用户名: 密码: 验证码:
CO_2地下封存煤/盖层变形和破裂演化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,“温室效应”引起的全球升温明显直接导致了自然灾害的频发,造成了巨大的人员伤亡和经济损失。将引起“温室效应”主因的CO2进行地下封存对控制“温室效应”是一个行之有效的方法。本文根据CO2地下封存安全性的需要,针对CO2注入煤层过程煤与盖层的变形和破裂演化特征,开展了实验室实验、理论分析和数值模拟研究。主要研究工作和结论如下:
     (1)通过含CO2煤变形破坏特征的实验研究,得到了CO2对煤力学性质的影响规律。三轴实验中含CO2煤样的强度、峰值强度和残余强度随着CO2压力的增加逐渐降低,峰值强度的CO2压力效应要比残余强度更为显著。随着CO2压力的增加,应力跌落系数逐渐减小,煤样破坏形式从剪切破坏逐渐转变为近乎平行于轴向的劈裂破坏。常规三轴蠕变情况下,煤样的预定轴向应力远小于煤样的长期强度,煤样只出现了稳定蠕变阶段;小于煤样的长期强度,煤样出现了减速蠕变阶段和稳定蠕变阶段。
     (2)推导了注气过程中煤层孔隙压力分布函数,当CO2渗透到边界时边界效应不可忽略。利用三层叠层梁模型,联系winkler地基假设得到了盖层的变形和正应力与注气时间的关系,盖层正应力的最大值出现在注气初期,并随着CO2的注入逐渐减小。利用双参数模型对winkler假设进行修正,结果表明考虑地基剪力的煤层对盖层正应力的影响甚微。考虑上下岩层对于盖层和底板的约束作用,采用winkler假设对三层叠层梁模型进行修正,结果表明盖层正应力变化明显减小。在此基础上,考虑了不同注气压力下注气初期盖层正应力的分布情况,得到了完整盖层的最佳注气压力。
     (3)设计制作了CO2注入煤层过程中上覆岩层变形的相似模型,分析了模型与原型之间的关系。注水过程中,止水条中水所渗透到的地方的上覆岩层会产生向上的变形,随着实验的进行,岩层的变形量不断增加,由于注水管与岩层之间的粘连的影响,造成了离模型井口12cm处的累计变形量大于离井口2cm处。
     (4)分析了注入CO2对封存环境的影响,得到了相关力学量的变化规律和盖层的损伤演化规律。注气压力的提高会加剧对封存环境相关力学量的影响和盖层的损伤程度。提出了分步提高注气压力的方法,注气间隔为30天时盖层不再损伤。分析了缺陷盖层条件下注入CO2对封存环境的影响,得到了注气过程中存在的两种缺陷对封存环境相关力学量的影响和盖层的损伤演化规律。
At present, the "greenhouse effect" has caused a rise in the average globaltemperature, which obviously led to the frequent natural disasters and great casualtiesand economic losses. An effective way of reducing CO2, the main cause of"greenhouse effect", is by storing CO2under the earth surface and hence controllingits greenhouse effect. For geological storage of CO2injection into the coal seam, thelong-term safely storage of CO2requires carefully consideration. This paper focuseson the deformation and fracture evolution characteristics of coal and caprock duringCO2injection into coal seam. A comprehensive study has been conducted usingexperimental, numerical, theoretical and analytical approaches and main researchcontents and conclusions drawn from the study can be listed as follows:
     (1) An experiment of deformation and failure characteristics of CO2-saturatedcoal is conducted to identify effect of CO2on the mechanical properties of coal. Intriaxial experiment, strength, peak strength and residual strength of CO2-saturatedcoal samples are gradually reducing with the increase of injection pressure. And, thepressure effect on peak strength is much more significant than on residual strength.Also, due to stress drop coefficient gradually decreases with the increasing injectingpressure, the destruction form of coal samples are transformed from shear failure tosplitting failure. In conventional triaxial creep, the predetermined axial stress is muchless than the long-term strength of coal samples, steady creep stage are only shown;the predetermined axial stress is less than the long-term strength of coal samples, coalsamples show the deceleration creep and steady creep stages.
     (2) Pore pressure distribution function during CO2injection into coal seam isdeduced, which take the boundary effect into consideration when CO2permeate to theboundary. Based on three-layer laminated beam model and Winkler assumption aboutfoundation, the relationship between deformation and normal stress of the caprockand CO2injection time is obtained. The normal stress reaches its maximum in theinitial stage of CO2injection, and then decreases. To modify Winkler assumptionapplying double parameters model, the results show that the coal seam withconsidering shear stress of foundation has little impact on caprock normal stress. Tomodify three-layer laminated beam using Winkler assumption with consideration ofoverburden and underlying rock’s restriction on caprock and base, the results showcaprock normal stress obviously reduces.On this basis, considering normal stress distribution of caprock on initial stage under different CO2injection pressure, the bestCO2injection pressure is obtained.
     (3) Similarity model on deformation of overburden rock during CO2injection isdesigned and the relationship between the model and the prototype is analyzed.During water injection, the rock over the palace, where water in water-stop strippermeates, will induce uplift deformation. With experiment goes on, the deformationcontinues to increase. Due to the influence of the adhesion between the waterinjection pipe and rock, the accumulative deformation in12cm is larger than in2cmfar away from the wellbore.
