用户名: 密码: 验证码:
多模GNSS融合精密定轨理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星导航系统对于维护国家利益、保障经济和军事安全,具有重大意义,随着空间导航资源竞争的白热化,世界各大国都在建设或发展卫星导航系统。继美国和俄罗斯之后,欧盟和中国也都在积极建设各自的全球卫星导航系统。目前,四大全球卫星导航系统(GPS/GLONASS/COMPASS/Galileo)并存与发展的局面已初步形成,并将组成新一代的全球卫星导航系统(GNSS, Global Navigation Satellite System)。多卫星导航系统(简称:多模GNSS, Multi-GNSS)的共存、兼容与互操作,己成为卫星导航领域研究的热点问题。
     导航卫星轨道是接收终端导航定位的基础,提供统一时空基准下的卫星轨道是实现多模GNSS兼容与互操作的核心关键问题。随着多模GNSS连续运行跟踪站数量与观测数据质量不断提升,多模GNSS融合精密定轨技术已成为GNSS精密定轨技术发展的重要方向,国际IGS组织于2008年将"True GNSS solution"正式列为其当前三大主要发展计划之一。因此为拓展多模GNSS高精度融合应用,开展多模GNSS融合精密定轨理论、技术和方法的研究十分必要,既符合国际发展趋势,又具有重要的现实需求。
     本文以多模GNSS融合精密定轨为目标,系统研究了多模GNSS精密数据处理理论、模型、方法和关键技术,并以卫星导航综合处理软件(PANDA, Position And Navigation Data Analysist)为基础平台,自主设计并研制了多模GNSS融合精密定轨软件系统,实现了基于原始观测数据的多模GNSS融合精密定轨,从卫星轨道处理业务层面解决了多系统兼容与互操作的主要关键问题。在此基础上,通过GPS/GLONASS/Galileo实测数据融合定轨试验和COMPASS仿真定轨试验验证了多模GNSS融合精密定轨理论、方法和软件系统,并将统一时空基准下的导航卫星融合轨道成功应用于多模GNSS融合精密单点定位。主要研究工作及贡献如下:
     1、分析总结了全球导航卫星系统建设、导航卫星精密定轨、多模GNSS数据融合的国内外研究现状。从导航卫星精密定轨技术发展趋势和应用需求两个层面论证了多模GNSS融合定轨理论方法研究和软件研制的必要性。
     2、系统研究了导航卫星精密定轨基础理论,包括精密定轨中的坐标系统与时间系统,卫星的运动方程与数值积分,观测方程与误差改正模型及导航卫星精密定轨算法流程。
     3、针对GPS/GLONASS/COMPASS/Galileo四大导航系统不同建设现状,总结并提出三种导航卫星融合精密定轨方法:“两步法”融合精密定轨,该方法可应用于导航系统建设初期星座不完整情况下的单星精密定轨;“一步法”融合精密定轨,该方法能实现严格意义上的多模观测值统一平差和地球物理参数的联合求解;中低轨融合精密定轨,该方法能在跟踪站分布不均匀的情况下,增强GNSS卫星框架的强度。并从多模GNSS融合精密定轨与钟差确定的实际处理过程出发,研究了多模GNSS时空参考框架转换、多模GNSS数据预处理、多模GNSS系统间时间偏量解算方法及快速状态估计方法等关键技术问题。
     4、结合本文研究的多模GNSS融合精密定轨理论与方法,在PANDA软件平台基础上,自主设计并研制了多模GNSS融合精密定轨软件系统,主要研究内容包括:软件总体框架、功能模块、算法流程等。
     5、基于自主研制的多模GNSS融合精密定轨软件系统开展了GPS/GLONASS/ Galileo实测数据融合定轨试验和COMPASS仿真定轨试验。
     (?)采用“两步法”融合精密定轨方法实现了Galileo在轨验证卫星(GIOVE-A, GIOVE-B)的精密轨道确定,并利用重叠弧段比较和SLR数据检核等多种手段对轨道进行精度评定。结果显示:利用“两步法”融合精密定轨方法能实现GIOVE卫星径向10cm的定轨精度。并从信噪比、伪距多路径误差、观测值验后残差等多方面详细分析了GIOVE-A卫星信号质量。
     (?)利用“一步法”融合精密定轨方法实现了IGS05框架下GPS卫星和GLONASS全星座精密轨道确定,并与欧洲定轨中心CODE发布的精密轨道进行了比较,统计表明GPS和GLONASS卫星星座三维平均轨道精度分别达到2cm和6cm。
     (?)仅采用中国区域7个地面跟踪站和1颗低轨卫星,基于中低轨融合精密定轨方法仿真实现了COMPASS导航卫星系统高精度融合轨道确定。试验分析表明,利用地面基准站与低轨卫星星载数据联合求解,有利于提高GNSS卫星轨道确定的精度,增强GNSS卫星跟踪几何强度,特别是基准站在全球分布受限的情况下。
     (?)针对COMPASS系统建设初步阶段、过渡时期、系统建设完成三个不同时期的星座特点,分别设计了区域COMPASS融合精密定轨方法、单星COMPASS融合精密定轨方法、全星座COMPASS融合精密定轨方法。
     6、基于本文提出的多模GNSS融合数据处理方法和软件系统,开展了GPS/GLONASS高精度、高采样率(50Hz)多模GNSS静态和动态精密单点定位应用研究,实现了多模GNSS高精度、高水平融合与互操作应用。
     (?)静态精密单点定位试验表明,多模GNSS融合精密单点定位重复精度达到水平1-2mm,高程2-3mm,可应用于高精度形变监测与分析。
     (?)事后动态精密单点定位试验表明,多模GNSS融合动态定位平面方向精度达到1cm,高程精度达到2cm。多模观测数据融合对动态定位各方向精度均有一定的提高,尤其是东方向和垂直方向提高幅度能达到10%-20%,并能部分消除与测站环境相关等未模型化的误差,避免因卫星失锁或遮挡造成的重新初始化。
     (?)对我国东北部13个“陆态网络”工程基准站的静态和动态精密单点定位分析发现,日本2011年03月11日发生的Mw9级地震造成我国东北部部分基准站产生较为明显的形变,并可能导致永久位移。融合定位或GPS、GLONASS单星座观测值定位均可清晰反映各基准站形变量,地震面波传播的方向和到达各基准站的时刻。
     (?)利用配置多模GNSS接收机的高精度校验平台验证了高采样率(50Hz)多模GNSS动态定位精度。实验结果表明,采用GNSS融合数据处理技术能获得准确的运行轨迹,多模观测数据融合处理能更精确反映真实运行状态。
With hot competition of spatial navigation resource, satellite navigation system has been established worldwide, which is of great significance to protect national benefits, economy and military security. After successful establishment of the United States and Russia, the European Union is actively developing their own global satellite navigation system together with our country. To date, coexistence and development of four kinds of global satellite navigation system (that is GPS/GLONASS/COMPASS/Galileo) have initially taken shape, which would form the new generation global satellite navigation system named GNSS. In order to realize compatibility and interoperability of various navigation systems, multimode receivers became the inevitable choice for satellite navigation positioning from GPS to GNSS, so as to promote the development among a new research focus on data fusion of multi-navigation systems.
