用户名: 密码: 验证码:
基于CORS站区域电离层短期预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层是高层大气重要的组成部分,其时空变化对无线电通讯、超视距雷达等系统的可靠运行有非常大的干扰作用。电离层总电子含量(Total Electron Content, TEC)是电离层最重要的特征参数之一,TEC预报已经成为电离层研究的一个热点。我国目前已经建立了适用于中国及周边地区的长期预测模型,但是在电离层TEC短期预报方面尚处于起步阶段。本文利用中国境内国际GNSS服务中心(International GNSS Service, IGS)跟踪站和国内的GNSS连续运行参考站(Continuously Operational Reference Stations, CORS)的实测数据,对区域内TEC进行了计算和预报研究。主要研究内容包括以下几个方面:
     1.电离层时空变化研究。本文分别利用NeQuick模型、IRI模型和IGS数据对电离层TEC的日变化特征、年变化规律、空间分布等进行了计算分析,总结了电离层TEC的时空变化规律。
     2.电离层TEC解算。采用卡尔曼滤波对卫星硬件延迟和接收机硬件延迟进行估计,估计精度分别为1ns和1.5ns;采用GNSS双频观测数据,分别利用伪距法、载波相位法和载波相位平滑伪距法进行TEC解算,比较了不同方法的解算结果,结果显示利用载波相位平滑伪距解算的TEC精度比伪距和载波相位的要好;经过硬件延迟改正后的VTEC值解算精度一般在1-5TECU。
     3.电离层TEC短期预报研究。本文将数理统计中的方差分析周期叠加外推法应用于电离层短期预报,随后又对其作了改进。采用IGS提供的电离层TEC数据作为原始数据比较了该方法改进前后的预报精度,结果表明:改进后的方法预报精度要优于改进前的精度,单站预报精度和区域预报精度优于3.5TECU。通过与目前常用方法比较分析发现,该方法预报结果精度较高、所需计算参数少、简单易行,可以较好地应用于电离层短期预报。本文还利用计算得到的不同采样率的TEC数据分别进行预报,发现电离层TEC原始数据的采样率对其预报精度不会产生很大的影响,故在应用中可以利用2小时采样率的电离层TEC数据进行预报,可以减少计算的复杂度,缩短计算时间,提高该方法的预报效率。
The ionosphere is an important component of the upper atmosphere and its temporal and spatial changes have very large effects on the reliability of the radio communications system, over-the-horizontal radar system and other systems. Ionospheric total electron content (TEC) is one of the most important ionospheric characteristic parameters, whose ionospheric short-term forecast has become an issue in the research of the ionosphere. The long-term forecasting models which are suitable to China and surrounding areas have been established in China; however, the ionospheric short-term forecast is still at the initial stage. In this paper, the Chinese domestic observations of the International GNSS Service (IGS) stations and national GNSS Continuously Operating Reference Stations (CORS) were used to calculate TEC and do the research about ionospheric short-term forecast in this region. The main contents include the following aspects:
     1. Temporal and spatial changes of ionosphere. In this paper, NeQuick model, IRI model and IGS data were used to calculate TEC and analyze its diurnal variation, annual discipline, and space distribution, etc.
     2. Ionospheric TEC calculation. The precisions of Kalman filtering method which is used to estimate the satellite differential code bias and receiver differential code bias are 1ns and 1.5ns respectively. Pseudo-range, carrier phase and carrier phase smoothed pseudo range were used to calculate TEC respectively with dual-frequency GNSS observations, then compared the results of different methods. It is indicated that the precision of carrier phase smoothed pseudo range is better than others, while the precision of VTEC is about 1-5TECU after differential code bias correction.
     3. Ionospheric TEC short-term forecast research. This paper applies the statistics method innovatively, superposition analysis of periodical wave variance, to short-term forecasting of the ionospheric TEC and improves it after preliminary study and analysis. Then the forecast previsions of both original and improved method were compared based on the ionospheric TEC as original data provided by IGS, which shows that the forecast prevision of the improved method is better than the original one and the forecast previsions about single station and region are both below 3.5TECU. Through comparative analysis with the current methods, this method can be well applied to the ionosphere short-term prediction with the advantage of higher precision, fewer parameters and more simple calculation. Then different sampling rate TEC data were used to short-term forecast, which demonstrate that high sampling rate has little effect to forecast prevision, so 2-hour TEC data could be used in forecast in application, which could reduce the computational complexity, shortened the computing time and improve the forecast efficiency of this method.
