoparticules: sourcesand toxicity. Biointerphases2007;2:17-77.
    [7] Xiao Y and Barker PE. Semiconductor nanocrystal probes for human metaphasechromosomes. Nucleic Acids Res.2004;11:32(3) e28
    [28] Kai X, Junran H, Zunzhong Y, Yibin Y, Yanbin L. Recent development ofnano-materials used in DNA biosensors. Rev. Sensors2009;9:5534-5557.
    [29] Wang Z, Li J, Liu B and Li J. sensitized chemiluminescence and the applicationfor immunoassay Talanta2009;77:1050-1056.
    [30] Wang C, Ma Q and Su X. Synthesis of CdTe nanocrystals with mercaptosuccinicacid as stabilizer. J. Nanosci. Nanotechno.2008;8:4408-4414
    [31] Kanwal S, Fu X and Su X. Size dependent active effect of CdTe quantum dotson pyrogallol-H2O2chemiluminescence system for chromium(III) detectionMicrochim. Acta2010;169:167-712.
    [32] Howard CJ and James E E. Cytochrome c peroxidase catalyzed oxidationof ferrocyanide by hydrogen peroxide steady state kinetics. Biochemistry1974;13:3741-3745.
    [33] Naik RM, Rivastava A and Asthana A. The kinetics and mechanism of oxidationof hexacyanoferrate(II) by periodate ion in highly alkaline aqueous medium.Iran Chem. Soc.2008;5:29-36.
    [34] Xiang LM, Cai XY, Qing H, Miao YL and Pin Y. Kinetic studies on the reactionof sodium hexa-cyanoferrate(II) complex with peroxydisulfate anion Chin. J.Chem.2004;22:841-844.
    [35] Fredrik W, Christoffer BH, Thomas JS and Bo WL. An extended fluorescein anda ratiometric pH sensor. Chem. Eur. J.2010;16:2992-2996.
    [36] Wang Z, Zhang Z, Fu Z, Fang L and Zhang X. N-bromosuccinimide-fluoresceinbased Sensitive flow-injection chemiluminescence determination of phenformin.Anal. Sci.2004;20:319-323.
    [37] Hao X, Chun-Mei L, Yue H, Hong-Wu T and Qiong-shui W. Study on thechemiluminescence resonance energy transfer between luminol and fluorescentdyes using a linear CCD spectrometer. J. Lumin.2010;130:1872-1879.
    [38] George P and Irvine DH. The ferrimyoglobin-catalyzed oxidation of ferrocyanideion by hydrogen peroxide. J. Phys. Chem.1959;63:415-419.
    [39] Jianxiu D, Wenxia L and Jiuru L. Chemiluminescence behaviour of alkalineearth metal ions in the potassium permanganate–fluorescein reaction.Luminescence2003;18:341-345.
    [40] Chun-Bao H, Kai Z, Xue-Lian L and Sheng-Fu W. A flow-injectionchemiluminescence method for the determination of human serum albumin,using the reaction of fluorescein–human serum albumin–sodium hypochlorite bythe enhancement effect of the cationic surfactant cetyltrimethylammoniumbromide.Luminescence2007;22:393–400.
    [41] Liu JX, Chen H, Lin L, Lu C and Lin JM. Sensitized chemiluminescence reactionbetween hydrogen peroxide and periodate of different types of Mn-doped ZnSquantun dots. Chinese Science Bulletin2010;55:3479-3484.
    [1]-Narayana, B.; Gajendragad, M.R. Determination of palladium (II) usingthiosemicarbazide as a replacing reagent. Microchem. J.1987,36,364-367.
    [2]-Patel, R.M.; Parikh, K.S.; Patel, K.N.2-hydroxy-4-n-butoxy-5-bromopropio-phenone thiosemicarbazone as an extraction spectrophotometric reagent forNickel (II). Int.J. ChemTech Res.2010,2,1090-1093.
    [3]-Mather, A.; Roland, D. The automated thiosemicarbazide-diacetyl monoximemethod for plasma urea. Clin. Chem.1969,15,393-396.
    [4]-Tsao, L.; zhou, C.; Sun, T.; Koroteev, A.M. Synthesis of O-Aryl N4-Glycosyl(Thiosemicarbazido)Phosphonothioates. Russ. J. Org. Chem.2003,39,1608-1612.