     Navigation satellite constellation functions as a dynamical datum for navigation positioning terminal, of which the key is to provide navigation satellite orbit and clock error products with unified temporal and spatial datum so as to solve problems of compatibility and interoperability of various navigation systems, together with Multi-GNSS data fusion. Recently, technology of Multi-GNSS integrated precise orbit determination (POD) has become an important research direction in the GNSS POD, which listed formally as one of the three main development programs by international IGS organization in 2008.
     To sum up, aiming at the natural trend of the coexistence and compatible interoperability of multi-satellite navigation systems(GPS/GLONASS/COMPASS/Galileo), implementation of research on the integrated POD theory, technology and method based on Multi-GNSS is a necessity, which is not only accordance with international development trend, but also has strong current demand.
     Taking the aim to solve problems of multi-mode GNSS integrated POD and satellite clock error determination; this dissertation paper discussed its mathematical model, key technology and algorithm realization in detail. Then based on the platform of Position And Navigation Data Analysist (PANDA), Multi-GNSS integrated POD system has been independently developed, realizing precise orbit determination for multi-satellite navigation systems based on original observation data and solving problems of multi-GNSS interoperability from aspect of satellite orbit processing. Finally experiments of integrated orbit determination using real data from GPS/GLONASS/GALILEO and simulated COMPASS orbit determination have been tested in order to verify the effectiveness of the method and the software. Main contents and contributions of this dissertation include:
     1、Summarizing current status and development trend of GNSS establishment, POD for navigation satellites, as well as multi-mode GNSS data fusion at home and abroad, then demonstrating the necessity to implement precise orbit and error determination of multi-mode navigation satellite systems under unified temporal and spatial datum.
     2、Systematically investigating the basic theory of POD for navigation satellites, including coordinate systems and time systems, motion equation and its numerical integration, observation equation and error correction model, together with its algorithm flow of POD for navigation satellites.
     3、Proposing three kinds of integrated POD methods for navigation satellites according to different current status of four navigation systems (GPS/GLONASS/ COMPASS/Galileo):"Two-step" integrated POD, "One-step" integrated POD, as well as MEO-LEO combined POD. Then from practical implementation of multi-mode GNSS integrated POD and clock error determination, key technologies of temporal and spatial reference frame transformation of multi-mode GNSS and its data preprocessing, together with time deviation resolution between multi-mode GNSS systems have been discussed elaborately.
     4、Developing Multi-GNSS integrated POD software system based on PANDA platform, illustrating its dynamical model, observation model overall framework, as well as data processing flow, software interface and its characteristics.
