用户名: 密码: 验证码:
低温弱光胁迫下黄瓜叶片光系统Ⅰ与光系统Ⅱ的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等植物中,PSI和PSII串连工作,二者相互作用。当PSI和PSII之间的电子传递被抑制,会导致PSII受体侧电子传递受阻,同时导致PSI受体侧电子供应不足。目前人们已经了解,当PSII流向PSI的电子被阻断,在光下会导致PSII产生大量活性氧,加重PSII光抑制。然而,对于PSII向PSI电子传递受阻对PSI活性造成的影响还了解较少。另外,由于PSII有快速修复机制而PSI没有,因此PSII光抑制后可以很快修复,而PSI光抑制后则恢复很慢。整个光化学反应的活性取决于光化学反应中活性最低的一个,因此一旦PSI发生光抑制,PSI就会在较长时间内成为原初光化学反应的限制因素。低温光胁迫下,冷敏感植物会发生PSI光抑制,因此,避免PSI光抑制的发生和加速光抑制后PSI活性的恢复是冷敏感植物抗冷性育种和冬季保护地栽培中亟待解决的问题。
     本研究从不同角度分析了光抑制发生过程以及光抑制恢复过程中PSII与PSI之间的相互作用,特别是PSII向PSI的电子传递对PSI低温光抑制的影响,从而阐明低温光抑制和光抑制恢复的机制,为冬季保护地栽培和抗冷性育种提供理论依据。本研究主要结果如下:
     (1)低温光胁迫下,PSI和PSII都发生光抑制,且随着处理时间的延长和处理光强的增加,PSI和PSII光抑制逐渐加重。在不同处理时间和不同光强下,PSI光抑制均比PSII光抑制更严重,这暗示着PSI是低温光胁迫下光抑制的首要位点。低温下,较强的光会造成较多的过剩激发能。随着过剩激发能((1-qP)/NPQ)的增加,PSII活性持续下降,在过剩激发能较低时,PSI活性也随着过剩激发能的增加而明显下降,但是当过剩激发能增加到一定程度时,PSI活性不再随着过剩激发能的增加而明显下降。这暗示PSII向PSI的电子传递是PSI光抑制发生所必需的,在较强光下由于PSII的严重光抑制限制了电子由PSII向PSI的传递,从而保护了PSI免受强光的进一步破坏。
     通过本实验我们提出两个假设:PSI是低温光胁迫下首要光抑制位点;PSI光抑制的程度受来自PSII的电子影响。为了验证这两个假设,我们进行了下面的研究。
     (2)为了验证PSI是低温光胁迫下首要光抑制位点,我们首先研究了黄瓜不同展开程度叶片在低温光胁迫下两光系统之间的关系。进行低温光处理后,不同展开程度黄瓜叶片的光合速率都受到显著抑制,但是幼叶的PSII和PSI光抑制更加严重,活性氧含量也更高。进一步研究发现,虽然低温下幼叶PSI和PSII的光抑制都更严重,但是随着PSII激发压的增加,幼叶PSII光抑制程度较轻,这表明幼叶的PSII对激发压的敏感程度较低,另外PSI光抑制与PSII激发压的关系不受叶片展开程度的影响。这表明,与成熟叶片相比,幼叶对低温的敏感主要是由于幼叶的PSI对低温更敏感,从而引起较高的激发压,进而导致PSII光抑制加剧。
     (3)为了进一步研究两光系统的关系,我们用耐冷植物杂交酸模与冷敏感植物黄瓜进行对比试验。冷敏感植物黄瓜和耐冷植物杂交酸模经历低温光处理后,杂交酸模叶片保持较高的光合速率、较低的活性氧水平、较高的PSI和PSII活性。为了探讨低温下PSI和PSII的关系,我们比较了PSI活性与PSII激发压,以及PSII激发压与PSII活性的关系。我们发现,虽然耐冷植物杂交酸模在低温下PSII光抑制较轻,但是其PSII光抑制对激发压增加的敏感性却更大,而且在黄瓜和杂交酸模叶片中相同程度的PSI光抑制所引起的PSII激发压的增加是类似的。这表明,低温光胁迫下冷敏感植物黄瓜叶片的PSII光抑制程度较重不是因为黄瓜叶片的PSII对激发压的增加更敏感导致的,而是由于黄瓜叶片PSII激发压较高引起的。通过JIP分析发现,低温光胁迫下黄瓜叶片PSII激发压的增加是由于受体侧QA到PSI末端电子传递受阻。因此,与耐冷植物杂交酸模相比,黄瓜叶片的PSII光抑制较重主要是由于黄瓜叶片的PSI对低温光胁迫更加敏感,导致PSII激发压较高引起的。
     以上两项研究的结果表明, PSI是植物叶片低温光抑制的首要位点,而PSII光抑制只是PSI光抑制的二次效应:PSII受体侧电子传递受阻进而引起PSII激发压增加导致的。这是与其他逆境下截然不同的,因为在强光、高温等胁迫下,PSI均不发生光抑制,上述胁迫直接导致PSII光抑制的发生。
     因此,PSI的低温抗性是决定整个植物抗冷能力的关键因素之一。在保护地栽培以及抗低温育种中,不应仅仅关注PSII的光抑制,应当更加关注如何避免和减少PSI的光抑制以达到增加植物抗冷性的目的。
     (4)为了验证PSI光抑制的程度受来自PSII的电子影响,我们用DCMU阻断PSII向PSI的电子传递,发现当PSII向PSI的电子传递被阻断时,无论处理光强和过剩激发能如何,都不会发生PSI光抑制。相同的结果也在在不同冷敏感植物黄瓜和杂交酸模叶片,以及黄瓜不同展开程度叶片中发现:当PSII向PSI的电子传递被阻,PSI低温光抑制被完全避免。
     (5)然而传统观点认为,反应中心的过度激发是导致光抑制的根本原因,激发程度越大则光抑制越重。为了判断在低温光胁迫下决定PSI光抑制程度的是PSI的激发程度还是来自PSII的电子的量,我们用不同光质的单色光在低温下处理叶片。由于波长不同,蓝、绿、红光对PSII的激发程度逐渐下降,而对PSI的激发程度逐渐增加。如果PSI光抑制程度取决于它的激发程度,则红光下PSI光抑制最重,如果PSI光抑制程度取决于PSII向PSI传递电子的量,则蓝光下PSI光抑制最重。实验发现,低温不同光质处理后,红光引起的PSI和PSII光抑制最轻,蓝光最重,而绿光居中,PSI光抑制和PSII光抑制基本上同步发生。由于蓝光比红光和绿光更有效地激发PSII,因此蓝光导致PSII光抑制最重;由于蓝光下PSII向PSI的电子传递最多,所以蓝光导致的PSI光抑制最重。本研究结果支持了上文得出的PSII向PSI传递的电子的量决定了PSI低温光抑制程度的结论。
     以上两项研究的结果表明,在低温光抑制过程中,PSII向PSI的电子传递是PSI光抑制发生的必要条件。适当的PSII光抑制可以减少PSII向PSI的电子传递,从而减轻PSI光抑制。因此在保护地栽培以及抗低温育种中,片面的追求PSII的高活性和高抗性会加剧PSI光抑制,从而降低叶片对低温的抗性。
     (6)紫外线会抑制叶片展开,促进气孔关闭,加剧叶片PSII光抑制,传统观念认为隔绝紫外线有利于植物的生长。但是传统观点并没有考虑紫外线对PSI以及对PSII与PSI间的相互作用的影响。我们发现,在低温光处理时,紫外线会导致PSII光抑制,但不会直接伤害PSI。而当低温下紫外线与可见光同时存在时,紫外线加剧了PSII光抑制,却减轻了PSI光抑制。这可能是由于紫外线加重了PSII光抑制,从而减少PSII向PSI的电子传递,进而减轻PSI光抑制的发生。这一结果表明,在冬季保护地栽培中,不应使用隔绝紫外线的玻璃而应选用能够透过紫外线的棚膜,这样可以减少低温对叶片光合机构的伤害。另外,与实验中所使用的不含紫外线的人工光源相比,实际生产中相同强度的自然光所导致的PSI光抑制可能较低,因此室内人工光源下进行的PSI光抑制研究无法代替田间实验。