引文
[1] A. J. Mannucci, B. D. Wilson, D. N. Yuan et al.. A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Science, Vol. 33(3), 565-582, 1998
    [2] A. Komjathy and R.B. Langley. An assessment of predicted and measured ionospheric total electron content using a regional GPS network, presented at the ION National Technical Meeting, Santa Monica, CA, pp: 22-24, 1996
    [3] Andrew J. Mazzella Jr.. Plasmasphere effects for GPS TEC measurements in North America, Radio Science, Vol.44, RS5014, doi:10.1029/2009RS004186, 2009
    [4] Araujo-Pradere E A, Fuller-Rowell T J, Codrescu M C. Storm: An empirical storm-time ionospheric correction model. Radio Science, Vol. 37, doi: 10.1029/ 2001RS002467, 2002
    [5] Araujo-Pradere E A, Fuller-Rowell T J, Codrescu M C. Srorm: An emprircal storm-time ionospheric correction model, II, Validation. Radio Science, Vol. 37, doi: 10.1029/2002RS002620, 2002
    [6] B. Khattatov, M. Murphy, M. Gnedin et al.. Ionospheric nowcasting via assimilation of GPS measurements of ionospheric electron content in a global physics-based time-dependent model, Q. J. R. Meteorol, Vol. 131: 3543–3559, 2005
    [7] Brunini C. Global ionospheric model from GPS measurements. PhD thesis, Facultad de Ciencias Astronómicas yGeofísicas, Universidad Nacional de La Plata, La Plata, 1998
    [8] Bruno Zolesi and Ljiljana R. Cander. Effects of the upper atmosphere on terrestrial and Earth-space communications: introduction, Annals of Geophysics, Vol. 47, N. 2/3, 2004
    [9] Chang-Ki Hong. Efficient differential code bias and ionosphere modeling and their impact on the network-based GPS positioning. Ph.D. dissertation, the Graduate School of The Ohio State University, 2007
    [10] Chun Chen, ZhensenWu, ShujiSun et al., Forecasting the ionospheric f 0 F2 parameter one hour ahead using a support vector machine technique, Journal of Atmospheric and Solar-Terrestrial Physics, Vol.72: 1341-1347, 2010
    [11] C. M. Rush and W. R. Edwards, Jr.. An automated mapping technique for representing the hourly behavior of the ionosphere, Radio Science, Vol. 11(11): 931-937, 1976
    [12] C. Scotto. A study of real time ionospheric mapping by neural network, Phys. Chem. Earth (C), Vol. 26(5): 363-366, 2001
    [13] D.J. Della-Rose, J.J. Sojka, L. Zhu et al.. Driving the high-latitude ionosphere with variable time resolution“K-like”geomagnetic indices, Journal of Atmospheric and Solar-Terrestrial Physics , Vol. 62: 773-786, 2000
    [14] D. Marin, G. Miro and A. Mikhailov. A method for f 0 F2 short-term prediction,Phys. Chem .Earth (C), Vol. 25(4): 327-332, 2000
    [15] Hanbaba R. COST 251 Final Report, Improved quality of service in ionospheric telecommunication systems planning and operation, Warsaw: Space Research Centre, 127~142, 1999
    [16] Hochegger, G., B. Nava, S.M. Radicella and R. Leitinger. A family of ionospheric models for different uses. Physicas and Chemistry of The Earth [C], Vol. 25(4): 307-310, 2000
    [17] I. G. Zakharov and O. F. Tyrnov. Short-term critical frequency variations and their predictions in the midlatitude ionospheric F2 region, Phys. Chem. Earth (C), Vol. 24(4): 371-374, 1999
    [18] I. Tsagouri, K. Koutroumbas, and A. Belehaki. Ionospheric f 0 F2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Science, Vol. 44, RS0A35, doi: 10.1029/2008RS004112, 2009
    [19] I.V. Krasheninnikov, I.B. Egorov. IRI-2001 model efficiency in ionospheric radiowave propagation forecasting, Advances in Space Research, Vol. 45: 268–275, 2010