     5、Implementing experiments of integrated orbit determination using real data from GPS/GLONASS/GALILEO and simulated COMPASS orbit determination based on self-developed Multi-GNSS integrated POD software:
     (?) Realizeing precise orbit determination for Galileo experimental satellites (GIOVE-A, GIOVE-B) with "Two-step" and "One-step" integrated POD method respectively. Different strategies have been used to carry out accuracy evaluation including overlap arc tests and SLR verification. Statistics show that, both methods of "Two-step" and "One-step" could achieve radial orbit precision of 10cm for GIOVE satellites. Besides, signal quality of GIOVE-A satellite has been analyzed in detail from aspects of signal-to-noise ratio, multi-path error of pseudo-range, as well as post-fit error of observables.
     (?) Accomplishing precise orbit determination of GPS and GLONASS satellites under IGS05 frame using "One-step" integrated POD method, which has been compared with European CODE's orbit products. Results show that the average 3-D orbit precision of GPS and GLONASS satellites could reach 2cm and 6cm respectively.
     (?) Simulating and achieving precise orbit determination for COMPASS navigation satellite system based on MEO-LEO combined POD method using data from 7 tracking stations inside China and GRACE-A satellite data. Results show that combination of ground reference stations and LEOs could improve GNSS orbit determination precision and strengthen GNSS satellite framework, especially when there is limitation in global distribution of reference stations.
     (?) According to the COMPASS system's three different period:the initial phase, the transition period, the constellation completion period, designed three integrated POD strategies:regional integrated POD method, single-satellite POD method, full ntegrated POD method.
     6、Realizing static precise point positioning and kinematic positioning of Multi-GNSS with high-precision and high-sampling rate(50Hz) using actual multi-mode observables:
     (?) Static precise point positioning experiment shows that adding GLONASS data has no significant impact on positioning precision, with the horizontal repeatable accuracy of Multi-GNSS integrated precise point positioning reaching 1~2mm, while 2-3mm for vertical components, which could be applied in high-precision deformation monitoring and analysis.
     (?) Post kinematic precise point positioning experiment shows that multi-mode observation data could improve positioning precision in different directions to some extent, especially with 20% improvement in East and Up components, and could partially eliminate unmodelled error relating to stations'surroudings.
     (?) Both static and kinematic precise point positioning of 13 reference stations belonging to the "Crustal Movement Observation Network of China" located in northeast China show that the Mw9 earthquake of Japan happened on Mar.11,2011 caused obvious deformation in some reference stations located in northeast China, which would result in permanent displacement. Either data processing of combined or single type constellation could reflect deformation displacement of various reference stations, propagation direction of the earthquake, as well as its arriving epoch at various reference stations.
     (?) Precision of Multi-GNSS kinematic positioning with high-rate (50Hz) has been tested based on high-accuracy verification platform allocated with multi-mode GNSS receivers. Experimental results show that technology of GNSS integrated data processing could obtain correct trajectory of satellites, from which would reflect its true operating status more accurately.
引文
[1]A. Simsky, J.-M. Sleewaegen, M. Hollreiser, and M. Crisci(2006). Performance assessment of Galileo ranging signals transmitted by gstb-v2 satellites. In ION GNSS 2006, Fort Worth, Texas, Sept.2006.
    [2]Ahmed El-Rabbany(2002). Introduction to GPS:the Global Positioning System. Artech House Publishers, 2002.
    [3]Alexei E. Zinoviev(2002). Using GLONASS in Combined GNSS Receivers:Current Status. ION GNSS 18th International Technical Meeting of the Satellite Division.2005, Long Beach, CA.
    [4]AliReza Amiri-Simkooei(2007). Least-Squares Variance Component EstimationTheory and GPS Applications.2007, NCG.
    [5]Beutler, G., Brockmann, E., Gurtner,W., et al.(1994). Extended Orbit Modeling Techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS):Theory and Initial Results.Manuscripta Geodaetica,19:367-386.Bar-Sever Y. E. (1996), A new model for GPS yaw attitude. Journal of Geodesy,1996, Vol.70:714-723.
    [6]Bar-Sever Y. E., Kuang D. (2004). New Empirically Derived Solar Radiation Pressure Model for Global Positioning System Satellite. The Interplanetary Network Progress Report, No.42-159, Jet Propulsion Laboratory, Pasadena, California.
    [7]Bar-Sever Y. E., Kuang D. (2005). New Empirically Derived Solar Radiation Pressure Model for Global Positioning System Satellite During Eclipse Seasions. The Interplanetary Network Progress Report, No. 42-160, Jet Propulsion Laboratory, Pasadena, California.
    [8]Bernstein H., Andor Bowden F., James Gartside H. (1993). GPS User Position Accuracy with Block IIR Autonomous Navigation. Proceeding of the ION GPS-93. Institue of Navigation, Alexandria, VA: 1389-1399.
    [9]Beutler G., Brochmann E., Gurtner W., Hugentobler U., Mervart L., Rothacher M., and Verdun A. (1994). Extended orbit modeling techniquies at the CODE processing center of the international GPS service for geodynamics(IGS):theory and initial results. manuscripta geodaetica,1994, Vol.19:367-386.
    [10]Bierman G. J. (1977). Factorization Methods for Discrete Sequential Estimation. Academic Press, New York.