     (4) A study of the influence of CO2injection on sealing environment is conductedto obtain evolution of relative mechanical properties of sealing environment and thedamage degree of caprock. The improvement of CO2injection pressure willincreasingly affects relative mechanical properties of sealing environment and thedamage degree of caprock. A new injection method of improving gas injectionpressure by step is presented. Through this method, no damage would occur incaprock when injection interval is30days. A study of the influence of CO2injectionon sealing environment with imperfect caprock is conducted to obtain relativemechanical properties of sealing environment with two kinds of imperfection and thedamage degree of caprock.
引文
[1]肖钢,马丽,Wentao Xiao.还碳于地球——碳捕获与封存[M].北京:高等教育出版社,2011.
    [2] http://en.wikipedia.org/wiki/List_of_countries_by_carbon_dioxide_emissions#cite_note-8
    [3] Haszeldine R S. Carbon capture and storage: how green can black be?[J]. Science,2009,325(5948):1647-1652.
    [4] IPCC. IPCC Special Report on Carbon dioxide Capture and Storage[R].2007.
    [5]沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术[M].北京:石油工业出版社,2009
    [6] Farhad Qanbari, Mehran Pooladi-Darvish, S. Hamed Tabatabaie, et al. CO2disposal as hydratein ocean sediments [J]. Journal of Natural Gas Science and Engineering, xxx,(2011)1-1
    [7]杨芳.盐水层二氧化碳封存机理与地质模拟[D].北京:中国地质大学(北京),2010.
    [8]禹林.二氧化碳深部盐水层地质封存物理模拟探索性研究[D].北京:北京交通大学,2010.
    [9]刘小燕.二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究[D].合肥:中国科技大学,2005.
    [10] Siirila E R, Navarre-Sitchler A K, Maxwell R M, et al. A quantitative methodology to assessthe risks to human health from CO2leakage into groundwater[J]. Advances in WaterResources,2012,36:146-164.
    [11] Chow F K, Granvold P W, Oldenburg C M. Modeling the effects of topography and wind onatmospheric dispersion of CO2surface leakage at geologic carbon sequestration sites[J].Energy Procedia,2009,1(1):1925-1932.
    [12]叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [13]万玉金,张劲,王新海等.煤层气经济开采增产机理研究[M].北京:科学出版社,2011.
    [14]胡千庭,蒋时才.我国煤矿瓦斯灾害防治对策[J].矿业安全与环保,2000,27(1):1-4.
    [15]刘延锋,李小春,白冰.中国CO2煤层储存容量初步评价[J].岩石力学与工程学报,2005,24(16):2947-2952.
    [16]周来,冯启言,李向东,等.深部煤层对CO2地质处置机制及应用前景[J].地球与环境,2007,35(1):9-14.
    [17] Zakkour P, Haines M. Permitting issues for CO2capture, transport and geological storage: Areview of Europe, USA, Canada and Australia[J]. International Journal of Greenhouse GasControl,2007,1(1):94-100.
    [18]叶建平,冯三利,范志强,等.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报,2007,28(4):77-80.
    [19]吴秀章,崔永君.神华10万t/a CO2盐水层封存研究[J].中国石油学会第六届石油炼制学术年会论文集,2010.
    [20] Meng K C, Williams R H, Celia M A. Opportunities for low-cost CO2storage demonstrationprojects in China[J]. Energy Policy,2007,35(4):2368-2378.
    [21]林刚,陈莉纯.温室气体CO2的收集,存储与再利用[J].低温与特气,1999,2:14-19.
    [22] Gentzis T. Subsurface sequestration of carbon dioxide—an overview from an Alberta(Canada) perspective[J]. International Journal of Coal Geology,2000,43(1):287-305.
    [23] Hamelinck C N, Faaij A P C, Turkenburg W C, et al. CO2enhanced coalbed methaneproduction in the Netherlands[J]. Energy,2002,27(7):647-674.
    [24] Faiz M M, Saghafi A, Barclay S A, et al. Evaluating geological sequestration of CO2inbituminous coals: The southern Sydney Basin, Australia as a natural analogue[J].International journal of greenhouse gas control,2007,1(2):223-235.
    [25] Yamazaki T, Aso K, Chinju J. Japanese potential of CO2sequestration in coal seams[J].Applied energy,2006,83(9):911-920.
    [26] F van Bergen F, Winthaegen P, Pagnier H, et al. Assessment of CO2storage performance ofthe Enhanced Coalbed Methane pilot site in Kaniow[J]. Energy Procedia,2009,1(1):3407-3414.
    [27] van Bergen F, Krzystolik P, van Wageningen N, et al. Production of gas from coal seams inthe Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site[J].International Journal of Coal Geology,2009,77(1):175-187.
    [28] Fujioka M, Yamaguchi S, Nako M. CO2-ECBM field tests in the Ishikari Coal Basin ofJapan[J]. International Journal of Coal Geology,2010,82(3):287-298.
    [29] Kapila R V, Chalmers H, Haszeldine S, et al. CCS prospects in India: results from an expertstakeholder survey[J]. Energy Procedia,2011,4:6280-6287.
    [30] Yu H, Zhou G, Fan W, et al. Predicted CO2enhanced coalbed methane recovery and CO2sequestration in China[J]. International Journal of Coal Geology,2007,71(2):345-357.
    [31]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-452.