     (7)光合机构对逆境的抗性不仅与胁迫对光合机构的伤害程度有关,在更大程度上还取决于去除胁迫后光合机构活性的恢复程度。为此我们研究了光抑制后的恢复过程中PSI与PSII的关系。低温光抑制后,在常温下,PSII活性可以快速恢复且对光强不敏感,PSI活性在弱光(15μmol m-2s-1)下可以快速恢复,但在较强光下(200μmol m-2s-1)恢复较慢。为了研究PSII向PSI的电子传递在恢复过程中对PSI活性恢复的影响,我们在低温光处理后对叶片进行DCMU浸泡处理,然后在常温较强光(200μmol m-2s-1)下进行恢复。当用DCMU阻断PSII向PSI电子传递时,即使在较强光下(200μmol m-2s-1)PSI活性也能快速恢复。这表明在低温光抑制的恢复过程中,PSI活性恢复较慢,只有当PSII向PSI的线性电子传递较低时才能有效恢复。PSII活性恢复较快可能导致PSII向PSI的线性电子传递过快,从而抑制PSI活性的恢复。因此在抗低温育种中,不应片面追求光抑制后PSII活性的快速恢复,应当综合的考虑两个光系统的协调;在保护地栽培中,当发生低温光胁迫后,不应立刻开棚升温,而应在一定时间采取措施降低叶片表面光照强度,从而有利于PSI活性的恢复。
     综上所述,本研究首次提出PSII向PSI的电子传递会加重PSI低温光抑制并抑制PSI活性的恢复,证明PSI的低温抗性是决定植物抗冷能力的关键因素。并且指出,在冬季保护地栽培以及作物抗冷性育种,不应以减轻PSII光抑制为目的,应以减轻PSI光抑制为目标,而适当的PSII光抑制对于减轻PSI低温光抑制是有利的。在低温胁迫以及低温胁迫结束后的一段时间,不应以开棚升温为主而应以闭棚避光为主,这有利于减轻PSI光抑制和加速PSI活性的恢复。另外,为了减轻PSI光抑制,温室/大棚建设时应采用可透过紫外线的薄膜而不应采用隔绝紫外线的玻璃。
In leaves of higher plant, photosystem I (PSI) and photosystem II (PSII) interacts eachother remarkably due to the electron transport in series between them. The inhibition ofelectron transfer from PSII to PSI interferes with the electron transfer of PSII accept-side andcauses the lack of electron donation to PSI simultaneously. It has been known that thephotoinhibition of PSII is aggravated by the suppression of the electron transfer from PSII toPSI, however, the effect of this suppression to PSI activity is unclear yet. On the other hand,the recovery of PSI activity is much slower than that of PSII activity because PSII exists arapid turnover mechanism, D1protein de novo synthesis, but PSI does not. The activity ofphotochemical reaction depends on the lower activity among the PSI and PSII. PSI willbecome a limiting factor of the photochemical reaction for a long time after PSIphotoinhibition. PSI is the primary site of photoinhibition in chilling-sensitive plant underchilling-light stress. It is of great importance to explore how to avoid PSI photoinhibition inleaves of chilling sensitive plants under chilling-light stress and to accelerate the recovery ofPSI activity after chilling-light stress.
     In this study, the interaction between PSI and PSII, and especially to study the effect ofthe electron transfer from PSII to PSI on the chilling photoinhibition and the later recoverywere researched. The aim of this study is understand the mechanism of PSI photoinhibitionand later recovery, and to provide theoretical and practical support in winter protectioncultivation and cold-tolerance breeding. The main results obtained are as follows:
     (1) Under chilling-light treatment, higher light intensity caused higher excess excitationpressure ((1-qP)/NPQ). The maximal photochemical efficiency of PSII (Fv/Fm) continuallydecreased with the increase of excess excitation pressure. The maximum PSI redox activity(△I/Io) also decreased significantly with the increase of excitation pressure when theexcitation pressure was relatively lower. However, once the excess excitation pressureexceeded a certain level, the△I/Io did not increase obviously with the increase of the excessexcitation pressure any more. This result indicates that the electron transfer from PSII to PSI is necessary for PSI photoinhibition caused by chilling-light treatment. Under high lightintensity, sever PSII photoinhibition limited the electron transfer from PSII to PSI andprotected PSI from the future photoinhibition.