    [11]Blewitt. G., Kreemer C. and Hammond W. C. et al (2006). Rapid determination of earthquake magnitude using GPS for tsunami warning system. Geophys. Res. Lett.33.
    [12]Boehm J., Niell A., Tregoning P., Schuh H. (2006), Global Mapping Function(GMF):A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, Vol.33, L07304, doi:10.1029/2005GL025546.
    [13]Boehm J., Werl B., and Schuh H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629.
    [14]Byron Tapley D., Bob Schutz E., George Bom H. (2004). Statistical Orbit Determination. Academic Press, New York.
    [15]Caissy M. (2006). The IGS Real-time Pilot Project-Perspective on Data and Product Generation[R]. Streaming GNSS Data via Internet Symposium,6-7 Feb, Frankfurt.
    [16]Castillo A., van den Bossche M., Bourga C. (2008). Galileo Solar Radiation Pressure Model. Accuracy Empirical Tuning and Comparison of Results with GPS. EGU General Assembly,13-18 April 2008, Vienna Austria.
    [17]C. Urschl, G. Beutler, W.Gurtner(2006). Orbit Determination for GIOVE-A using SLR tracking data[c]. ILRS06.
    [18]Changsheng Cai, Yang Gao(2007). Precise Point Positioning Using Combined GPS and GLONASS Observations. Journal of Global Positioning Systems (2007).
    [19]Chen K. (2004). Real-Time Precise Point Positioning and Its Potential Application. ION GNSS 17th International Technical Meeting of the Satellite Division,21-24 Sept,2004, Long Beach, CA., USA, Setp: 1844-1854.
    [20]Chao C.C. (1974). The Tropospheric Calibration Model for Mariner Mars 1971. JPL Technical Report 32-1587:61-76.
    [21]C. Shi, Y. Lou, H. Zhang, Q. Zhao, J. Geng, R. Wang, R. Fang and J. Liu. Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations ADVANCES IN SPACE RESEARCH. J. Adv. Space Res.,Vol 46(2):228-235.2010
    [22]Dach, R., Schaer, S., Hugentobler, U (2006). Combined Multi-System GNSS Analysis for Time and Frequency Transfer. In Proceedings of the 20th European Frequency and Time Forum EFTF 06, Braunschweig, Germany.
    [23]Dach, R., Beutler, G., Gudmundson(2007). Analysis of GPS data from an Antarctic Ice Stream. In IUGG General Assembly, Perugia, July2-13,2007, IAG Symposia. in press.
    [24]Da Nan Dong and Yehuda Bock (1989). Global Positioning System Network Analysis With Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California. Journal of Geophysical Research, vol.94,NO.B4:3949-3966.
    [25]Davis J. L., Herring T. A., Shapiro I. I., Roger A. E. E., and Elgered G. (1985). Geodesy by Radio Interferometry:Effects of Atmospheric Modeling Errors on Estimates of Baseline Length. Radio Sci.,20(6), Novermber-December:1593-1607.
    [26]Denis McCarthy D., IERS Conventions,1996. IERS TECHNICAL Note 21. U. S. Naval Observatory, July 1996.
    [27]Denis McCarthy D. and Gerard Petit. IERS Conventions,2003. IERS TECHNICAL Note 32. U. S. Naval Observatory,2004.
    [28]Denis McCarthy D. and Gerard Petit. IERS Conventions,2010. IERS TECHNICAL Note 32. U. S. Naval Observatory,2010.
    [29]Falcone M., Amarillo-Fernandez F., Hahn J., and Favin-Leveque H. (2003). The GALILEO System Test Bed for Early Prototyping and Experimentation of GALIELO Algorithm. In Proceeding of the ION GNSS 2002 Meeting,24-27 September 2002, Portland, Oregon, USA:2148-2159.
    [30]Falcone M., Francisc Aaarillo, Erik Van Der Wenden. (2004). Assessment of GALILEO Performance Based on the GALILEO System Test Bed Experimentation Results. ION GNSS 2004, Sept.21-24,2004. Long Beach, CA:624-631.
    [31]Fliegel H.F. and Gallini T.E. (1992). Global Positioning System Radiation Force Model for Geodetic Applications. Journal of Geophysical Research, vol.97, NO. B1:559-568.
    [32]Francisco Amarillo, Alexandre Ballereau, Massimo Crisci, Bruno Lobert, Stephane Lannelongur (2008). GALILEO IOV Ground Mission Segment Performances. EGU General Assembly,13-18 April 2008, Vienna Austria.
    [33]Flavien Mercier, Denis Laurichesse, Jerome Delporte, et al(2007). First GIOVE-A orbit determination at CNES.16 APRIL 2007 EGU GENERAL ASSEMBLY 2007.
    [34]G. Gatti, A. Garutti, G. Mandorlo, J. Paffet, A. Bradford(2006). The GIOVE-A Satellite:From Design to inorbit Commissioning [c]. In ION GNSS 2006, Fort Worth, Texas, Sept.2006.
    [35]Gao Y. and Chen K. (2004). Performance analysis of precise point positioning using real-time orbit and clock products. J. Global Positioning Syst.3(2):95-100.