    [32]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报.2005,30(5):618-622.
    [33]孙可明.煤层气注气开采多组分流体扩散模型数值模拟[J].辽宁工程技术大学学报,2005,24(3):305-308.
    [34]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(50:607-613.
    [35]白冰. CO2煤层封存流动-力学理论及场地稳定性数值模拟方法[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [36]高远文,刘大锰,姚艳斌等.阜新煤田注二氧化碳提高煤层甲烷的研究[J].2008,36(1):19-25.
    [37]周来.深部煤层处置CO2多物理耦合过程的实验与模拟[D].徐州:中国矿业大学,2009.
    [38]冯启言,周来,陈中伟等.煤层处置CO2的二元气-固耦合数值模拟[J].2009,15(1):63-68.
    [39]吴宇.煤层中封存二氧化碳的双重孔隙力学效应研究[D].徐州:中国矿业大学,2010.
    [40]梁卫国,吴迪,赵阳升.CO2驱替煤层CH4试验研究[J].岩石力学与工程学报,2010,29(4):665-614.
    [41]张松航.煤储层气体运移特征和CO2-ECBM数值模拟研究[D].北京:中国地质大学(北京),2011.
    [42]周军平,鲜学福,姜永东等.不可采煤层CO2封存的数值模拟[J].重庆大学学报,2011,34(7):83-90.
    [43] John G, John D. Transmission of CO2—safety and economic considerations, IEA GreenhouseGas R&D Programme[J]. Energy,2004,29:1319-1328.
    [44] Sharp J D, Jaccard M K, Keith D W. Anticipating public attitudes toward underground CO2storage[J]. International Journal of Greenhouse Gas Control,2009,3(5):641-651.
    [45] McColpin G R. Surface deformation monitoring as a cost effective MMV method[J]. EnergyProcedia,2009,1(1):2079-2086.
    [46] Damen K, Faaij A, Turkenburg W. Health, safety and environmental risks of undergroundCO2storage–overview of mechanisms and current knowledge[J]. Climatic Change,2006,74(1-3):289-318.
    [47] Bachu S. CO2storage in geological media: Role, means, status and barriers to deployment[J].Progress in Energy and Combustion Science,2008,34(2):254-273.
    [48] Liu G, Smirnov A V. Carbon sequestration in coal-beds with structural deformation effects[J].Energy Conversion and Management,2009,50(6):1586-1594.
    [49] Sminchak J, Gupta N, Byrer C, et al. Issues related to seismic activity induced by theinjection of CO2in deep saline aquifers[J]. Journal of Energy&Environmental Research,2002,2:32-46.
    [50] Streit J, Siggins A, Evans B. Predicting and monitoring geomechanical effects of CO2injection, Carbon Dioxide Capture for Storage in Deep Geologic Formations—Results fromthe CO2Capture Project, v.2: Geologic Storage of Carbon Dioxide with Monitoring andVerification, SM Benson[J]. Geologic Storage of Carbon Dioxide with Monitoring andVerification, London,2005.
    [51] Rigg A J, Allinson G, Bradshaw J, et al. The search for sites for geological sequestration ofCO2in Australia: A progress report on GEODISC[J].2001.
    [52] YagnaDeepika Oruganti, Abhishek K. Gupta, Steven L. Bryant. Analytical Estimation of RiskDue to Pressure Buildup During CO2Injection in Deep Saline Aquifers[J]. Energy Procedia,2011,4:4140–4147
    [53] Over J A, de Vries J E, Stork J. Removal of CO2by Storage in the Deep Underground,Chemical Utilization and Biofixation: Options for the Netherlands[M]. Novem,1999.
    [54] Li X, Koide H, Ohsumi T, et al. Mechanical stability of the potential CO2sequestration sitesin Japan[C]//Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto.2003,1:501-506.
    [55] Holloway S, Rochelle C, Bateman K, et al. The underground disposal of carbon dioxide: finalreport[M]. British Geological Survey,1996.
    [56] Mazzoldi A, Hill T, Colls J J. CFD and Gaussian atmospheric dispersion models: Acomparison for leak from carbon dioxide transportation and storage facilities[J]. Atmosphericenvironment,2008,42(34):8046-8054.
    [57] Mazzoldi A, Hill T, Colls J J. CO2transportation for carbon capture and storage: Sublimationof carbon dioxide from a dry ice bank[J]. International journal of greenhouse gas control,2008,2(2):210-218.
    [58] Mazzoldi A, Hill T, Colls J J. Assessing the risk for CO2transportation within CCS projects,CFD modelling[J]. International Journal of Greenhouse Gas Control,2011,5(4):816-825.
    [59] Carroll S, Hao Y, Aines R. Transport and detection of carbon dioxide in dilute aquifers[J].Energy Procedia,2009,1(1):2111-2118.
    [60] Smyth R C, Hovorka S D, Lu J, et al. Assessing risk to fresh water resources from long termCO2injection–laboratory and field studies[J]. Energy Procedia,2009,1(1):1957-1964.
    [61] Zheng L, Apps J A, Zhang Y, et al. Reactive transport simulations to study groundwaterquality changes in response to CO2leakage from deep geological storage[J]. Energy Procedia,2009,1(1):1887-1894.
    [62] Keating E H, Hakala J A, Viswanathan H, et al. The challenge of predicting groundwaterquality impacts in a CO2leakage scenario: Results from field, laboratory, and modelingstudies at a natural analog site in New Mexico, USA[J]. Energy Procedia,2011,4:3239-3245.