    [5]-Wang, Z.; Ma, Y.; Xu, Y.; Ling, Y.; Yang, X.(E)-1-[(2-Chloro-5-Methylpyridin-3-yl)-Methylene]Thiosemicarbazide. Acta Crystallogr.2010Section E StructureReports Online,66, Part3,[doi:10.1107/S1600536810004915]
    [6]-Milczarska, B.; Foks, H.; Soko owska, J.; Janowiec, M.; Zwolska, Z.;Andrzejczyk, Z. Studies on pyrazine derivatives. XXXIII. Synthesis andtuberculostatic activity of1-[1-(2-Pyrazinyl)-Ethyl]-4-N-Substitutedthiosemicarbazide derivatives. Acta Pol. Pharm.1999,56,121–126.
    [7]-Shahar, Y.M.; Ahmad, S.A.; Ashraf, A.M. Synthesis and anti tuberculostaticactivity of novel1,3,4-oxadiazole derivatives. J. Chin. Chem. Soc.2007,54,5-8
    [8]-Shamsuzzaman, Siddiqui T, Alam M G (2008),“Synthesis of Some Novel PhenylSubstituted Oxothiazolidin-1′′,3′′,4′′-thiadiazolo-[3′,4′-b]thiazoline of3β-Substituted Cholestane”, Chinese Journal of Chemistry, Vol.26, pp.1339-1342.
    [9]-Plumitallo, A.; Cardia, M.C.; Distinto, S.; DeLogu, A.; Maccioni, E. Synthesisand anti-microbial activity evaluation of some ne w1-benzoyl-isothiosemicarbazides. Il Farmaco2004,59,945–952
    [10]-Ghosh, S.; Misra, A.K.; Bhatia, G.; Khan, M.M.; Khanna, A.K. Syntheses andevaluation of glucosyl aryl thiosemicarbazide and glucosyl thiosemicarbazonederivatives as antioxidant and anti-dyslipidemic agents. Bioorg. Med. Chem. Let.2009,19,386-389.
    [11]-El–Metwaly, N.M.; Moamen, S.R. Elaborated1H NMR study for the ligitionalbehavior of two thiosemicarbazide derivatives towards some heavy metals(Sn(II), Sb(III), Pb(II) and Bi(III)), thermal, antibacterial and antifungal studies.Spectrochim. Acta A Mol. Biomol. Spectrosc.2011,81,1873-3557.
    [12]-Wang, X.C.; Wang, J.K.; Li, Z. Poly(Ethylene Glycol)-Supported Liquid-phaseParallel Synthesis of Di(Aryloxyacetyl)Thiosemicarbazides. Chin. Chem. Lett.2004,15,635-638
    [13]-West. D.X.; Carlson, C.S.; Whyte, A.C.; Liberta, A.E. Transition metal ioncomplexes of thiosemicarbazone derived from2-acetylpyridine. Part7chemicaland antifungal properties of2-acetylpyridine N-ethylthiosemicarbazone and itsmetal omplexes. Transition Met. Chem.1990,15,43-47.
    [14]-West, D.X.; Carlson, C.S.; Liberta, A.E.; Albert, J.N.; Daniel, C.R.Transition metal ion complexes of thiosemicarbazone derived from2-acetylpyridinePart8. The chemical and antifungal properties of the nickel(II) complexes of2-acetylpyridine4N-diethyl-and4N-dipropylthiosemicarbazones. Transition Met.Chem.1990,15,341-344.
    [15]-West, D.X.; Carlson, C.S.; Bouck, K.J. Transition metal ion complexes ofthiosemicarbazone derived from2-acetylpyridine. Part10. A comparison of thechemical and antifungal properties of the copper(II) complexes of2-acetylpyri-dine3-pyrrolidinyl-,3-piperidinyl-,3-hexamethyleneiminyl-and3-azabicyclo[3,2,2]-nonylthiosemicarbazones. Transition Met. Chem.1991,16,271-275.