    [36]Garcia A. M., Carlos Hernandez Medel, Miguel Romay Merino M. (2005). Galileo Navigation and Integrity Algorithms. ION GNSS 2005, Sept.13-16, Long Beanch, CA:1315-1326.
    [37]Garcia A. M., Piriz R., Fernandez V., Navarro-Reyes D., Gonzalez F. and Jorg Hahn (2008). GIOVE Orbit and Clock Determination and Prediction:Experimentation Results. ENC 2008, Toulouse April 22-25 France.
    [38]Ge M., Chen J., Vennebusch M., Gendt G., Rothacher M. (2008). GFZ prototype for GPS-based real time deformation monitoring, Geophysical Research Abstracts, Vol 10, EGU2008-A-03990, EGU General Assembly.
    [39]Ge M., Gendt G., Dick G., Zhang F.P. (2005). Improving carrier-phase ambiguity resolution in global GPS network solution. J. Geod, vol.79:103-110.
    [40]Ge M., Gendt G., Dick G., Zhang F.P., Rothacher M. (2006). A new data processing strategy for huge GNSS global networks. J. Geod, vol.80:199-203.
    [41]Geoffrey Blewitt (1989). Carrier Phase Ambiguity Resolution for Global Positioning System Applied to Geodetic Baseline up to 2000 km. Journal of Geophysical Research, vol.94, NO. B8:10187-10203.
    [42]Geoffrey Blewitt (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, vol.17,NO.3:199-202.
    [43]Guida U., Vritschan M., Westbrook J. (2007). The Qualification of EGNOS, the Final Step to the Operational Service. In Proceeding of the ION GNSS 2007 Meeting,25-28, Sept.2007, Fort Worth, Texas, USA:900-906.
    [44]Hein G. W. (2007). Towards a GNSS System of Systems. In Proceeding of the ION GNSS 2007 Meeting, 25-28, Sept.2007, Fort Worth, Texas, USA:22-30.
    [45]Henno Boomkamp, Rolf Konig (2004). Bigger, Better, Faster POD. Celebrating A Decade of The International GPS Service Workshop & Symposium 2004. Berne Switzerland March 1-5,2004.
    [46]Hopfield H. S. (1969). Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data. J. Geophys Res.,74(18):4487-4499.
    [47]http://www.esa.int/[EB].2010
    [48]Hugentobler U., Schaer S., et al (2001). Document for Bernese GPS Software Version 4.2. Bern,2001.
    [49]International GNSS Service(IGS):http://igscb.jpl.nasa.gov/.
    [50]Iwabuchi T., Rochen C., Lukes Z., Mervart L., Johnson J., et al (2006). PPP and Network True Real-time 30 sec Estimation of ZTD in Dense and Giant Regional GPS Network and the Application of ZTD for Nowcasting of Heavy Rainfall. ION GNSS 2006, Fort Worth, TX, USA, Sept.2006:1902-1909.
    [51]Journo S., Ollivier-Henry J. P., Poumailloux J., Schlarmann B. k1. (2008). Galileo Mission Segment Architecture. EGU General Assembly,13-18 April 2008, Vienna Austria.
    [52]Kassam A., Hlasny B., Vogt V., Lochhead K., Panther G., Carter M. (2002). The Canada-Wide Differential GPS (CDGPS) Service:New Infrastructure Launched for GPS-Based Geo-Refrencing and Navigation. In Proceeding of the ION GNSS 2002 Meeting,24-27 September 2002, Portland, Oregon, USA:1798-1805.
    [53]Kevin Dixion (2006). StarFire:A Global SBAS for Sub-Decimeter Precise Point Positioning. ION GNSS 2006, Fort Worth, TX, USA, Sept.2006:2286-2296.
    [54]Konig R., Reigber C., Zhu Shengyuan (2005). Dynamic Model Orbits and Earth System Parameters from Combined GPS and LEO Data. Advances in Space Research,36(3):431-437.
    [55]Kuang D., Rim H. J., Schutz B. E. and Abusali P.A.M. (1996). Modeling GPS satellite attitude variation for precise orbit determination, J. of Geodesy,70(9):572-580.
    [56]Lanyi G. (1984). Tropospheric Delay Effects in Radio Interferometry. The Telecommunications and Data Acquisition (TDA) Progress Report 42-78, Imprint:JPL, California Inst. Tech.:152-159.
    [57]Lawrence D., Bunce D., Edward Sigler C. (2007). Wide Area Augmentation System (WAAS)-Program Status. In Proceeding of the ION GNSS 2007 Meeting,25-28, Sept.2007, Fort Worth, Texas, USA: 892-899.
    [58]Lemoine F.G., Kenyon S.C., et al (1998). The Development of the Joint NASA GSFC and National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, Maryland.
    [59]Liu Jingnan, Ge Maorong(2003). PANDA software and its preliminary result of positioning and orbit determination [J]. Wuhan University Journal of Natural Science,2003,8(2B):603-609.
    [60]Luis Ruiz(2005). GALILEO Overall Programme Status. ION GNSS 2005, Sept.13-16, Long Beanch, CA.