    [63] Birkholzer J T, Nicot J P, Oldenburg C M, et al. Brine flow up a well caused by pressureperturbation from geologic carbon sequestration: Static and dynamic evaluations[J].International journal of greenhouse gas control,2011,5(4):850-861.
    [64] Grimm R P, Eriksson K A, Ripepi N, et al. Seal evaluation and confinement screening criteriafor beneficial carbon dioxide storage with enhanced coal bed methane recovery in thePocahontas Basin, Virginia[J]. International Journal of Coal Geology,2012,90:110-125.
    [65]许志刚,陈代钊,曾荣树. CO2的地质埋存与资源化利用进展[J].地球科学进展,2007,22(7):698-707.
    [66] Li Z, Dong M, Li S, et al. CO2sequestration in depleted oil and gas reservoirs—caprockcharacterization and storage capacity[J]. Energy Conversion and Management,2006,47(11):1372-1382.
    [67]张旭辉,郑委,刘庆杰. CO2地质埋存后的逃逸问题研究进展[J].力学进展,2010,40(5):517-527.
    [68] Nordbotten J M, Celia M A, Bachu S, et al. Semianalytical solution for CO2leakage throughan abandoned well[J]. Environmental science&technology,2005,39(2):602-611.
    [69] S Bachu S, Bennion D B. Experimental assessment of brine and/or CO2leakage through wellcements at reservoir conditions[J]. International Journal of Greenhouse Gas Control,2009,3(4):494-501.
    [70] Huerta N J, Bryant S L, Strazisar B R, et al. The influence of confining stress and chemicalalteration on conductive pathways within wellbore cement[J]. Energy Procedia,2009,1(1):3571-3578.
    [71] Crow W, Carey J W, Gasda S, et al. Wellbore integrity analysis of a natural CO2producer[J].International Journal of Greenhouse Gas Control,2010,4(2):186-197.
    [72] William Carey J, Svec R, Grigg R, et al. Experimental investigation of wellbore integrity andCO2–brine flow along the casing–cement microannulus[J]. International Journal ofGreenhouse Gas Control,2010,4(2):272-282.
    [73] Hawkes C, Gardner C, Watson T, et al. Overview of wellbore integrity research for the IEAGHG weyburn-midale CO2monitoring and storage project[J]. Energy Procedia,2011,4:5430-5437.
    [74] Guen Y L, Huot M, Loizzo M, et al. Well integrity risk assessment of Ketzin injection well(ktzi-201) over a prolonged sequestration period[J]. Energy Procedia,2011,4:4076-4083.
    [75] LeNeveu D M. Analysis of potential acid gas leakage from wellbores in Alberta, Canada[J].International Journal of Greenhouse Gas Control,2011,5(4):862-879.
    [76] Nogues J P, Court B, Dobossy M, et al. A methodology to estimate maximum probableleakage along old wells in a geological sequestration operation[J]. International Journal ofGreenhouse Gas Control,2012,7:39-47.
    [77] Gherardi F, Audigane P, Gaucher E C. Predicting long-term geochemical alteration ofwellbore cement in a generic geological CO2confinement site: Tackling a difficult reactivetransport modeling challenge[J]. Journal of Hydrology,2012,420:340-359.
    [78] Blanpied M L, Lockner D A, Byerlee J D. An earthquake mechanism based on rapid sealingof faults[J]. Nature,1992,358(6387):574-576..
    [79] Zhang Y, Oldenburg C M, Finsterle S, et al. Probability estimation of CO2leakage throughfaults at geologic carbon sequestration sites[J]. Energy Procedia,2009,1(1):41-46.
    [80] Chang K W, Bryant S L. The Effect of Faults on Dynamics of CO2Plumes[J]. EnergyProcedia,2009,1(1):1839-1846.
    [81] Ellis B R, Bromhal G S, McIntyre D L, et al. Changes in caprock integrity due to verticalmigration of CO2-enriched brine[J]. Energy Procedia,2011,4:5327-5334.
    [82] Chang K W, Minkoff S E, Bryant S L. Simplified Model for CO2Leakage and its Attenuationdue to Geological Structures[J]. Energy Procedia,2009,1(1):3453-3460.
    [83]许志刚,陈代钊,曾荣树等. CO2地下地质埋存原理和条件[J].西南石油大学学报(自然科学版)2009,31(1):91-97.
    [84] Ebigbo A, Class H, Helmig R. CO2leakage through an abandoned well: problem-orientedbenchmarks[J]. Computational Geosciences,2007,11(2):103-115.
    [85] Niko Kampman, Mike Bickle, John Becker,et al. Feldspar dissolution kinetics and Gibbs freeenergy dependence in a CO2-enriched groundwater system, Green River, Utah[J]. Earth andPlanetary Science Letters,2009,284:473–488.
    [86]崔振东,刘大安,曾荣树等.二氧化碳在砂岩透镜体中充注封存的盖层岩石抗断裂性能分析[J].工程地质学报,1004-9665/2010/18(2)-0204-07.
    [87]赵仁保,孙海涛,吴亚生等.二氧化碳埋存对地层岩石影响的室内研究[J].中国科学:技术科学,2010,40(4):378~384
    [88]郑委,鲁晓兵,张旭辉等. CCS工程中盖层渗透率对CO2逃逸的影响.力学与实践;2010,32(4):30-34.