     (3) Under chilling-light treatment, higher photosynthesis rate, lower ROS level, lowerPSI and PSI photoinhibition were observed in Rumex K-1leaves than in cucumber leaves.The relation between PSI photoinhibition and PSII excitation pressure in leaves of cucumberwas similar to that in leaves of Rumex K-1, but the PSII in Rumex K-1leaves is moresensitive to PSII excitation pressure than that in cucumber leaves. This result indicates that,compared to the cucumber, the higher chilling-tolerance of Rumex K-1is because that thePSII excitation pressure in Rumex K-1is much lower due to enhanced stabilization of the PSIin Rumex K-1under light-chilling.
     (2) The chilling-light treatment inhibited CO2assimilations completely in differentexpanded cucumber leaves. However, the photoinhibition of the two photosystems (PSI andPSII) and the accumulation of H2O2were more severe in young leaves than in full-developedleaves. During chilling-light treatment, PSII photoinhibition was positive correlated with PSIphotoinhibition in leaves,but this correlation did no occur when the electron transport fromPSII to PSI was blocked by3-(3,4-dichlorfenyl)-1,1-dimethylkarbonyldiamid (DCMU).Although the photoinhibition of PSII and PSI in young leaves were more severe, thesensitivity of PSII to excitation pressure was lower in young leaves than in fully expandedleaves. This study demonstrated that the more sever PSII photoinhibition observed in youngleaves was due to the higher PSII excitation pressure caused by the higher sensitivity of PSIin young leaves to chilling-light treatment.
     The study showed that PSI is the primary site of photoinhibition caused bychilling-light, and the chilling-light tolerance of a plant depends highly on PSI activity. So, inwinter protected cultivation and cold tolerance breeding, attention should not only be paid toPSII photoinhibition but also be paid to avoiding or reducing PSI photoinhibition.
     (4) The PSI photoinhibition was stopped by blocking the electron transfer from PSII toPSI with DCMU under different light intensities. In leaves from chilling-resistant plantsRumex K-1and chilling-sensitive plants cucumber leaves, when the electron transfer fromPSII to PSI was blocked, The PSI photoinhibition was completely stopped.
     (5) The photoinhibition of PSI and PSII occurred synchronously under chilling anddifferent light quality (red, green and blue). Under the same light intensity (100μmol m-2s-1),red light caused the weakest photoinhibition whereas blue light caused the severestphotoinhibition. Blue light excited PSII more effectively than the red and green light, so thePSII photoinhibition under blue light was higher than that under other light; the electrontransfer from PSII to PSI is higher under blue light than under red and green light, so the PSIphotoinhibition under blue light was higher than that under other light. This result furthersupports the hypothesis that the PSI photoinhibition under chilling-light depends highly onthe number of electrons transferred from PSII to PSI.
     Above two researches demonstrated that the electrons transferred from PSII to PSI isnecessary for PSI photoinhibition caused by chilling-light treatment. Appropriate PSIIphotoinhibition reduced the electrons transferred from PSII to PSI, alleviating PSIphotoinhibition. So, in protected cultivation in winter and cold tolerance breeding, unilateralincreasing of PSII activity and chilling-light tolerance in PSII will exacerbate PSIphotoinhibition under chilling-light treatment and impair chilling-tolerance of plant.
     (6) UV illumination caused PSII photoinhibition but did not directly hurt PSI. However,under chilling-light treatment, UV illumination deteriorated PSII photoinhibition anddecreased the electron transfer from PSII to PSI. Thereby, the existence of UV light alleviatedPSI photoinhibition under chilling-light treatment. This result showed that compared with thechilling-light stress in nature condition, the PSI photoinhibition was overestimated inprevious studies under artificial light source due to lack of UV light in the light source used inlaboratory. In protected cultivation in winter, the UV-conductive greenhouse film instead ofUV-prohibitive glass should be used to alleviate PSI damage caused by chilling-light stress.
     (7) During the recovery process at room temperature after chilling-light treatment, thePSII activity recovered quickly and was insensitive to high light intensity, while the PSIactivity recovered quickly under weak light intensity (15μmol m-2s-1) but slowly under highlight intensity (200μmol m-2s-1). With the present of DCMU which blocks the electrontransfer from PSII to PSI, the PSI activity recovered quickly even under high light intensity(200μmol m-2s-1). Above results suggest that after the chilling-inducted photoinhibition,reducing electron transfer from PSII to PSI protects the PSI from future inhibition, accelerating the recovery of PSI activity. So, in the breeding of chilling-resistant crops,attention should not only be paid to faster recovery of PSII after chilling-inducedphotoinhibition but more attention should also be paid to the coordinating of PSI and PSIIafter chilling-induced photoinhibition. In winter protected cultivation, after chillinghappened, to reduce light intensity will help the recovery of PSI activity from photoinhibitionso that a faster recovery of the activity of the whole photosynthetic apparatus will beachieved.
引文
姜闯道,高辉远,邹琦。类囊体膜pH梯度在光抑制中的保护机理。植物生理学通讯。2000,36(2):1-6
    李新国,段伟,孟庆伟,邹琦。PS I的低温光抑制。植物生理学通讯。2002,38(4):375-381
    孙山,张立涛,王家喜,王少敏,高华军,高辉远。低温弱光胁迫对日光温室栽培杏树光系统功能的影响。应用生态学报。2008a,19(3):512-519
    孙山,王少敏,王家喜,高辉远。黑暗中脱水对‘金太阳’杏离体叶片PSI和PSII功能的影响。园艺学报。2008,35(1):1-6
    姚广,高辉远,王未未,张立涛,部建雯。铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响。生态学报。2009,29(3):1162-1169
    张子山,李耕,高辉远,刘鹏,杨程,孟祥龙,孟庆伟。玉米持绿与早衰品种叶片衰老过程中光化学活性的变化。作物学报。2013,39(1):1-8
    张子山,杨程,高辉远,李耕,刘鹏。保绿玉米与早衰玉米叶片衰老过程中叶绿素降解与光合作用光化学活性的关系。中国农业科学。2012,45(23):4794-4800
    Allakhverdiev S.I., Murata N.. Environmental stress inhibits the synthesis de novo of proteinsinvolved in the photodamage–repair cycle of Photosystem II in Synechocystis sp. PCC6803. Biochim. Biophys. Acta,2004,1657:23~32
    Alscher R.G., Erturk N., Heath L.S.. Role of superoxide dismutases (SODs) in controllingoxidative stress in plants. J. Exp. Bot.,2002,53:1331~1341
    Anderson J.M., Park Y.I., Chow W.S.. Unifying model for the photoinactivation ofphotosystem II in vivo: a hypothesis. Photosynth. Res.,1998,56:1~13.