    [61]Lyon A. W., Westbrook J., Guida U. (2005). Operating EGNOS. ION GNSS 2005, Sept.13-16, Long Beanch, CA:419-423.
    [62]M. Crisci, M. Hollreiser, M. Falcone, M. Spelat, Giraud J., and S. La Barbera(2006). GIOVE mission sensor station receiver performance characterization:preliminary results[c]. In NAVITEC, December 2006.
    [63]Marini J. W. and Murray C. W. (1973). "Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees", NASA-TM-X-70555, Goddard Space Flight Center, Greenbelt, MD.
    [64]Martin Peiro A. B., Lainez M. D., Navarro P. F., Ramon Martin J., et al (2007). Characterization of the Navigation Performances in Galileo:E-OSPF SW Experimentation Results. In Proceeding of the ION GNSS 2007 Meeting,25-28, Sept.2007, Fort Worth, Texas, USA:pp488-499.
    [65]Matsunaga K., Hoshinoo K., Ito M., Arai N., et al (2002). MSAS Flight Test and Its Progress. In Proceeding of the ION GNSS 2002 Meeting,24-27 September 2002, Portland, Oregon, USA:1696-1703.
    [66]Menge F., Seeber G., Volksen C, Wubbena G., Schmitz M. (1998). Results of absolute field calibration of GPS antenna PCV. Proc ION GNSS 98, Nashville, TN:31-38.
    [67]Mervart L. (1995). Ambiguity resolution techniques in geodetic and geodynamic applications of the global positioning system. PHD Thesis, University of beme.
    [68]Mitch Narins (2006). U.S. Wide Area Augmentation System (WAAS) Update. European CGSIC/ISC Meeting,7 May 2006, Manchester UK.
    [69]Muellerschoen R. J., Bertiger W. I., Lough M. F., Dong D. (2000). An Internet-Based Global Differential GPS System, Initial Results, Proceeding of ION National Technical Meeting, Anaheim, California, January, 2000.
    [70]Muellerschoen R. J., Reichert A., Kuang D., Heflin M., Bertiger W., Bar-Server (2001). Orbit Determination with NASA's High Accuracy Real-Time Global Differential GPS System. Proceedings of the ION GNSS 2001,11-14 Sept. Institute of Navigation, Salt Lake City:2294-2303.
    [71]Niell A. E. (1996). Global Mapping Functions for the Atmosphere Delay at Radio Wavelength. J. Geophys. Res., 101(B2):3227-3246.
    [72]Peter Borden Nagel (1999). Multiprocessor Implementation of Algorithms for Multi-satellite Orbit Determination. Ph. D., The University of Texas at Austin. Aug.1999.
    [73]Pierre Tetrault (2002). Towards Real-Time Network, Data, and Analysis Centre 2002 Workshop Proceeding. Ottawa Canda, April 8-11,2002.
    [74]Rajan J. A., Orr M., Wang P. (2003). On-Orbit Validation of GPS IIR Autonomous Navigation. ION, AM-03, New Mexico. June 23-25.
    [75]Rajan J. A., Peter Brodie, Harris Rawicz (2003). Modernizing GPS Autonomous Navigation with Anchor Capability. ION GPS/GNSS, September 9-12, Portland:1534-1542.
    [76]Rho H., Langley R.B. (2007). The Usefulness of WADGPS Satellite Orbit and Clock Corrections for Dual-Frequency Precise Point Positioning. In Proceeding of the ION GNSS 2007 Meeting,25-28, Sept. 2007, Fort Worth, Texas, USA:939-949.
    [77]R. Piriz. P. Tavella, M. Falcone, M. Gandara, The Galileo System Test Bed V2 for Orbit and Clock Modeling [c]. In ION GNSS 2006, Fort Worth, Texas, Sept.2006.
    [78]Robert Wolf (2000). Satellite Orbit and Ephemeris Determination using Inter Satellite Links. Ph. D. Vollstaniger Abdruck der Fakultat fur Bauingenieur,2000.
    [79]Rochen C., Van Hove T., Ware R. (1997). Near real-time GPS sensing of atmospheric water vapour. Geophys. Res. Lett.24(24):3221-3224.
    [80]Rooney E., Unwin M., Gatti G., Falcone M., Binda S., Malik M., Hannes D. (2007).Giove-A In Orbit Testing Results. ION GNSS 2007, Sept.25-28, Fort Worth, Texas:467-477.
    [81]Rothacher M., Springer T.A., Schaer S., and Beutler G. (1998). Processing Strategies for Regional Networks. Advances in Positioning and Reference Frames, Proceeding of IAG Symposium, No.118: 93-100.
    [82]Ruben Yousuf (2005). Evaluation and Enhancement of the Wide Area Augmentatin System (WAAS). Ph. D. University of Calgary,2005.
    [83]Saasamoinen J. (1971). Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging of Satellite. Int. Symp. On the use of Artificial Satellite, Henriksen (ed.),3rd Washington.247-251.