    [89]周军平,鲜学福,姜永东等.考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析[J].岩土力学,2010,31(7):2317-2324.
    [90] Dalkhaa C, Okandan E. Sayindere cap rock integrity during possible CO2sequestration inTurkey[J]. Energy Procedia,2011,4:5350-5357.
    [91] Saadatpoor E, Bryant S L, Sepehrnoori K. Effect of upscaling heterogeneous domain on CO2trapping mechanisms[J]. Energy Procedia,2011,4:5066-5073.
    [92] Saripalli P, Amonette J, Rutz F, et al. Design of sensor networks for long term monitoring ofgeological sequestration[J]. Energy Conversion and Management,2006,47(13):1968-1974.
    [93] Wells A W, Diehl J R, Bromhal G, et al. The use of tracers to assess leakage from thesequestration of CO2in a depleted oil reservoir, New Mexico, USA[J]. Applied Geochemistry,2007,22(5):996-1016.
    [94] J Heath J, McPherson B, Phillips F, et al. Natural helium as a screening tool for assessingcaprock imperfections at geologic CO2storage sites[J]. Energy Procedia,2009,1(1):2903-2910.
    [95] Strazisar B R, Wells A W, Diehl J R, et al. Near-surface monitoring for the ZERT shallowCO2injection project[J]. International Journal of Greenhouse Gas Control,2009,3(6):736-744.
    [96] Zhou R, Huang L, Rutledge J T, et al. Coda-wave interferometry analysis of time-lapse VSPdata for monitoring geological carbon sequestration[J]. International Journal of GreenhouseGas Control,2010,4(4):679-686.
    [97] Bohnhoff M, Zoback M D, Chiaramonte L, et al. Seismic detection of CO2leakage alongmonitoring wellbores[J]. International Journal of Greenhouse Gas Control,2010,4(4):687-697.
    [98] Krevor S, Perrin J C, Esposito A, et al. Rapid detection and characterization of surface CO2leakage through the real-time measurement of δ13C signatures in CO2flux from theground[J]. International Journal of Greenhouse Gas Control,2010,4(5):811-815.
    [99] J Nogues J P, Nordbotten J M, Celia M A. Detecting leakage of brine or CO2throughabandoned wells in a geological sequestration operation using pressure monitoring wells[J].Energy Procedia,2011,4:3620-3627.
    [100] Jenkins C, Leuning R, Loh Z. Atmospheric tomography to locate CO2leakage at storagesites[J]. Energy Procedia,2011,4:3502-3509.
    [101] Lewicki J L, Hilley G E. Eddy covariance network design for mapping and quantification ofsurface CO2leakage fluxes[J]. International Journal of Greenhouse Gas Control,2012,7:137-144.
    [102] Zhou X, Lakkaraju V R, Apple M, et al. Experimental observation of signature changes inbulk soil electrical conductivity in response to engineered surface CO2leakage[J].International Journal of Greenhouse Gas Control,2012,7:20-29.
    [103] Fanhua Zeng, Gang Zhao, Lijuan Zhu. Detecting CO2leakage in vertical wellbore throughtemperature logging [J]. Fuel,2012,94:374–385.
    [104] Wilson T H, Wells A, Peters D, et al. Fracture and3D seismic interpretations of the FruitlandFormation and cover strata: Implications for CO2retention and tracer movement, San JuanBasin Pilot test[J]. International Journal of Coal Geology,2012,99:35-53.
    [105] Reucroft P J, Patel H. Gas-induced swelling in coal[J]. Fuel,1986,65(6):816-820.
    [106] Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. InternationalJournal of Coal Geology,2008,74(1):41-52.
    [107] Reucroft P J, Sethuraman A R. Effect of pressure on carbon dioxide induced coal swelling[J].Energy&Fuels,1987,1(1):72-75.
    [108] Larsen J W, Flowers R A, Hall P J, et al. Structural rearrangement of strained coals[J].Energy&Fuels,1997,11(5):998-1002.
    [109] Larsen J W. The effects of dissolved CO2on coal structure and properties[J]. InternationalJournal of Coal Geology,2004,57(1):63-70.
    [110] Cody Jr G D, Larsen J W, Siskin M. Anisotropic solvent swelling of coals[J]. Energy&Fuels,1988,2(3):340-344.
    [111]吴世跃,赵文,郭勇义.煤岩体吸附膨胀变形与吸附热力学的参数关系[J].东北大学学报:自然科学版,2005,26(7):683-686.
    [112]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    [113]李祥春,郭勇义,吴世跃,聂百胜.煤体有效应力与膨胀应力之间关系的分析[J].辽宁工程技术大学学报,2007,26(4):535-537.
    [114] Walker Jr P L, Verma S K, Rivera-Utrilla J, et al. A direct measurement of expansion incoals and macerais induced by carbon dioxide and methanol[J]. Fuel,1988,67(5):719-726.
    [115] Otake Y, Suuberg E M. Temperature dependence of solvent swelling and diffusion processesin coals[J]. Energy&fuels,1997,11(6):1155-1164.
    [116] Ziqiu X, Takashi O. Laboratory measurements on swelling in coals cause by adsorption ofcarbon dioxide and its impact on permeability[C]//2nd International workshop on researchrelevant to CO2sequestration in coal seam. Tokyo, Japan.2003.