    [16]-West, D.X.; Kozub, N.M.; Bain, G.A. Copper (II) complexes of2-formyl-,2-acetyl-and2-benzoylpyridineN(4)-O-,N(4)-M-,N(4)-P-chlorophenylthiosemicarbazones. Transition Met. Chem.1996,21,52-57.
    [17]-Kannan, S.; Sivagamasundari, M.; Ramesh, R.; Liu, Y. Ruthenium (II) carbonylcomplexes of dehydroacetic acid thiosemicarbazone: synthesis, structure, lightemission and biological activity. J. Organomet. Chem.2008,693,2251–225.
    [18]-Singh, N.K.; Singh, S.B. Complexes of1-isonicotinoyl-4-benzoil-3-thiosemicar-bazide with manganese(ll), iron(III), chromium(III), cobalt(II),copper(II) andzinc(II). Transition Met. Chem.2001,26,487-495.
    [19]-Rollas, S.; Karakus, S.; Duryun, B.B.; Erdeniz, H. Synthesis andAntimicrobial activity of some1,4-disubstituted thiosemicarbazide and2,5-disubstituted1,3,4-thiadiazole derivatives. Farmaco1996,51,811-814.
    [20]-Singh, N.K.; Srivastava, A.; Sodhi, A.; Priya R. In vitro and in vivo antitumourstudies of a new thiosemicarbazide derivative and its complexes with3d-metalions. Transition Met. Chem.2005,25,133-140.
    [21]-Mishra, A.K.; Manav, N.; Kaushik, N.K. Organotin(IV) complexes ofthiohydrazones: synthesis, characterization and antifungal study. Spectrochim.Acta Part A2005,61,3097–3101.
    [22]-Yamaguchi, M.U.; Barbosa da Silva, A.P.; Ueda-Nakamura, T.; Dias Filho, B.P.;da Silva, C.C.; Nakamura, C.V. Effects of thiosemicarbazide camphenederivative on trichophyton mentagrophytes. Molecules,2009,14,1796-1807.
    [23]-MSDS (2005).4.1.0. E. Material Safety Data Sheet. Thiosemicarbazide.www.sciencelab.com/msds.php?msdsId=9925248
    [24]-MSDS Number: T3055(2007).gerhardl.phpwebhosting.com/MSDSPDF/T/Thiosemicarbazide.pdf
    [25]-Agarwala, B.V.; Reddy, P.S.N. Stereochemical changes in anisaldehydethiosemicarbazone complexes. Transition Met. Chem.1988,13,187-189
    [26]-Li, Y.; Li, Y.; Yang, Y. Flow-injection chemiluminescence determination oflisinopril using luminol–KMnO4reaction catalyzed by silver nanoparticles. Appl.Spectrosc.2011,65,376-381.
    [27]-Barnett, N.W.; Hindson, B.J.; Lewis, S.W. determination of5-hydroxytryptamine (serotonin) and related indoles by flow injection analysiswith acidic potassium permanganate chemiluminescence detection. Anal. Chim.Acta1998,362,131-139.
    [28]-Hindson, B.J.; Barnett, N.W. analytical applications of acidic potassiumpermanganate as a chemiluminescence reagent. Anal. Chim. Acta2001,445,1-19.
    [29]-Adcock, J.L.; Francis, P.S.; Barnett, N.W. Acidic potassium permanganate as achemiluminescence reagent—a review. Anal. Chim. Acta2007,601,36-67.
    [30]-Flow injection determination of papaverine based on its sensitizing effectZhuang, Y.F.; Zhuang, S.C.; Yu, J.S.; Ju, H.X. on the chemiluminescencereaction of permanganate-sulfite. Anal. Bioanal. Chem.2003,375,281–286.
    [31]-Sun, H.; Liqing, L.I.; Chen, X. Flow-injection chemiluminescence determinationof ofloxacin and levofloxacin in pharmaceutical preparations and biologicalfluids. Anal. Sci.2006,22,1145-1149.
    [32]-Meng, H.; Wu, F.; He, Z.; Yuan, L.; Luo, Q.; Zeng, Y. Chemiluminescencedetermination of sulfite and sulfur dioxide using tris (1,10-phenanthroline)ruthenium-KMnO4system. Inter. J. Environ. Anal. Chem.1999,75,299-307.