    [84]Schaer, S. (2007). Inclusion of GLONASS for EPN Analysis at CODE/swisstopo. In Torres, J. and Hornik, H., editors, Subcommission for the European Reference Frame (EUREF).
    [85]Schmid R., Rothacher M. (2003). Estimation of elevation-dependent satellite antenna phase center variations of GPS satellite. Journal of Geodesy,77:440-446, doi 10.1007, s00190-003-0339-0.
    [86]Schonemann E., Springer T. A., Often M., Becker M., Dow J. (2006). GIOVE-A Precise Orbit Determination from Microwave and Satellite Laser Ranging data-first Perspectives for the Galileo Constellation and its Scientific Use.15th International Workshop on Laser Ranging Instrumentation 2006, Canberra October 15-20 Australia.
    [87]Scott L. (2005). Real-Time Precise Orbit & Clock Determination. Thales Research and Technology (UK). www.thalesgroup.com.
    [88]Springer T. A., Beutler G., Rothacher M. (1999). Improving the orbit estimates of GPS satellites. Journal of Geodesy, Vol.73:147-157.
    [89]Steigenberger P., Rothacher M., Dietrich R., Fritsche M., Rulke A., and Vey S. (2006). Reprocessing of a global GPS network. Journal of Geophysical Research, Vol.111. B05402, doi10.1029/2005JB003747.
    [90]Susan Bower, Dale Klein, Paul Slonaker, Lawrence Wiederholt, Gong Chen, Lawrence Doyle (1991). GPS Block IIR Autonomous Navigation Emulator. ION GPS-91.
    [91]Svehla D., Rothacher M. (2005). Kinematic Positioning of LEO and GPS Satellites and IGS Stations on the Ground. Advances in Space Research,36(3):376-381.
    [92]Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J. Recent development of PANDA software in GNSS data processing. International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Proc. of SPIE Vol.7285,72851S,2008.
    [93]Tapley B.D., Watkins M.M., Ries J.C., et al (1996). The Joint Gravity Model 3, J. Geophys. Res,101: 28029-28049.
    [94]Tomita H., Harigae M., Hoshinoo K. (2003). Flight Evaluation of GPS Aided Inertial Navigation Avionics with MSAS Augmentation (MSAS-GAIA). ION GPS/GNSS, September 9-12, Portland:2819-2827.
    [95]Tossaint M., Binda S., Hahn J., Falcone M., Prieto Cardeira R., Giuntini F. (2008). Galileo Initial Validation Step:GIOVE Navigation Message. EGU General Assembly,13-18 April 2008, Vienna Austria.
    [96]T. A. Springer, G. Beutler, M. Rothacher(1999). A new solar radiation pressure model for GPS satellites [J]. GPS Solutions,2(3):50-62, January 1999.
    [97]T. Pany, M. Irsigler, B. Eissfeller, and J. WinkeI(2002). Code and carrier phase tracking performance of a future Galileo rtk [c]. In Proceedings of the European Navigation Conference ENC-GNSS 2002, Copenhagen, Denmark,27-30 May 2002.
    [98]Urschl C., Beutler G., Gurtner W., Hugentobler U., Ploner M. (2006). Orbit Determination for GIOVE-A using SLR tracking data.15th International Workshop on Laser Ranging Instrumentation 2006, Canberra October 15-20 Australia.
    [99]Urschl, C., Beutler, G., Gurtner, W., Hugentobler, U. (2007). Contribution of SLR tracking data to GNSS orbit determination. Advances in Space Research,39(10):1515-1523.
    [100]Warren David L.M., John Raquet F. (2003). Broadcast vs. precise GPS ephemeredes:a historical perspective. GPS Solution:151-156.
    [101]Wahr J. M. (1981). Body Tides on an Elliptical, Rotating Elastic and Oceanless Earth. Geophys. J. Res. Astron. Soc, Vol 64:705-727.
    [102]Welsch W. (1978). A posteriopi Varianzschatzung nach Helmert.1978, AVN 85(2):55-63.
    [103]Wu J.T., Wu S.C., Hajj G.A., Bertiger W.I., and Lichten S.M. (1993). Effects of antenna orientation on GPS carrier phase, manuscripta geodaetica, Vol.18:91-98.
    [104]Wu Sien-Chong, Yoaz E., Bar-Sever (2006). Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters with GPS Bias Fixing. ION GNSS 2006, Fort Worth, TX, USA, Sept.2006.
    [105]Wubbena G (1985). Software developments for geodetic positioning with GPS using TI-4000 code and carrier measurements. In:Proceedings of 1st international symposium on precise positioning with the global positioning system,15-19 April, Rockville:403-412.
    [106]Xu G. C. (2003). GPS Theory, Algorithms and Aapplications. Berlin, Heidelberg, Springer.
    [107]Yehuda Bock, Sergei Gourevitch A., Charles Coundelman C., Robert King W. and Richard Abbot I. (1986). Interferometric analysis of GPS phase observations. Manuscripta geodaetica,1986, vol.11:282-288.