    [117] Durucan S, Shi J Q. Improving the CO2well injectivity and enhanced coalbed methaneproduction performance in coal seams[J]. International Journal of Coal Geology,2009,77(1):214-221.
    [118] Siriwardane H J, Gondle R K, Smith D H. Shrinkage and swelling of coal induced bydesorption and sorption of fluids: Theoretical model and interpretation of a field project[J].International Journal of Coal Geology,2009,77(1):188-202.
    [119] Pan Z, Connell L D. A theoretical model for gas adsorption-induced coal swelling[J].International Journal of Coal Geology,2007,69(4):243-252.
    [120] Majewska Z, Zi tek J. Changes of acoustic emission and strain in hard coal during gassorption–desorption cycles[J]. International journal of coal geology,2007,70(4):305-312.
    [121] Karacan C. Swelling-induced volumetric strains internal to a stressed coal associated withCO2sorption[J]. International Journal of Coal Geology,2007,72(3):209-220.
    [122] Mazumder S, Wolf K H. Differential swelling and permeability change of coal in responseto CO2injection for ECBM[J]. International Journal of Coal Geology,2008,74(2):123-138.
    [123] Zar bska K, Ceglarska-Stefańska G. The change in effective stress associated with swellingduring carbon dioxide sequestration on natural gas recovery[J]. International Journal of CoalGeology,2008,74(3):167-174.
    [124] Majewska Z, Ceglarska-Stefańska G, Majewski S, et al. Binary gas sorption/desorptionexperiments on a bituminous coal: Simultaneous measurements on sorption kinetics,volumetric strain and acoustic emission[J]. International Journal of Coal Geology,2009,77(1):90-102.
    [125] Siriwardane H J, Gondle R K, Smith D H. Shrinkage and swelling of coal induced bydesorption and sorption of fluids: Theoretical model and interpretation of a field project[J].International Journal of Coal Geology,2009,77(1):188-202.
    [126] Frank van Bergen, Chris Spiers, Geerke Floor, et al. Strain development in unconfined coalsexposed to CO2, CH4and Ar: Effect of moisture [J]. International Journal of Coal Geology,2009,(77):43–53
    [127] Pone J D N, Hile M, Halleck P M, et al. Three-dimensional carbon dioxide-induced straindistribution within a confined bituminous coal[J]. International Journal of Coal Geology,2009,77(1):103-108.
    [128]方志明,李小春,白冰.煤岩吸附量–变形–渗透系数同时测量方法研究[J].岩石力学与工程学报,2009,28(9),1828-1833.
    [129]刘延保,曹树刚,李勇等.煤体吸附瓦斯膨胀变形效应的试验研究[J].岩石力学与工程学报,2010,29(12):2484-2492.
    [130] Pone J D N, Halleck P M, Mathews J P.3D characterization of coal strains induced bycompression, carbon dioxide sorption, and desorption at in-situ stress conditions[J].International Journal of Coal Geology,2010,82(3):262-268.
    [131] M. Vandamme, L. Brochard, B. Lecampion, et al. Adsorption and strain: The CO2-inducedswelling of coal [J]. Journal of the Mechanics and Physics of Solids,2010,58:1489–1505.
    [132] Pini R, Ottiger S, Burlini L, et al. Sorption of carbon dioxide, methane and nitrogen in drycoals at high pressure and moderate temperature[J]. International Journal of Greenhouse GasControl,2010,4(1):90-101.
    [133] Wang G X, Wei X R, Wang K, et al. Sorption-induced swelling/shrinkage and permeabilityof coal under stressed adsorption/desorption conditions[J]. International Journal of CoalGeology,2010,83(1):46-54.
    [134] Mirzaeian M, Hall P J, Jirandehi H F. Study of structural change in Wyodak coal inhigh-pressure CO2by small angle neutron scattering[J]. Journal of materials science,2010,45(19):5271-5281.
    [135] Battistutta E, Van Hemert P, Lutynski M, et al. Swelling and sorption experiments onmethane, nitrogen and carbon dioxide on dry Selar Cornish coal[J]. International Journal ofCoal Geology,2010,84(1):39-48.
    [136] Majewska Z, Majewski S, Zi tek J. Swelling of coal induced by cyclic sorption/desorptionof gas: Experimental observations indicating changes in coal structure due to sorption of CO2and CH4[J]. International Journal of Coal Geology,2010,83(4):475-483.
    [137] Ranjith P G, Perera M S A. A new triaxial apparatus to study the mechanical and fluid flowaspects of carbon dioxide sequestration in geological formations[J]. Fuel,2011,90(8):2751-2759.
    [138] Hae Jung Kim, Yao Shi, Junwei He, et al. Adsorption characteristics of CO2and CH4on dryand wet coal from subcritical to supercritical conditions [J]. Chemical EngineeringJournal,2011,171:45–53
    [139] Hol S, Peach C J, Spiers C J. Applied stress reduces the CO2sorption capacity of coal[J].International Journal of Coal Geology,2011,85(1):128-142.
    [140] Van Bergen F, Hol S, Spiers C. Stress–strain response of pre-compacted granular coalsamples exposed to CO2, CH4, He and Ar[J]. International Journal of Coal Geology,2011,86(2):241-253.