    [20] J. J. Sojka, D.C. Thompson, and R. W. Schunk. Assimilation ionosphere model: development and testing with combined ionospheric campaign Caribbean measurements, Radio Science, Vol.36 (2): 247-259, 2001
    [21] John M. Goodman. Operational communication systems and relationships to the ionosphere and space weather, Advances in Space Research, Vol.36 (2005) 2241–2252, 2003
    [22] J. Ping, Y. Kono, K. Matsumoto, Y. Otsuka, et al.. Regional ionosphere map over Japanese Islands, Earth Planets Space, Vol.54:13–16, 2002
    [23] Komjathy, A. Global ionospheric total electron content mapping using the Global Positioning System, Ph.D. dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 188, University of New Brunswick, Fredericton, New Brunswick, Canada, 1997
    [24] L. A. McKinnell and A. W. V. Poole. The development of a neural network based short term f 0 F2 forecast program, Phys. Chem. Eurh (C), Vol. 25(4): 287-290, 2000
    [25] L. Ciraolo, F. Azpilicueta, C. Brunini et al.. Calibration errors on experimental slant total electron content (TEC) determined with GPS, J Geodesy, Vol.81:111-120, 2007
    [26] L. C. Tsai, C. H. Liu, T. Y. Hsiao and J. Y. Huang. A near real-time phenomenological model of ionospheric electron density based on GPS radio occultation data, Radio Science, Vol. 44, RS5002, doi:10.1029/2009RS004154, 2009
    [27] Liu Ruiyuan, P A Smith, J W King. A new solar index which leads to improved f 0 F2 predictions using the CCIR Atlas, Telecommunication Journal, Vol.50(VIII): 408~414, 1983
    [28] Lj.R. Cander, M.M. Milosavljevic, S.S. Stankovic et al.. Ionospheric forecasting technique by artificial neural network, Electronics Letters, Vol. 34(16): 1573-1574
    [29] Mahmoud Lotfy El-Gizawy. Development of an ionosphere monitoring technique using GPS measurements for high latitude GPS users, Master thesis, the University of Calgary, 2003
    [30] Mark Frederick Knight. Ionospheric scintillation effects on Global Positioning System receivers, PhD dissertation, Department of Electrical and Electronic Engineering Faculty of Engineering, The University of Adelaide Adelaide, South Australia, 2000
    [31] Mikhailov A V, de la Morena B A, Miro G.. A method for f 0 F2 monitoring over Spain using the El Arenosillo digisonde current observations, 3rd COST 251 Workshop proceedings, El Arenosillo, Spain, 1998, COST251TD (99)003, 185~194
    [32] N. Turel and F. Arikan. Probability density function estimation for characterizing hourly variability of ionospheric total electron content, Radio Science, Vol.45, RS6016, doi:10.1029/2009RS004345, 2010
    [33] Paul Withers, Michael Mendillo. Response of peak electron densities in the martian ionosphere to day-to-day changes in solar flux due to solar rotation, Planetary and Space Science, Vol.53:1401-1418, 2005
    [34] Pawel Wielgosz, Grejner-Brzezinska, Kashani. Regional ionosphere mapping with Kriging and multiquadric methods. Journal of Global Positioning Systems, Vol.2(1): 48-55, 2003
    [35] P. J. Wilkinson. Predictability of ionospheric variations for quiet and disturbed Conditions, Journal of Armsphearnidc Tmesbial Physics, Vol. 57(12).1469-1481, 1995
    [36] Plamen Muhtarov and Ivan Kutiev. Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data, Radio Science, Vol.34 (2): 459-464, 1999
    [37] R. Leitinger, S.M. Radixwlla and B. Nava. Electron density models for assessment studies new developments, Acta Geod. Geophys. Hung., Vol.37: 183-193, 2002