    [33]-Lin, Y.; Zhao, H.; Chen, S.; Jin, L.; Zheng, D.; Wu, Z. Flow-injection analysis oftwo fluoquinolones by the sensitizing effect of terbium(III) onchemiluminescence of the potassium permanganate-sodium Sulfite system.Talanta2003,61,403-409.
    [34]-Zhang, Z.J.; Zhuang, Y.F.; Ju, H.X. Flow injection chemiluminescent detectionof acemetacin in KMnO4-Na2SO3system. Yao Xue Xuebao2004,39,925-928.
    [35]-Waseem, A.; Yaqoob, M.; Nabi, A. Flow-Injection Chemiluminometric Analysisof Thyroxine Hormone in a KMnO4–Na2SO3System. J. Chin. Chem. Soc.2007,54,1505-1510.
    [36]-Waseem, A.; Yaqoob, M.; Nabi, A. Flow-injection determination of carbaryl andcarbofuran based on KMnO4-Na2SO3chemiluminescence detection. Luminesc.2007,22,349–354.
    [37]-Campiglio, A. Chemiluminescence determination of naltrexone based onpotassium permanganate oxidation. Analyst1998,123,1053-1056.
    [38]-Lopez, P.J.L.; Townshend, A. Flow injection chemiluminescence determinationof imipramine and chlorpromazine. Anal. Commun.1996,33,31-33.
    [39]-Huang, C.; Linkous, C.A.; Adebiyi, O.; T-Raissi A. Hydrogen production viaphotolytic oxidation of aqueous sodium sulfite solutions. Environ. Sci. Technol.2010,44,5283-5288.
    [40]-Tsaplev, Y.B. Chemiluminescence in acid medium. Russ. J. of phys. Chem.1991,65,799-802.[Zh. Fiz. Khim.1991,65,799-802].
    [41]-Cotton, F.A. Wilkinson, G. Advanced Inorganic Chemistry. Wiley: New York,1988,5thedn.,741-743.
    [42]-Zhang, D.; Ma, Y.; Zhou, M.; Li, L.; Chen, H. Determination of CeftriaxoneSodium in Pharmaceutical Formulations by Flow Injection Analysis with AcidPotassium Permanganate Chemiluminescence Detection. Anal. Sci.2006,22,183-186.
    [43]-Barnett, N.W. Rolfe, D.G. Determination of morphine in process streams usingflow-injection analysis with chemiluminescence detection. Anal. Chim. Acta1993,282,551-557.
    [44]-Gorman, B.A.; Barnett, N.W.; Bos, R. detection of pyrrolizidine alkaloids usingflow analysis with both acidic potassium permanganate and tris(2,2-bipyridyl)ruthenium(II) chemiluminescence. Anal. Chim. Acta2005,541,119-124.
    [45]-Adcock, J.L.; Francis, P.S.; Smith, T.A.; Barnett, N.W. The characteristic redchemiluminescence from reactions with acidic potassium permanganate: furtherspectroscopic evidence for a manganese (II) emitter. Analyst2008,133,49-51.
    [46]-Kato, M.; Yamada, M.; Suzuki, S. Flavin mononucleotide sensitized andpolyoxyethylene (20) sorbitan trioleate micelle-enhanced gas/solutionchemiluminescence for direct continuous monitoring of sulfur dioxide in theatmosphere. Anal. Chem.1984,56,2529-2534.
    [47]-Psarellis, I.M.; Deftereos, N.T.; Sarantonis, E.G.; Calokerinos, A.C. Flow-Injection Chemiluminometric Determination of Some Bile Acids. Anal.Chim.Acta1994,294,27-34.
    [48]-Meixner, F.; Jaeschke, W.; Fresenius, Z. Chemiluminescence technique fordetecting sulphur dioxide in the pp-t range. Fresenius Anal. Chem.1984,317,343-344.
    [49]-Zhuang, Y.; Cai, X.; Yu, J.; Ju, H. Flow injection chemiluminescence analysisfor highly sensitive determination of noscapine. J. Photochem. Photobiol. A:Chem.2004,162,457-462.