    [141] Jasinge D, Ranjith P G, Choi S K. Effects of effective stress changes on permeability ofLatrobe Valley brown coal[J]. Fuel,2011,90(3):1292-1300.
    [142] Czerw K. Methane and carbon dioxide sorption/desorption on bituminouscoal—Experiments on cubicoid sample cut from the primal coal lump[J]. InternationalJournal of Coal Geology,2011,85(1):72-77.
    [143] Z Pan Z, Connell L D. Modelling of anisotropic coal swelling and its impact on permeabilitybehaviour for primary and enhanced coalbed methane recovery[J]. International Journal ofCoal Geology,2011,85(3):257-267.
    [144] Wang S, Elsworth D, Liu J. Permeability evolution in fractured coal: the roles of fracturegeometry and water-content[J]. International Journal of Coal Geology,2011,87(1):13-25.
    [145] Perera M S A, Ranjith P G, Airey D W, et al. Sub-and super-critical carbon dioxide flowbehavior in naturally fractured black coal: An experimental study[J]. Fuel,2011,90(11):3390-3397.
    [146] Day S, Fry R, Sakurovs R. Swelling of moist coal in carbon dioxide and methane[J].International Journal of Coal Geology,2011,86(2):197-203.
    [147] Vishal V, Singh L, Pradhan S P, et al. Numerical modeling of Gondwana coal seams in Indiaas coalbed methane reservoirs substituted for carbon dioxide sequestration[J]. Energy,2013,49:384-394.
    [148] Kiyama T, Nishimoto S, Fujioka M, et al. Coal swelling strain and permeability change withinjecting liquid/supercritical CO2and N2at stress-constrained conditions[J]. InternationalJournal of Coal Geology,2011,85(1):56-64.
    [149] Jasinge D, Ranjith P G, Choi X, et al. Investigation of the influence of coal swelling onpermeability characteristics using natural brown coal and reconstituted brown coalspecimens[J]. Energy,2012,39(1):303-309.
    [150] Perera M S A, Ranjith P G, Choi S K, et al. Investigation of temperature effect onpermeability of naturally fractured black coal for carbon dioxide movement: An experimentaland numerical study[J]. Fuel,2012,94:596-605.
    [151] Perera M S A, Ranjith P G, Viete D R, et al. Parameters influencing the flow performance ofnatural cleat systems in deep coal seams experiencing carbon dioxide injection andsequestration[J]. International Journal of Coal Geology,2012,104:96-106.
    [152] Richard Sakurovs. Relationships between CO2sorption capacity by coals as measured atlow and high pressure and their swelling [J]. International Journal of CoalGeology,2012,(90-91):156–161.
    [153] Day S, Fry R, Sakurovs R. Swelling of coal in carbon dioxide, methane and theirmixtures[J]. International Journal of Coal Geology,2012,93:40-48.
    [154] Price N J. The compressive strength of coal measure rocks[J]. Colliery Engineering,1960,37(437):283-292.`
    [155] Hobbs D W. The strength and the stress-strain characteristics of coal in triaxialcompression[J]. The Journal of Geology,1964:214-231.
    [156] Bieniawski Z T. The effect of specimen size on compressive strength of coal[C]//International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts.Pergamon,1968,5(4):325-335.
    [157] Atkinson R H,Ko HonYim. Strength characteristics of US coal. In: Proc.18th. Symp.Rock Mech., Colorado School of Mines Press Golden,1977,2B3-1.
    [158] Ettinger I L, Lamba E G. Gas medium in coal-breaking processes[J]. Fuel,1957,36(3):298-306.
    [159] Tankard H G. The effect of sorbed carbon dioxide upon the strength of coals. M. Sci. Thesis,The University of Sydney, Australia,1957.
    [160]王佑安.在瓦斯介质中煤的强度降低及其变形的初步研究.抚顺煤岩所第一研究室,1964.
    [161]游木润.甲烷对煤的变形特征和应力特征的影响[D].北京:中国矿业学院,1984.
    [162]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,(3):9-16.
    [163]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [164]姚宇平.含瓦斯煤的力学性质[D].北京:中国矿业学院,1987.
    [165]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,(1):1-7.
    [166]姚宇平.吸附瓦斯对煤的变形及强度的影响[J].煤矿安全,1988,12:37-41.
    [167]鲜学福.煤与瓦斯突出潜在危险区的预测方法,煤与瓦斯突出预测资料汇编,煤炭科院研究总院重庆分院,1987.
    [168]许江.煤与瓦斯突出潜在危险区预测的研究[D].重庆:重庆大学,1992.
    [169]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(9):42-47.
    [170]曹树刚,鲜学福.煤岩固气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362-365.
    [171]章梦涛,潘一山,梁冰,等.煤岩流体力学[M].北京:科学出版社,1995.
    [172]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [173]梁冰,章梦涛,王泳嘉.含瓦斯煤的内时本构模型[J],岩土力学,1995(3):22-28.
    [174]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [175]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [176]傅雪海,秦勇,姜波,王文峰.多相介质煤岩体力学实验研究[J].高校地质学报,2002,8(4):446-452.
    [177]赵洪宝,尹光志,张卫中.围压作用下型煤蠕变特性及本构关系研究[J].岩土力学,2009,30(8):2305-2308.
    [178]尹光志,张东明,何巡军.含瓦斯煤蠕变实验及理论模型研究[J].岩土工程学报,2009,31(4):528-534.