    [38] R. Liua, Z. Xua, J. Wu el at.. Preliminary studies on ionospheric forecasting in China and its surrounding area, Journal of Atmospheric and Solar-Terrestrial Physics, Vol.67:1129-1136, 2005
    [39] Rushm C M, Edwards Jr W R. An authomated mapping technique for representing the hourly behavior of the ionosphere, Radio Science, Vol.11: 931~937, 1976
    [40] Sandro M. Radicella, Ionosphere/Positioning and telecommunications, J. Lilensten (ed.), Space Weather, pp: 125–127
    [41] S. M. Radicella, R. Leitinger. The evolution of the DGR approach to model electron density profiles, Advances in Space Research, Vol.27 (1): 32-40, 2001
    [42] Schaer S, Gurtner W, Feltens J. IONEX: The ionosphere map exchange format version 1, Proceedings of the 1998 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, 1998
    [43] Schunk R W, Scherliess L, Sojka J J. Recent approaches to modeling ionospheric weather. Advances in Space Research, Vol.31 (4): 819~828, 2003
    [44] Secan J A, Wilkinson P J. Statistical studies of an effective sunspot number. Radio Science, Vol.32: 1717~1724, 1997
    [45] Stefan Schaer. Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD dissertation, Astronomical institute, University of Berne, Switzerland, 1999
    [46] Suqin Wu, Kefei Zhang, Yunbin Yuan et al.. Spatio-temporal characteristics of the ionospheric TEC variation for GPSnet-based real-time positioning in Victoria, Journal of Global Positioning Systems, Vol. 5(1-2): 52-57, 2006
    [47] Wan W, Yuan H, Ning B, et al.. Regional properties travelingionospheric disturbances observed in central China. Advances in Space Research, Vol. 25: 219~222, 1999
    [48] Yang Gao, ZhizhaoLiu. Precise ionosphere modeling using regional GPS network data. Jounal of Global Positioning Systems, Vol.1 (1): 18-24, 2002
    [49]蔡昌盛,高井祥,李征航。利用GPS监测电离层总电子含量的季节性变化,武汉大学学报(信息科学版),Vol. 31(5): 451-453,2006
    [50]常青,张东和,萧佐等。GPS系统硬件延迟估计方法及其在TEC计算中的应用,地球物理学报,2001,44(5): 596-601,2001
    [51]陈安华。GPS测定日食期间电离层TEC的特性,硕士学位论文,武汉大学,2000
    [52]陈艳红。武汉地区电离层电子浓度总含量的模式研究,硕士论文,中国科学院武汉物理与数学研究所,2002
    [53]程鹏飞,李夕银,马建平。两种GPS测定电离层电子密度模型的探讨,武汉大学学报(信息科学版),Vol.26 (6): 524-529,2001
    [54]党亚民,秘金钟,成英燕。全球导航卫星系统原理与应用,北京:测绘出版社,2007
    [55]耿长江,唐卫明,章红平。利用CORS系统实时监测电离层变化,大地测量与地球动力学,Vol. 28(5): 107-108,2008
    [56]郭鹏。无线电掩星技术与CHAMP掩星资料反演,博士论文,中国科学院上海天文台,2005
    [57]韩玲。区域GPS电离层TEC监测、建模和应用,硕士论文,中国科学院上海天文台,2006
    [58]黄珹,郭鹏,洪振杰等。GAIM电离层同化方法进展,天文学进展,Vol.25(3):236-249,2007,
    [59]黄逸丹。区域电离层GPS监测及应用研究,硕士论文,中国科学院上海天文台,2007
    [60]霍星亮,袁运斌,欧吉坤等。基于GPS资料研究中国区域电离层TEC的周日变化、半年度及冬季异常现象,自然科学进展,Vol.15(5):626-630,2005
    [61]李强,冯曼,张东和等。基于单站GPS数据的GPS系统硬件延迟估算方法及结果比较,北京大学学报(自然科学版),V ol.44(1):149-156, 2008
    [62]李强。GPS硬件延迟解算方法及其在电离层研究中的应用,硕士论文,北京大学,2006
    [63]李征航,黄劲松。GPS测量与数据处理[M],武汉:武汉大学出版社,2005
    [64]李征航,赵晓峰,蔡昌盛。利用双频GPS观测值建立电离层延迟模型,测绘信息与工程,Vol. 28 (1):41-44,2003
    [65]李征航,黄劲松。GPS测量与数据处理,武汉大学出版社,2005
    [66]李志刚,李伟超,程宗颐等。电离层TEC预报的直接法和间接法及其比较,天文学报,Vol.49(1):29-44,2008
    [67]李志刚,程宗颐,冯初等。电离层预报模型研究,地球物理学报,Vol.50(2):327-337,2007
    [68]刘经南,陈俊勇,张燕平等。广域差分GPS原理和方法,测绘出版社,1999
    [69]刘军,柴洪洲,刘先冬等。基于ARIMA(p,1,1)的电离层预报模型,大地测量与地球动力学,Vol. 30(3): 79-82,2010
    [70]刘敏,郭鹏。GPS/LEO掩星观测的变分同化技术,天文学进展,Vol.24(1): 27-43,2006
    [71]刘瑞源,权坤海,戴开良等。国际参考电离层用于中国地区时的修正计算方法,地球物理学报,Vol.37(4): 422-432,1994
    [72]刘瑞源,吴健,张北辰。电离层天气预报研究进展,电波科学学报,Vol.19(增刊): 35-40,2004
    [73]刘瑞源,刘顺林,徐中华,等。自相关分析法在中国电离层短期预报中的应用,科学通报,Vol.50(24):2781-2785,2005
    [74]刘瑞源,刘国华,吴健等。中国地区电离层f 0 F2重构方法及其在短期预报中的应用,地球物理学报,Vol.51(2): 300-306,2008
    [75]鲁芳。电离层暴与行扰的GPS台网监测与分析,硕士学位论文,武汉大学,2004.