    Aro E.M., Virgin I., Andersson B.. Photoinhibition of photosystem II. Inactivation, proteindamage and turnover. Biochim. Biophys. Acta,1993,1143:113~134
    Asada K., Radical production and scavenging in the chloroplasts. In: Baker NR (eds).Photosynthesis and the Environment. Netherlands: Kluwer academic publishers,2004,123~150
    Asada K., Production and scavenging of reactive oxygen species in chloroplasts and theirfunctions. Plant Physiol.,2006,141:391~396
    Asada K., Neubauer C., Heber U.. Methyl viologen-dependent cyclic electron transport inSpinach chloroplasts in the absence of oxygen. Plant Cell Physiol.,1990,31:557~564
    Asada K., Neubauer C., Heber U.. Methyl viologen-dependent cyclic electron transport inSpinach chloroplasts in the absence of oxygen. Plant Cell Physiol.,1990,31:557~564
    Barth C., Krause G.H.. Inhibition of photosystem I and II in chilling-sensitive andchilling-tolerant plants under light and low-temperature stress. Z. Naturforsch,1999,54c:645~657
    Barth C., Krause G. H., Winter K.. Responses of photosystem I compared with photosystem IIto high-light stress in tropical shade and sun leaves. Plant, Cell Environ.,2001,24:163~176
    Barth C., Krause G.H.. Study of tobacco transformants to assess the role of chloroplasticNAD(P)H dehydrogenase in photoprotection of photosystem I and II. Planta,2002,216:273~279
    Bassi R., Pineau B., Dainese P., Marquardt J.. Carotenoid-binding proteins of photosystem II.Eur. J. Biochem.,1993,212:297~303
    Bilger W., Bj rkman O.. Role if the xanthophyll cycle in photoprotection elucidated bymeasurements of light-induced absorbance changes, fluorescence and photosynthesis inHedera canariensis. Photosynth. Res.,1990,25:173~185
    Bruggemann W., Kooij, T. A. W., Hasselt P. R.. Long-term chilling of young tomato plantsunder low light and subsequent recovery. II. Chlorophyll fluorescence, carbonmetabolism and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta,1992,186:179~187
    Bukhov N.G., Govindachary S., Rajagopal S., Joly D., Carpentier R.. Enhanced rates ofP700+dark-reduction in leaves of Cucumis sativus L. photoinhibited at chillingtemperature. Planta,2004,218:852~861
    Cazzaniga S., Li Z.R., Niyogi K.K., Bassi R., Dall′Osto L.. The Arabidopsis szl1mutantreveals a critical role of b-carotene in photosystem I photoprotection. Plant Physiol.,2012,159:1745~1758
    Choi S. M., Jeong S.W., Jeong W.J., Kwon S.Y., Chow W.S., Park Y.-II. ChloroplastCu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in thelight. Planta,2002,216:315~324
    Creenciaand R.P., Bramlage W.J.. Reversibility of cihilling injury to corn seedlings. PlantPhysiol.,1971,47:389~392
    Danna C.H., Bartoli C. G., Sacco F., Ingala L.R., Santa-María G.E., Guiamet J.J., Ugalde R.A..Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport andphotosynthetic activity. Plant Physiol.,2003,132:2116~2125
    Demming-Adams B., Adams W.W.. Photoprotection and other responses of plant to highstress. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1992,43:599~604
    Demmig-Adams B., Adams III W.. The role of xanthophyll cycle carotenoids in theprotection of pgotosynthesis. Trends Plant Sci.,1996,1:21~26
    Ding S. H., Lei M., Lu Q.T., Zhang A.H., Yin Y., Wen X.G., Zhang L.X., Lu C.M.. Enhancedsensitivity and characterization of photosystem II in transgenic tobacco plants withdecreased chloroplast glutathione reductase under chilling stress. Biochim. Biophys. Acta,2012,1817:1979~1991
    Duan M., Feng H.L., Wang L.Y., Li D., Meng Q.W.. Overexpression of thylakoidal ascorbateperoxidase shows enhanced resistance to chilling stress in tomato. J. Plant Physiol.,2012,169:867~877
    Falk J., Munné-Bosch S.. Tocochromanol functions in plants: antioxidation and beyond. J.Exp. Bot.,2010,61:1549~1566
    Foyer C.H., Shigeoka S.. Understanding oxidative stress and antioxidant functions to enhancephotosynthesis. Plant Physiol.,2011,155:93~100
    Foyer C.H., Shigeoka S.. Understanding oxidative stress and antioxidant functions to enhancephotosynthesis. Plant Physiol.,2011,155:93~100
    Frank H.A., Cua A., Chynwat V., Young A.J., Goztola D., Wasielewski M.R.. Photophysics ofthe carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth.Res.,1994,41:389~395
    Gallie D.. The role of L-ascorbic acid recycling in responding to environmental stress and inpromoting plant growth. J. Exp. Bot.,2013,64:433~443
    Genty B., Briantais J.M., Baker N.R.. The relationship between the quantum yield ofphotosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim.Biophys. Acta,1989,99:87~92
    Garstka M., Venema J.H., Rumak I., Gieczewska K., Rosiak M., Koziol-Lipinska J.,Kierdaszuk B., Vredenberg W.J., Mostowska J.. Contrasting effect of dark-chilling onchloroplast structure and arrangement of chlorophyll–protein complexes in pea andtomato: plants with a different susceptibility to non-freezing temperature. Planta,2007,226:1165~1181
    Guo J.K., Zhang Z.Z., Bi Y.R., Yang W., Xu Y., Zhang L.X.. Decreased stability ofphotosystem I in dgd1mutant of Arabidopsis thaliana. FEBS Lett.,2005,579:3619~3624
    Guo S.J., Zhou H.Y., Zhang X.S., Li X.G., Meng Q.W.. Overexpression of CaHSP26intransgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress underlow irradiance. J. Plant Physiol.,2007,164:126~136
    Gombos Z., Wada H., Murata A.N.. The recovery of photosynthesis from low-temperaturephotoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism ofchilling tolerance. Proc. Natl. Acad. Sci.,2010,91:8787~8791