    [50]-Setnescu, R.; Barcutean, C.; Jipaa, S.; Setnescu, T.; Negoiu, M.; Mihalcea, I.;Dumitru, M.; Zaharescu, T. The effect of some thiosemicarbazide compoundson thermal oxidation of polypropylene. Polym. Degrad. Stabil.2004,85,997-1001.
    [1] Zerzanova A, Zizkovsky V, Kucera R, Klimes J, Jesensky I, Dohnal J, Barron D.Using of HPLC coupled with coulometric detector for the determination of biotinin pharmaceuticals. J. Pharm. Biomed. Anal.2007;45:730–735.
    [2] Walash MI, Rizk M, Sheribah ZA, Salim MM. Development and validation ofspectrofluorimetric method for determination of biotin in bulk and pharmaceuticalpreparations via its oxidation with cerium (IV). Int. J. Biomed. Sci.2010;6:268-275.
    [3] Walash MI, Rizk M, Sheribah ZA, Salim MM. Kinetic spectrophotometricdetermination of biotin in pharmaceutical preparations. Int. J. Biomed. Sci.2008;4:238-244.
    [4] Staggsa CG, Sealeya WM, McCabeb BJ, Teagueb AM, Mocka DM. Determinationof the biotin content of select foods using accurate and sensitive HPLC/avidinbinding. Journal of Food Composition and Analysis2004;17:767–776.
    [5] Mock DM, Lankford GL and John C, JR. Biotin and biotin analogs in human urine:biotin accounts for only half of the total. J. Nutr.1993,123:1844-1851.
    [6] Bonjour JP, in: Machlin LJ (Ed.), Handbook of Vitamins, Marcel Dekker, NewYork,1984, p.403.
    [7] Tanaka M, Izumi Y and Yamada H. Biotin assay using lyophilized and glycerol-suspended cultures. J. Microbiol. Methods1987,6:237-246.
    [8] Yomota C and Ohnishi Y. Determination of biotin following derivatization with2-nitrophenylhydrazine by high-performance liquid chromatography with on-lineUV detection and electrospray-ionization mass spectrometry. J. Chromatogr.A2007,1142:231-235.
    [9] Carlucci AF. Amphidinium carterae assay for biotin. Methods Enzymol1970,18:379-383.
    [10] Evangelia L, Danae C, Irene V, Leondios L, John ON, Dionyssis SI, Gregory PE.Analytical techniques for determining biotin. J. Chromatogr. A2000,881:331–343.
    [11] Adam W, Kazakov DV, Kazakov VP. Singlet oxygen chemiluminescence inperoxide reactions. Chem. Rev.2005,105:3371–3387.
    [12] Han HY, He ZK, Zeng YE (2006) Chemiluminescence method for thedetermination of glutathione in human serum using the Ru (phen)32+–KMnO4system. Microchim. Acta2006,155:431–434.
    [13] Li SF, Zhang XM, Du WX, Ni YH, Wei XW. Chemiluminescence Reactions of aLuminol System Catalyzed by ZnO Nanoparticles. J. Phys. Chem. C2009,113:1046-1051.
    [14] Li SF, Li XZ, Zhang YQ, Huang F, Wang FF, Wei XW. Enhancedchemiluminescence of the luminol–KIO4system by ZnS nanoparticles.Microchim Acta2009,167:103-108.
    [15] Yang C., Zhang Z., Wang J., Microchimica Acta,2009,167,91.
    [16] Li X.Z., Guan T.T, Zhou C., Yin J.Q., Zhang Y.H., Chemical Research in ChineseUniversities,2006,22,21.
    [17] Wang, Ma Q and Su X. Synthesis of CdTe nanocrystals with mercaptosuccinicacid as stabilizer. J. Nanosci. Nanotechno.2008,8:4408-4414.
    [18] Sharman RK, Sharman P and Maitra A. Size-dependent catalytic behavior ofplatinum nanoparticles on the hexacyanoferrate (III)/thiosulfate redox reaction. J.Colloid Interface Sci.2003,265:134-140.
    [19] Henglein A, Physicochemical properties of small metal particles in solution-microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem.1993,97:5457-5471.
    [20] Wang Y, Lu J, Tong Z, Chen L. Fluorescence resonance energy transfer betweenCdTe quantum dots and rhodamine B. ACTA CHIMICA SINICA2009,67:2222-2226.