    [108]Zhang Q., Moore P., Hanley J., Martin S. (2007). Auto-BAHN:Software for near real-time GPS orbit and clock computations. Advances in Space Research 29(2007):1531-1538.
    [109]Zhu S., Reigber Ch., Konig R. (2004). Integrated adjustment of CHAMP, GRACE, and GPS data. Journal of Geodesy, vol.78:103-108.
    [110]Zhu S., Massmann Y. F. H., Yu Y. and Reigber Ch. (2003). Satellite antenna phase ceter offsets and scale errors in GPS solution. Journal of Geodesy 76(11-12):668-672.
    [I11]Zhao, Q., et al. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. J. Adv. Space Res. (2010), doi:10.1016/j.asr.2010.11.041
    [112]ZHAO Qile, LIU Jingnan, GE Maorong(2006). High Precision Orbit Determination of CHAMP Satellite [J]. Geo-spatial Information Scienc,2006,9(3):180-186.
    [113]边少锋,李文魁(2005).卫星导航系统概论.北京:电子工业出版社.
    [114]陈金平(2001).GPS完善性增强研究[D].郑州:解放军信息工程大学测绘学院.
    [115]陈俊勇(1999).世纪之交的全球定位系统及其应用.测绘学报,1999,28(1):6-10.
    [116]陈俊勇(2000).我国大地测量学的进展和展望.测绘科学,2000,125(1):1-4.
    [117]陈俊勇(2003).世界大地坐标系统1984的最新精化.测绘通报,2003,40(2):1-4.
    [118]陈俊勇,杨元喜,工敏,张燕平等(2007).2000国家大地控制网的构建和它的技术进步.测绘学报,2007,36(1):1-9.
    [119]陈俊勇(2008).中国现代大地基准-中国大地坐标系统2000(CGCS2000)及其框架.测绘学报,2008,37(3):269-271.
    [120]崔希璋,於宗俦,陶本藻等(2001).广义测量平差.武汉:武汉测绘科技大学出版社.
    [121]葛茂荣(1995).GPS卫星精密定轨理论及软件研究[D].武汉:武汉大学.
    [122]耿涛(2009).基于区域基准站的导航卫星实时精密定轨理论方法与试验应用[D].武汉大学.
    [123]国家高技术研究发展计划863(2008).(www.863.org.cn).
    [124]胡大伟,李敏(2008).GALILEO试验星GIOVE-A信号质量分析.2008,33(5).
    [125]胡明城(2003).现代大地测量学的理论及其应用.北京:测绘出版社.
    [126]焦文海(2003).卫星导航系统坐标基准建立问题的研究[博士后研究工作报告].上海:中国科学院上海天文台.
    [127]匡翠林(2008).利用GPS非差数据精密确定低轨卫星轨道的理论及方法研究[D].武汉大学.
    [128]雷辉(2007).单颗导航卫星定轨研究.上海:中国科学院上海天文台.
    [129]李济生(1992).人造卫星精密轨道确定.郑州,解放军出版社.
    [130]李毓麟,黎鹰(1998).区域性跟踪站地心坐标精化方法及定轨试验分析.四川测绘.Vol.21,No.01:3-9.
    [131]李树洲(2002).卫星导航定位系统星地时间同步方法.无线电工程,32(10):60-63.
    [132]李征航,黄劲松(2005).GPS测量与数据处理.武汉:武汉大学出版社.
    [133]刘林(1992).人造卫星精密轨道确定.北京:高等教育出版社.
    [134]刘林(2000)).航天器轨道理论.北京:国防工业出版社.
    [135]宁津生(2001).跟踪世界发展动态致力地球重力场研究.武汉大学学报信息科学版.34(09):471-474.
    [136]楼益栋(2008).导航卫星实时精密轨道与钟差确定[D].武汉:武汉大学.
    [137]施闯(2002).大规模高精度GPS网平差与分析理论及其应用.北京:测绘出版社.
    [138]孙荣恒(2004).随机过程及其应用.北京:清华大学出版社.
    [139]谭述森(2008).北斗卫星导航系统的发展与思考.宇航学报.Vol.29, No.2:391-396.
    [140]陶本藻(2007).测量数据处理的统计理论和方法.北京:测绘出版社
    [141]魏子卿,葛茂荣(1998).GPS相对定位的数学模型.北京:测绘出版社.
    [142]文援兰,柳其许,朱俊,廖瑛(2007).测控站布局对区域卫星导航系统的影响.国防科技大学学报.Vol.29,No.01:1-6.
    [143]武汉大学测绘学院测量平差学科组(2003).误差原理与测量平差基础.武汉:武汉大学出版社.
    [144]许尤楠(1989).GPS卫星的精密定轨.北京:解放军出版社.
    [145]赵齐乐(2004).GPS导航星座及低轨卫星的精密定轨理论和软件研究[D].武汉大学.
    [146]赵齐乐,刘经南,葛茂荣,施闯(2005).用PANDA对GPS和CHAMP卫星精密定轨.大地测量与地球动力学,2005,25(2).
    [147]邹蓉(2010).地球参考框架建立和维持的关键技术研究[D].武汉大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700