    Gómez L.D., Vanacker H., Buchner P., Noctor G., Foyer C.H.. Intercellular distribution ofglutathione synthesis in maize leaves and its response to short-term chilling. PlantPhysiol.,2004,134:1662~1671
    Haldimann P., Strasser R.J.. Effects of anaerobiosis as probed by the polyphasic chlorophyll afluorescence rise kinetic in pea (Pisum sativum L.). Photosynth. Res.,1999,62:67~83
    Havaux M., Davaud A.. Photoinhibition of photosynthesis in chilled potato leaves is notcorrelated with a loss of photosystem-II activity-preferential inactivation of photosystemI. Photosynth Res.,1994,40:75~92
    Hikosaka K, Kato M.C., Hirose T.. Photosynthetic rates and partitioning of absorbed lightenergy in photoinhibited leaves. Physiol. Plantarum,2004,121:699~708
    Horton P., Ruban A.V.. Regulation of photosystem II. Photosynth Res.,1992,34:375~385
    Horton P., Ruban A.V., Walters R.G.. Regulation of light harvesting in green plants: indicationby non-photochemical quenching of chlorophyll fluorescence. Plant Physiol.,1994,106:415~420
    Huang W., Zhang S.B., Cao K.F.. The different effects of chilling stress under moderate lightintensity on photosystem II compared with photosystem I and subsequent recovery intropical tree species. Photosynth Res.,2010,103:175~182
    Hwang H.J., Kim J.H., Eu Y.J., Moon B.Y.. Photoinhibition of photosystem I is acceleratedby dimethyldithiocarbamate, an inhibitor of superoxide dismutase, during light-chillingof spinach leaves. J. Photoch. Photobio. B,2004,73:79~85
    Inoue K., Fujii T., Yokoyama E., Matsuura K., Hiyama T., Sakurai H.. The photoinhibitionsite of photosystem I in isolated chloroplasts under extremely reducing conditions. PlantCell Physiol.,1989,30:65~71
    Ivanov A.G., Allakhverdiev S.I., Huner N.P.A., Murata N.. Genetic decrease in fatty acidunsaturation of phosphatidylglycerol increased photoinhibition of photosystem I at lowtemperature in tobacco leaves. Biochim. Biophys. Acta,2012,1817:1374~1379
    Ivanov A.G., Hendrickson L., Kro M., Selstam E., quist G., Hurry V., Huner N.P.A..Digalactosyl-diacylglycerol deficiency impairs the capacity for photosyntheticintersystem electron transport and state transitions in Arabidopsis thaliana due tophotosystem I acceptor-side limitations. Plant Cell Physiol.,2006,47:1146~1157
    Ivanov A.G., Morgan R.M., Gray G.R., Velitchkova M.Y., Huner N.P.A.. Temperature/lightdependent development of selective resistance to photoinhibition of photosystem I.FEBS Lett.,1998,430:288~292
    Jahns P. and Junge W.. Dicyclohexylarbodiimide-binding proteins related to the short circuitof the protonpumping activity of PSII. Identified as light-harvesting chlorophyll a/bbinding proteins. Eur. J. Biochem.,1990,193:731~736
    Jeong S.W., Choi S.M., Lee D.S., Ahn S.N., Hur Y., Chow W.S., Park Y.II. Differentialsusceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) dependson the capacity for photochemical dissipation of light. Mol. Cells,2002,13:419~428
    Jiang Y.P., Huang L.F., Cheng F., Zhou Y.H., Xia X.J., Mao W.H., Shi K., Yu J.Q..Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress bybalancing the electron partitioning, carboxylation and redox homeostasis in cucumber.Physiol. Plantarum,2013, in publish
    Johnson G.N.. Reprint of: physiology of PSI cyclic electron transport in higher plants.Biochim. Biophys. Acta,2011,1807:906~911
    Kanematsu S., Asada K.. Superoxide dismutase. In: Fukui T., Soda K.(eds). MolecularAspects of Enzyme Catalysis, Weinheim: Wiley-VCH Verlag GmbH,1994,191-210.
    Kim S.J., Lee C.H., Hope A.B., Chow W.S.. Inhibition of photosystems I and II and enhancedback flow of photosystem I electrons in cucumber leaf discs chilled in the light. PlantCell Physiol.,2001,42:842~848
    Kingston-Smith A.H., Harbinson J., Foyer C.H.. Acclimation of photosynthesis, H2O2contentand antioxidants in maize (Zea mays) grown at sub-optimal temperatures. Plant CellEnviron.,1999,22:1071~1083
    Kornyeyev D., Logan B.A., Allen R.D., Holaday A.S.. Effect of chloroplastic overproductionof ascorbate peroxidase on photosynthesis and photoprotection in cotton leavessubjected to low temperature photoinhibition. Plant Sci.,2003a,165:1033~1041
    Kornyeyev D., Logan B.A., Payton P.R., Allen R.D., Holaday A.S.. Elevated chloroplasticglutathione reductase activities decrease chilling-induced photoinhibition by increasingrates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct.Plant Biol.,2003b,30:101~110
    Krieger A., Moya I., Weis E.. Energy-dependent quenching of chlorophyll a fluorescence:effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoidmembranes and photosystem II preparations. Biochim. Biophys. Acta,1992,1102:167~176
    Kudoh H., Sonoike K.. Irreversible damage to photosystem I by chilling in the light: cause ofthe degradation of chlorophyll after returning to normal growth temperature. Planta,2002,215:541~548
    Li F., Wu Q.Y., Sun Y. L., Wang L.Y., Yang X. H., Meng Q.W.. Overexpression ofchloroplastic monodehydroascorbate reductase enhanced tolerance to temperature andmethyl viologen-mediated oxidative stresses. Physiol. Plantarum,2010,139:421~434
    Li P.M., Cheng L.L., Peng T., Gao H.Y.. CO2assimilation and chlorophyll fluorescence ingreen versus red Berberis thunbergii leaves measured with different quality irradiation.Photosynthetica,2009,47:11~18
    Liu Y.D., Ren D.T., Pike S., Pallardy S., Gassmann W., Zhang S.Q.. Chloroplast-generatedreactive oxygen species are involved in hypersensitive response-like celldeath mediatedby a mitogen-activated protein kinase cascade. Plant J.,2007,51:941~954