    [179]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [180]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用.煤炭学报.2003,28(1):41-45.
    [181]靳钟铭,赵阳升,贺军.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,3(10):271-280.
    [182]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [183]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].长春:吉林大学出版社,2002.
    [184]徐涛.煤岩破裂过程固气耦合数值试验[D].沈阳:东北大学,2004.
    [185]徐涛,唐春安,宋力,等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [186]姜波,秦勇,金法礼.煤变形的高温高压试验研究[J].煤炭学报,1997,22(1):80–83.
    [187]马占国,茅献彪,李玉寿,等.温度对煤力学特性影响的试验研究[J].矿山压力与顶板管理,2005,(3):46–48.
    [188]许江,彭守建,尹光志,等.含瓦斯煤热流固耦合三轴伺服渗流装置的研制及应用[J].岩石力学与工程学报,2010,29(5):907–914.
    [189]许江,张丹丹,彭守建等.温度对含瓦斯煤力学性质影响的试验研究[J].岩石力学与工程学报,2011,30(增1):2730-2735.
    [190]尹光志,蒋长宝,许江等.含瓦斯煤热流固耦合渗流实验研究.[J].煤炭学报,2011,36(9):1495-1500.
    [191]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报,1995,17(3):26-31.
    [192]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究[J].矿业安全与环保,1999,2:16-18
    [193] Ates Y, Barron K. The effect of gas sorption on the strength of coal[J]. Mining science andtechnology,1988,6(3):291-300.
    [194] Karacan C, Mitchell G D. Behavior and effect of different coal microlithotypes during gastransport for carbon dioxide sequestration into coal seams[J]. International Journal of CoalGeology,2003,53(4):201-217.
    [195] Karacan C. Heterogeneous sorption and swelling in a confined and stressed coal duringCO2injection[J]. Energy&Fuels,2003,17(6):1595-1608.
    [196] Viete D R, Ranjith P G. The effect of CO2on the geomechanical and permeability behaviourof brown coal: Implications for coal seam CO2sequestration[J]. International journal of coalgeology,2006,66(3):204-216.
    [197] Viete D R, Ranjith P G. The mechanical behaviour of coal with respect to CO2sequestrationin deep coal seams[J]. Fuel,2007,86(17):2667-2671.
    [198]白冰,李小春,刘延锋,等. CO2-ECBM中气固作用对煤体应力和强度的影响分析[J].岩土力学,2007,28(4):823-826.
    [199] Liu C J, Wang G X, Sang S X, et al. Changes in pore structure of anthracite coal associatedwith CO2sequestration process[J]. Fuel,2010,89(10):2665-2672.
    [200] Connell L D, Detournay C. Coupled flow and geomechanical processes during enhancedcoal seam methane recovery through CO2sequestration[J]. International Journal of CoalGeology,2009,77(1):222-233.
    [201]尹光志,王振,张东明.有效围压为零条件下瓦斯对煤体力学性质影响的实验[J].重庆大学学报,2010,11:129-133.
    [202] Orlic B. Some geomechanical aspects of geological CO2sequestration[J]. KSCE Journal ofCivil Engineering,2009,13(4):225-232.
    [203]缪协兴,茅献彪,胡光伟,等.岩石(煤)的碎胀与压实特性研究[J].实验力学,1997,12(3):394-400.
    [204]吴宗翔.工程数学[M]北京:煤炭工业出版社.
    [205]孔祥言.高等渗流力学[M].中国科学技术大学出版社,1999.
    [206]周一勤.夹层叠层梁的内力计算及其应用[J].华东公路,1991,5:015.
    [207] APS·塞尔瓦杜雷, Selvadural A P S,范文田.土与基础相互作用弹性分析[M].中国铁道出版社,1984.
    [208]李宏,唐春安.二氧化碳注入煤层引起地表变形的实例研究[J].第三届废物地下处置学术研讨会论文集,2010.
    [209]李晓红,卢义玉,康勇,等.岩石力学实验模拟技术[M].科学出版社,2007.
    [210] Shukla R, Ranjith P, Haque A, et al. A review of studies on CO2sequestration and caprockintegrity[J]. Fuel,2010,89(10):2651-2664.
    [211] Zhang H, Liu J, Elsworth D. How sorption-induced matrix deformation affects gas flow incoal seams: a new FE model[J]. International Journal of Rock Mechanics and MiningSciences,2008,45(8):1226-1236.
    [212]杨天鸿,唐春安,徐涛,等.岩石破裂过程的渗流特性:理论,模型与应用[M].科学出版社,2004.
    [213] Chang K W, Bryant S L. Dynamics of CO2plumes encountering a fault in areservoir[C]//6th Annual Conference on Carbon Capture and Sequestration, DOE/NETL,Pittsburgh, PA.2007.
    [214] Zhou Y, Rajapakse R, Graham J. A coupled thermoporoelastic model with thermo-osmosisand thermal-filtration[J]. International Journal of Solids and Structures,1998,35(34):4659-4683.
    [215] Rutqvist J, Tsang C F. A study of caprock hydromechanical changes associated withCO2-injection into a brine formation[J]. Environmental Geology,2002,42(2-3):296-305.
    [216] Davies J P, Davies D K. Stress-dependent permeability: characterization and modeling[J].SPE Journal,2001,6(02):224-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700