    [21] Kanwal S, Traore Z, Zhao C, Su X. Enhancement effect of CdTe quantum dots–IgG bioconjugates on chemiluminescence of luminol–H2O2system. J. Lumin.2010,130:1901–1906.
    [22] Roth JA, McCormick DB, and Wright LD. Bacterial degradation of biotin IV.Metabolism of14C-carbonyl-labeled biotin l-sulfoxide, J. Biol. Chem.1970,245:6264–6268.
    [23] Kazarinoff MN, Im WB, Roth JA, McCormick DB, and Wright LD. Bacterialdegradation of biotin VI. Isolation and identification of b-hydroxy and b-ketocompounds. J. Biol. Chem.1972,247:75–83.
    [24] Zempleni J and Mock DM. Biotin biochemistry and human requirements. J. Nutr.Biochem.1999,10:128–138
    [25] Sevgi and Ulu T. Spectrofluorimetric Determination and Validation of Biotin inPure and Dosage Form via Derivatization with4-Fluoro-7-nitrobenzofurazan.Chin. J. Chem.2010,28:2209—2215
    [1] Peng, J.; Wang, Y.; Wang, J.; Zhou X.; Liu Z. A new biosensor for glucosedetermination in serum based on up-converting fluorescence resonance energytransfer. Biosens. Bioelectron.2011,28,414-420.
    [2] Zargoosh, K.; Shamsipur, M.; Qandalee, M.; Piltan, M.; Moradi, L. Sensitive andselective determination of glucose in human serum and urine based on theperoxyoxalate chemiluminescence reaction of a new Fluorophore. Spectrochim.acta A, Mol. biomol. spectrosc.2011,81,679-683.
    [3] Sierra, J. F.; Galbán, J.; Castillo, J. R. Determination of Glucose in Blood Basedon the Intrinsic Fluorescence of Glucose Oxidase. Anal. Chem.1997,69,1471-1476.
    [4] Sung, Y.-M.; Noh, K.; Kwak, W.-C.; Kim, T. G. Enhanced glucose detection usingenzyme-immobilized ZnO/ZnS core/sheath nanowires. Sens. Actuators B: Chem.2012,161,453-459.
    [5] Sierra, J. F.; Galban, J.; De Marcos, S.; Castillo, J. R. Fluorimetric–enzymaticdetermination of glucose based on labelled glucose oxidase. Anal. Chim. Acta1998,368,97-104.
    [6] Gvozdenovi, M. M.; Jugovi, B. Z.; Bezbradica, D. I.; Antov, M. G.; Kne evi-Jugovi, Z. D.; Grgur B. N. Electrochemical determination of glucose usingpolyaniline electrode modified by glucose oxidase. Food Chem.2011,124,396-400.
    [7] Shervedani, R. K.; Mehrjardi, A. H.; Zamiri, N. A novel method for glucosedetermination based on electrochemical impedance spectroscopy using glucoseoxidase self-assembled biosensor. Bioelectrochem.2006,69,201-208.
    [8] Feng, D.; Wang, F.; Chen, Z. Electrochemical glucose sensor based on one-stepconstruction of gold nanoparticle–chitosan composite film. Sens. Actuators B:Chem.2009,138,539-544.
    [9] Oszwa dowski, S.; Lipka R.; Jarosz, M. Sensitive reversed-phase liquidchromatographic determination of hydrogen peroxide and glucose based onternary vanadium(V)-hydrogen peroxide-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol system. Anal.Chim. Acta2000,421,35-43.
    [10] Kobayashi, K.; Kawai, S. Gas chromatographic determination of glucose inserum with glucose oxidase—catalase system. J. Chromatogr. B: Biomed. Sci.Appl.1983,275,394-399.
    [11] Kiba, N.; Goto, Y.; Furusawa, M. Simultaneous determination of glucose and1-deoxyglucose in serum by anion-exchange chromatography with an immobilizedpyranose oxidase reactor. J. Chromatogr. B: Biomed. Sci. Appl.1993,620,9-13.
    [12] Liu, X.; Hansen, E. H. Sequential injection determination of D-glucose bychemiluminescence using an open tubular immobilised enzyme reactor. Anal.Chim. Acta1996,326,1-12.