    Lindoo S.J., Caldwell M.. Ultraviolet-B radiation-induced inhibition of leaf expansion andpromotion of anthocyanin production: lack of involvement of the low irradiancephytochrome system. Plant Physilo.,1978,61:278~282
    Li P.M., Ma F.W.. Different effects of light irradiation on the photosynthetic electrontransport chain during apple tree leaf dehydration. Plant Physiol. Bioch.,2012,55:16~22
    Liu K., Sun J., Song Y.G., Liu B., Xu Y.K., Zhang S.X., Tian Q., Liu Y.. Superoxide,hydrogen peroxide and hydroxyl radical in D1/D2/cytochrome b-559Photosystem IIreaction center complex. Photosynth Res.,2004,81:41~47
    Liu Y.J., Norberg F.E.B., Szilágyi A., Paepe R.D., kerlund H.E., Rasmusson A.G.. TheMitochondrial External NADPH Dehydrogenase Modulates the Leaf NADPH/NADP+Ratio in Transgenic Nicotiana sylvestris. Plant Cell Physiol.,2008,49:251~263
    Li X.G., Bi Y.P., Zhao S.J., Meng Q.W., Zou Q, He Q.W.. Cooperation of xanthophyll cyclewith water-water cycle in the protection of photosystems1and2, against inactivationduring chilling stress under low irradiance. Photosynthetica,2005,43:261~266
    Li X.P., Bj rkman O., Shih C., Grossman A.R., Rosenquist M., Jansson S., Niyogi K.K.. Apigment-binding protein essential for regulation of photosynthetic light harvesting.Nature,2000,403:391~395
    Li X.G., Meng Q.W., Jiang G.Q., Zou Q.. The susceptibility of cucumber and sweet pepper tochilling under low irradiance is related to energy dissipation and water–water cycle.Photosynthetica,2003,41:259~265
    Li X.G., Duan W., Meng Q.W., Zou Q., Zhao S.J.. The function of chloroplastic NAD(P)Hdehydrogenase in tobacco during chilling stress under low irradiance. Plant CellPhysiol.,2004,45:103~108
    Lyons J. M.. Chilling injury in plants. Ann. Rev. Plant Physiol.,1973,24:443~466
    Mathur S, Allakhverdiev S.I., Jajoo A.. Analysis of high temperature stress on the dynamicsof antenna size and reducing side heterogeneity of Photosystem II in wheat leaves(Triticum aestivum). Biochim. Biophys. Acta,2011,1807:22~29
    Maxwell K., Johnson G.N.. Chlorophyll fluorescence-a practical guide. J. Exp. Bot.,2000,51:659~668
    Melis A.. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate ofphotodamage in vivo? Trends plant sci.,1999,4:1360~1385
    Munekage Y., Hojo M., Meurer J., Endo T., Tasaka M., Shikanai T.. PGR5is involved incyclic electron flow around photosystem I and is essential for photoprotection inArabidopsis. Cell,2002,110:361~371
    Munekage Y. N., Genty B., Peltier G.. Effect of PGR5impairment on photosynthesis andgrowth in Arabidopsis thaliana. Plant Cell Physiol.,2008,49:1688~1698
    Myers J.. Is there significant cyclic electron flow around photoreaction I in cyanobacteria?Photosynth. Res.,1987,14:55~69
    Neubauer C., Yamamoto H.Y.. Mehler-peroxidase reaction mediates zeaxanthin formationand zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol.,1992,99:1354~1361
    Niyogi K.K.. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. PlantPhysiol. Plant Mol. Biol.,1999,50:333~359
    Ogawa K., Endo T., Kanematsu S., Tanaka R., Ishiguro S.. Tobacco chloroplasticCuZn-superoxide dismutase cannot function without its localization at the site ofsuperoxide generation (PSI). Plant Cell Physiol.,1997,38: S35
    Oguchi R., Douwstra P., Fujita T., Chow W.S., Terashima I.. Intra-leaf gradients ofphotoinhibition induced by different color lights: implications for the dual mechanismsof photoinhibition and for the application of conventional chlorophyll fluorometers. NewPhytol.,2011a,191:146~159
    Oguchi R., Terashimaa I., Koub J., Chow W.S.. Operation of dual mechanisms that both leadto photoinactivation of Photosystem II in leaves by visible light. Physiol. Plantarum,2011b,142:47~55
    Oguchi R., Terashima I., Chow W.S.. The Involvement of Dual Mechanisms ofPhotoinactivation of Photosystem II in Capsicum annuum L. plants. Plant Cell Physiol.,2009,50:1815~1825
    Omran R.G., Benedict C.R., Powell R.G.. effects of chilling on protein synthesis and CO2fixation in cotton leaves. Crop Sci.,1971,11:554~556
    Ort D.R.. When there is too much light. Plant Physiol.,2001,125:29~32
    Osmond C.B.. What is photoinhibition? Some insights from comparisons of shade and sunplants. In:Baker N. R., Bowyer J. R.(eds). Photoinhibition of Photosynthesis: fromMolecular Mechanisms to the Field. Oxford: Bios Scientific,1994,1-24
    Pastenes C, Pimentel P., Lillo J.. Leaf movements and photoinhibition in relation to waterstress in field-grown beans. J. Exp. Bot.,2005,56:425~433
    Pesaresi P., Sandonà D., Giuffra E. and Bassi R.. A single point mutation (E166Q) preventsdicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett.,1997,402:151~156
    Powles S.B.. Photoinhibition of photosynthesis induced by visible light. Ann. Rev. PlantPhysiol.,1984,35:15~44
    Renganathan M., Dilley R.A.. Evidence that the intrinsic membrane protein LHCⅡ inthylakoid is necessary for maintaining localized Δμh-energy coupling. J. Bioenerg.Biomembr.,1994,26:117~125
    Rockholm D. C., Yamamoto H.Y.. Violaxanthin de-epoxidase. Plant Physiol.,1996,110:697~703
    Ruban A.V., Horton P.. Mechanism of pH-dependent dissipation of absorbed excitationenergy by photosynthetic membrane I. Spectroscopic ananlysis of isolatedlight-harvesting complexes. Biochim. Biophys. Acta,1992,1116:219~227
    Ruban A.V., Young A.J., Horton P.. Modulation of chlorophyll fluorescence quenching inisolated light harvesting complex of photosystem II. Biochim. Biophys. Acta,1994,1186:123~127
    Russell A.W., Critchley C., Robinson S.A., Franklin L.A., Seaton C.C.R., Chow W.S.,Anderson J.M., Osmond C.B.. Photosystem II regulation and dynamics of thechloroplast d1protein in Arabidopsis leaves during photosynthesis and photoinhibition.Plant Physiol.,1992,107:943~952