    [76]毛田,万卫星,孙凌峰。用Kriging方法构建中纬度区域电离层TEC地图,空间科学学报,Vol.27(4): 279-286,2007
    [77]施闯,耿长江,章红平等。基于EOF的实时三维电离层模型精度分析,武汉大学学报(信息科学版),Vol. 35(10): 1144-1146,2010
    [78]孙宪儒。亚大地区F2电离层预测方法,通讯学报,Vol. 18(6):37-46,1987
    [79]唐卫明。大范围长距离GNSS网络RTK技术研究及软件实现[D],武汉大学,2006
    [80]田言涛。利用地基GPS网研究和监测电离层总电子含量及应用,硕士学位论文,中国科学院上海天文台,2007
    [81]涂剑南,刘立波,保宗悌。一个低纬电离层理论模式,空间科学学报,Vol. 17(3): 212-219,1997
    [82]万卫星,宁百齐,刘立波。中国电离层TEC现报系统,地球物理学进展,Vol.22(4): 1040-1045,2007
    [83]王继军,赵国泽,詹艳等。中国地震电磁现象的观测与研究,大地测量与地球动力学,Vol. 25(2): 11-22,2005
    [84]王建平。中国及周边地区电离层TEC短期预报方法研究[D],硕士论文,西安电子科技大学,2008
    [85]王军,党亚民,薛树强。NeQuick电离层模型在中国地区的应用,测绘科学,Vol. 32(4):38-40,2007
    [86]王军。GNSS区域电离层TEC监测及应用,硕士论文,中国测绘科学研究院,2008
    [87]王仁谦,朱建军。利用双频载波相位观测值求差的方法探测与修复周跳,测绘通报,Vol. 6: 9-14,2004
    [88]王水,魏奉思。中国空间天气研究进展,地球物理学进展,Vol.22(4):1025-1029,2007
    [89]王小亚,朱文耀。GPS监测电离层活动的方法和最新进展,天文学进展,Vol.21(1): 33-40
    [90]武文俊。电离层TEC预报模型的研究,硕士论文,中国科学院国家授时中心,2008
    [91]吴小成,胡雄,张训械等。电离层GPS掩星观测改正TEC反演方法,地球物理学报,Vol. 49 (2) :328-334,2006
    [92]吴云,乔学军,周义炎。利用地基GPS探测震前电离层TEC异常,大地测量与地球动力学,Vol. 25(2):36-40,2005
    [93]萧佐。50年来的中国电离层物理研究,地球物理学报,Vol. 28(11):661-667, 1999
    [94]熊年禄,唐存琛,李行建。电离层物理概论,武汉大学出版社,1999.5
    [95]杨长登。用方差分析周期叠加外推法预报年降水量,贵州气象,Vol. 22(1): 23~25,1998
    [96]余明,郭际明,过静珺。GPS电离层延迟Klobuchar模型与双频数据解算值的比较与分析,测绘通报,Vol. 6:2-9,2004
    [97]袁运斌。基于GPS的电离层监测及延迟改正理论与方法的研究,博士学位论文,中国科学院测量与地球物理研究所,2002
    [98]曾桢,胡雄,张训械等。电离层GPS掩星观测反演技术,地球物理学报,Vol. 47(4): 578-583,2004
    [99]曾桢。地球大气无线电掩星观测技术研究,博士学位论文,中国科学院武汉物理与数学研究所,2003
    [100]章红平。基于地基GPS的中国区域电离层监测与延迟改正研究,博士学位论文,中国科学院上海天文台,2006
    [101]张勤,李家权。GPS测量原理及应用,科学出版社,2005.7
    [102]赵必强。中低纬电离层年度异常与暴时特性研究,博士论文,中国科学院地质与地球物理研究所,2005
    [103]赵晓峰,李征航。有关电离层映射函数问题的探讨,测绘通报,Vol. 9: 8-11,2003
    [104]邹玉华。GPS地面台网和掩星观测结合的时变三维电离层层析,博士学位论文,武汉大学,2004
    [105]周忠谟,易杰军,周琪。GPS测量原理与应用,测绘出版社,1997.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700