    [13] Trojanowicz, M.; Matuszewski, W.; Podsiad a, M. Enzyme entrappedpolypyrrole modified electrode for flow-injection determination of glucose.Biosens. Bioelectron.1990,5,149-156.
    [14] Singh, B.; Laffir F.; McCormac, T.; Dempsey, E. PtAu/C based bimetallicnanocomposites for non-enzymatic electrochemical glucose detection. Sens.Actuators B: Chem.2010,150,80-92.
    [15] Kanchana, W.; Sakai, T.; Teshima, N.; Katoh, S.; Grudpan K.. Successivedetermination of urinary protein and glucose using spectrophotometric sequentialinjection method. Anal. Chim. Acta2007,604,139-146.
    [16] Huang, H.-Y.; Chen P.-Y. PdNi-and Pd-coated electrodes prepared byelectrodeposition from ionic liquid for nonenzymatic electrochemicaldetermination of ethanol and glucose in alkaline media. Talanta2010,83,379-385.
    [17] Silva, H. A. D. F. O.; álvares-Ribeiro, L. M. B. C. Optimization of a flowinjection analysis system for tartaric acid determination in wines. Talanta2002,58,1311-1318.
    [18] Huang, Y. L.; Li, S. Y.; Dremel, B. A. A.; Bilitewski, U.; Schmid, R. D. On-linedetermination of glucose concentration throughout animal cell cultures based onchemiluminescent detection of hydrogen peroxide coupled with flow-injectionanalysis. J. Biotechnol.1991,18,161-172.
    [19] Kiba, N.; Ueda, F.; Furusawa, M.; Yamane, T. Flow-injection determination ofglucose in serum with an immobilized pyranose oxidase reactor. Anal. Chim.Acta1992,269,187-191.
    [20] Worsfold, P. J.; Farrelly, J.; Matharu, M. S. A comparison of spectrophotometricand chemiluminescence methods for the determination of blood glucose by flowinjection analysis. Anal. Chim. Acta1984,164,103-109.
    [21] Xu, S.; Liu, W.; Hu, B.; Cao, W.; Liu, Z. Biomimetic enhancedchemiluminescence of luminol–H2O2system by manganese (III)deuteroporphyrin and its application in flow injection determination of phenol attrace level. J. Photochem. Photobiol. A: Chem.2012,227,32-37.
    [22] Haghighi, B.; Bozorgzadeh, S. Flow injection chemiluminescence determinationof isoniazid using luminol and silver nanoparticles. Microchem. J.2010,95,192-197.
    [23] Kanwal, S.; Traore, Z.; Zhao, C.; Su X. Enhancement effect of CdTe quantumdots–IgG bioconjugates on chemiluminescence of luminol–H2O2system. J.Luminesc.2010,130,1901-1906.
    [24] Huertas-Pérez, J. F.; García-Campa a, A. M. Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Anal. Chim.Acta2008,630,194-204.
    [25] Adcock, J. L.; Francis, P. S.; Barnett, N. W. Acidic potassium permanganate as achemiluminescence reagent–a review Anal. Chim. Acta2007,601,36-67.
    [26] Satienperakul, S.; Phongdong P.; Liawruangrath, S. Pervaporation flow injectionanalysis for the determination of sulphite in food samples utilising potassiumpermanganate–rhodamine B chemiluminescence detection. Food Chem.2010,121,893-898.
    [27] McDermott, G. P.; Conlan, X. A.; Noonan, L. K.; Costin, J. W.; Mnatsakanyan,M.; Shalliker, R. A.; Barnett, N. W.; Francis, P. S. Screening for antioxidants incomplex matrices using high performance liquid chromatography with acidicpotassium permanganate chemiluminescence detection. Anal. Chim. Acta2011,684,134-141.
    [28] Percy, D. W; Adcock, J. L.; Conlan, X. A.; Barnett, N. W.; Gange, M. E.;Noonan, L. K.; Henderson, L. C.; Francis, P. S. Determination of Citrusaurantium protoalkaloids using HPLC with acidic potassium permanganatechemiluminescence detection Talanta2010,80,2191-2195.