    Satoh K., Fork D.C.. Photoinhibition of reaction centers of photosystems I and II in intactBryopsis chloroplasts under anaerobic conditions. Plant Physiol.,1982,70:1004~1008
    Sarvikas P., Hakala-Yatkin M., D nmez S., Tyystj rvi E.. Short flashes and continuous lighthave similar photoinhibitory efficiency in intact leaves. J. Exp. Bot.,2010,61:4239~4247
    Sassenrath G.F., Ort D.R., Jr P. A. R.. Impaired reductive activation of stromalbisphosphatases in tomato leaves following low temperature exposure at high light. Arch.Biochem. Biophys.,1990,282:302~308
    Schansker G., Srivastava A., Govindjee, Strasser R.J.. Characterization of the820-nmtransmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves.Funct. Plant Biol.,2003,30:785~796
    Schreiber U., Neubauer C.. O2-dependent electron flow, membrane energization and themechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth.Res.,1990,25:279~293
    Shen J.R., Terashima I., Katoh S.. Cause for dark, chilling-induced inactivation ofphotosynthetic oxygen-evolving system in cucumber Leaves. Plant physiol.,1990,93:1354~1357
    Shu D.F., Wang L.Y., Duan M., Deng Y.S., Meng Q.W.. Antisense-mediated depletion oftomato chloroplast glutathione reductase enhances susceptibility to chilling stress. PlantPhysiol. Bioch.,2011,49:1228~1237
    Silvaa E.N., Ferreira-Silvaa S.L., Fontenelea A.D.V., Ribeirob R.V., Viégasc R.A., SilveiraaJ.A.G.. Photosynthetic changes and protective mechanisms against oxidative damagesubjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J.Plant Physiol.,2010,167:1157~1164
    Smit M.F., Krüger G.H.J., van Heerden P.D.R., Pienaar J.J., Weissflog L., Strasser R.. Effectof trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, on C3and C4crop plants. In: Photosynthesis. Energy from the sun:14th international congresson photosynthesis. Allen J., Gantt E., Golbeck J., Osmond B, eds. Springer,2008,1501-1504
    Smit M.F., van Heerden P.D.R., Pienaar J.J., Weissflog L., Strasser R.J., Krüger G.H.J.. Effectof trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, onPhaseolus vulgaris and Zea mays. Plant Physiol. Bioch.,2009,47:623~634
    Sonoike K., Terashima I.. Mechanism of photosystem-I photoinhibition in leaves of Cucumissativus L. Planta,1994,194:287~293
    Sonoike K.. Selective photoinhibition of photosystem I in isolated thylakoid membranes fromcucumber and spinach. Plant Cell Physiol.,1995,36:825~830
    Sonoike K.. Degradation of psaB gene product, the reaction center subunit of photosystem I,is caused during photoinhibition of photosystem I: possible involvement of activeoxygen species. Plant Sci.,1996,115:157~164
    Sonoike K., Kamo M., Hihara Y., Hiyama T., Enami I.. The mechanism of the degradation ofpsaB gene product, one of the photosynthetic reaction center subunits of photosystem I,upon photoinhibition. Photosynth Res.,1997,53:55~63
    Sonoike K.. Various aspects of inhibition of photosynthesis under light/chilling stress:"photoinhibition at chilling temperatures" versus "chilling damage in the light". J. PlantRes.,1998,111:121~129
    Sonoike K.. The different roles of chilling temperatures in the photoinhibition of photosystemI and photosystem II. J. Photoch. Photobio. B,1999,48:136~141
    Sonoike K.. Photoinhibition of photosystem I. Physiol. Plantarum,2011,142:56~64
    Sozer O., Komenda J., Ughy B., Domonkos I., Laczkó-Dobos H., Malec P., Gombos Z., KisM.. Involvement of carotenoids in the synthesis and assembly of protein subunits ofphotosynthetic reaction centers of Synechocystis sp. PCC6803. Plant Cell Physiol.,2010,51:823~835
    Srivastava A., Jüttner F., Strasser R.J.. Action of the allelochemical, fischerellin A, onphotosystem II. Biochim. Biophys. Acta,1998,1364:326~336
    Strasser B.J.. Donor side capacity of Photosystem II probed by chlorophyll a fluorescencetransients. Photosynth. Res.,1997,52:147~155
    Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.. Simultaneous in vivo recording ofprompt and delayed fluorescence and820-nm reflection changes during drying and afterrehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta,2010,1797:1313~1326
    Strauss A.J., Krüger G.H.J., Strasser R.J., Van Heerden P.D.R.. Ranking of dark chillingtolerance in soybean genotypes probed by the chlorophyll a fluorescence transientO-J-I-P. Environ. Eep. Bot.,2006,56:147~157
    Sun X.W., Fu T.J., Chen N., Guo J.K., Ma J.F., Zou M.J., Lu C.M., Zhang L.X.. The stromalchloroplast Deg7protease participates in the repair of photosystem II afterphotoinhibition in Arabidopsis. Plant Physiol.,2010,152:1263~1273
    Sundby C., McCaffery S., Anderson J.M.. Turnover of the Photosystem II D1protein inhigher plants under photoinhibitory and nonphotoinhibitory irradian. J. Biol. Chem.,1993,268:25476-25482
    Suorsa M., J rvi S., Grieco M., Nurmi M., Pietrzykowsk M., Rantala M., Kangasj rvi S.,Paakkarinen V., Tikkanen M., Jansson S., Aro E. M.. PROTON GRADIENTREGULATION5is essential for proper acclimation of Arabidopsis photosystem I tonaturally and artificially fluctuating light conditions. Plant Cell,2012,24:2934~2948
    Sun W.H., Duan M., Li F., Shu D.F., Yang S., Meng Q.W.. Overexpression of tomato tAPXgene in tobacco improves tolerance to high or low temperature stress. Biol. Plantarum,2010,54:614-620
    Sun W.H., Duan M, Shu D.F., Yang S., Meng Q.W.. Over-expression of StAPX in tobaccoimproves seed germination and increases early seedling tolerance to salinity and osmoticstresses. Plant Cell Rep.,2010,29:917~926
    Suzuki K., Nagasuga K., Okada M.. The chilling injury induced by high root temperature inthe leaves of rice seedlings. Plant Cell Physiol.,2008,49:433~442
    Sweetlove L. J., Lytovchenko A., Morgan M, Nunes-Nesi A., Taylor N.L., Baxter C.J.,Eickmeier I., Fernie A.R.. Mitochondrial uncoupling protein is required for efficientphotosynthesis. P. Natl. Acad. Sci. USA,2006,103:19587~19592
    Tausz M., ircelj H., Grill D.. The glutathione system as a stress marker in plantecophysiology: is a stress-response concept valid? J. Exp. Bot.,2004,55:1955~1962
    Takahashi S., Murata N.. Interruption of the Calvin cycle inhibits the repair of PhotosystemII from photodamage. Biochim. Biophys. Acta,2005,1708:352~361
    Takahashi S., Murata N.. How do environmental stresses accelerate photoinhibition? TrendsPlant Sci.,2008,13:178~182
    Takahashi S., Yoshioka-Nishimura M., Nanba D., Badger M.R.. Thermal acclimation of thesymbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. PlantPhysiol.,2013,161:477~485
    Teicher H.B., M ller B.L., Scheller H.V.. Photoinhibition of Photosystem I in field-grownbarley (Hordeum vulgare L.): Induction, recovery and acclimation. Photosynth Res.,2000,64:53~61
    Terashima I., Funayama S., Sonoike K.. The site of photoinhibition in leaves of Cucumissativus L.at low temperatures is photosystem I, not photosystem II. Planta,1994,193:300~306
    Thordal-Christensen H., Zhang Z., Wei Y., Collinge D.B.. Subcellular localization of H2O2inplants: H2O2accumulation in papillae and hypersensitive response during thebarley-powdery mildew interaction. Plant J.,1997,11:1187~1194
    Tjus S.E., M ller B.L., Scheller H.V.. Photosystem I is an early target of photoinhibition inbarley illuminated at chilling temperatures. Plant Physiol.,1998a,116:755~764
    Tjus S.E., Teicher H.B., M ller B.L., Scheller H.V.. Photoinhibitory damage of barleyPhotosystem I at chilling temperatures induced under controlled illumination is alsoidentified in the field. In: Garab G.(ed). Photosynthesis: Mechanisms and Effects.Netherlands: Kluwer Academic Publishers,1998b,2221-2224
    Tjus S.E., M ller B.L., Scheller H.V.. Photoinhibition of photosystem I damages bothreaction center proteins PS I-A and PS I-B and acceptor-side located small photosystemI polypeptide. Photosynth Res.,1999,60:75~86
    Valentini R., Epron D., De Angelis P., Matteucci G. and Dreyer E.. In situ estimation of netCO2assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q.cerris L.) leaves: diurnal cycles under different levels of water supply. Plant CellEnviron.,1995,18:631~640
    Vass I., Styring S., Hundal T., Koivuniemi A., Aro E.-M., Andersson B.. Reversible andirreversible intermediates during photoinhibition of photosystem II. Stable reduced QAspecies promote chlorophyll triplet formation. P. Natl. Acad. Sci. USA,1992,89:1408~1412.
    Wang P., Duan W., Takabayashi A., Endo T., Shikanai T., Ye J.Y., Mi H.L.. ChloroplasticNAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damagecaused by temperature stress. Plant Physiol.,2006,141:465~474
    Wang N., Fang W., Han H., Sui N., Li B., Meng Q.W.. Overexpression of zeaxanthinepoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light andchilling stress. Physiol. Plantarum,2008,132:384~396
    Wargent J.J., Jordan B.R.. From ozone depletion to agriculture: understanding the role of UVradiation in sustainable crop production. New Phytol.,2013,197:1058~1076
    Wraight C.A., Kraan G. P.B. and Gerrits N.M.. The pH dependence of delayed and promptfluorescence in uncoupled chloroplasts. Biochim. Biophys. Acta,1972,283:259~267
    Yamamoto Y., Satoh K.. Competitive inhibition analysis of the enzyme-substrate interactionin the carboxy-terminal processing of the precursor D1protein of photosystem IIreaction center using substituted oligopeptides. FEBS Lett.,1998,430:261~265
    Yamashita A., Nijo N., Pospí il P., Morita N., Takenaka D., Aminaka R., Yamamoto Y.,Yamamoto Y.. Quality control of photosystem II, reactive oxygen species are responsiblefor the damage to photosystem II under moderate heat stress. J. Biol. Chem.,2008,283:28380~28391
    Yang J.S., Wang R., Meng J.J., Bi Y.P., Xu P.L., Guo F., Wan S.B., He Q.W., Li X.G..Overexpression of Arabidopsis CBF1gene in transgenic tobacco alleviatesphotoinhibition of PSII and PSI during chilling stress under low irradiance. J. PlantPhysiol.,167,2010:534~539
    Yordanov I., Goltsev V., Stefanov D., Chernev P., Zaharieva I., Kirova M., Gecheva V.,Strasser R. J.. Preservation of photosynthetic electron transport from senescence-inducedinactivation in primary leaves after decapitation and defoliation of bean plants. J PlantPhysiol.,2009,165:1954~63
    Yoshida K., Watanabe C. K., Terashima K., Noguchi K.. Physiological impact ofmitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana.Plant, Cell and Environ.,2011,34:1890~1899
    Zhang Y., Ding S.H., Lu Q.T., Yang Z.P., Wen X.G., Zhang L.X., Lu C.M.. Characterizationof photosystem II in transgenic tobacco plants with decreased iron superoxide dismutase.Biochim. Biophys. Acta,2011,1807:391~403
    Zhang L.T., Zhang Z.S., Gao H.Y., Meng X.L., Yang C., Liu J.G., Meng Q.W.. Themitochondrial alternative oxidase pathway protects the photosynthetic apparatus againstphotodamage in Rumex K-1leaves. BMC Plant Biol.,2012,12:40
    Zhang S., Scheller H.V.. Photoinhibition of photosystem I at chilling temperature andsubsequent recovery in Arabidopsis thaliana. Plant Cell Physiol,2004,45:1595~1602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700