    [29] Chen, H.; Lu, C.; Li, R.; Guo, G.; Lin, J.-M. Chemiluminescence behavior ofsodium hydrogen carbonate in the potassium permanganate-hydrogen peroxidereaction. SCI. CHINA Chem.2010,53,1784-1792.
    [30] Easwaramoorthy, D.; Yu, Y.-C.; Huang, H.-J. Chemiluminescence detection ofparacetamol by a luminol-permanganate based reaction. Anal. Chim. Acta2001,439,95-100.
    [31] Wang, Z.; Zhang, Z.; Fu, Z.; Zhang, X. Sensitive flow-injectionchemiluminescence determination of terbutaline sulfate based on enhancement ofthe luminol–permanganate reaction. Anal. Bioanal. Chem.2004,378,834-840.
    [32] Huertas-Pérez, J. F.; García-Campa a, A. M.; González-Casado, A. Gámiz-Gracia, L. Potential of the luminol reaction in the sensitive detection of pesticideresidues by flow injection analysis. Luminesce2004,19,222-224.
    [33] Tsaplev, Y.B. Chemiluminescence in acid medium. Russ. J. Phys. Chem.1991,65,420-427.
    [34] Barnett, N.W.; Rolfe, D.G.; Bowser, T.A.; Paton, T.W. Determination ofmorphine in process streams using flow-injection analysis withchemiluminescence detection. Anal. Chim. Acta,1993,282,551-557.
    [35] Hindson, B. J.; Barnett N. W. Analytical applications of acidic potassiumpermanganate as a chemiluminescence reagent. Anal. Chim. Acta2001,445,1–19.
    [36] Li, Y.; Li, Y.; Yang Y. Flow-injection chemiluminescence determinationof lisinopril using luminol–KMnO4reaction catalyzed by silver nanoparticles.Appl. Spectrosc.2011,65,376-381.
    [37] Silin, P. M., sugar technology, Moscow: Pishipromzdat,1967.
    [38] Yang, L.; Janle, E.; Huang, T.; Gitzen, J.; Kissinge, P. T.; Vreeke, M.; Heller, A.Applications of "wired" peroxidase electrodes for peroxide determination inliquid chromatography coupled to oxidase immobilized enzyme reactors.Anal.Chem.1995,67,1326-1331.
    [39] Zhao, S.; Zhang, K.; Bai, Y.; Yang, W. W.; Sun, C. Q. Glucose oxidase/colloidalgold nanoparticles immobilized in Nafion film on glassy carbon electrode: Directelectron transfer and electrocatalysis. Bioelectrochem.2006,69,158-163.
    [40] Wei, H.; Wang, E. Fe3O4magnetic nanoparticles as peroxidase mimetics andtheir applications in H2O2and glucose detection. Anal. Chem.2008,80,2250–2254.
    [41] Katsumata, H.; Sekine, T.; Teshima, M.; Kurihara, M.; Kawashima, T. A newflow-injection determination of glucose based on the redox reaction ofhydroquinone with iron(III) in the presence of1,10-phenanthroline. Talanta2000,51,1197-1204.
    [42] Abd-Rabboh, H. S. M.; Meyerhoff, M. E. Determination of glucose using acoupled-enzymatic reaction with new fluoride selective optical sensingpolymeric film coated in microtiter plate wells. Talanta2007,72,1129-1133.
    [43] Chang, G.; Tatsu, Y.; Goto, T.; Imaishi, H.; Morigaki, K. Glucose concentrationdetermination based on silica sol-gel encapsulated glucose oxidase opticalbiosensor arrays Talanta2010,83,61-65.
    [44] Jin, G.; Du S.; Hu X. The petentiometric determination of peroxide hydrogen andglucose on the glassy electrode modified by the calix[4]arene. Talanta2009,80,858-863.
    [45] Yuan, J., W. Guo and E. Wang.2008. Quantum dots–bienzyme hybrid system forthe sensitive determination of glucose. Biosens. Bioelectron.23:1567-1571.
    [46] Huang, C.-P.; Liu, S.-W.; Chen, T.-M.; Li, Y.-K. A new approach for quantitativedetermination of glucose by using CdSe/ZnS quantum dots. Sens. Actuators B:Chem.2008,130,338-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700