用户名: 密码: 验证码:
PGC-1α基因修饰的脂肪干细胞在糖尿病微环境中耐凋亡作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     糖尿病是一组以慢性血糖水平增高为特征的代谢性疾病,长期的高血糖症常导致的一系列血管和神经并发症,具有患病率高、危害大、常规治疗难、花费大的特点,迫切需要更加有效的治疗手段。近年来兴起的干细胞移植技术为糖尿病及其并发症的治疗带来了新的希望。然而,受局部微环境高糖、缺氧、营养缺乏等因素的影响,移植的干细胞常常大量凋亡或坏死,而少量残留干细胞不能持续分泌足够的促血管生成因子,导致糖尿病血管病变的治疗效果受限。因此,如何提高干细胞的存活率,成为干细胞移植治疗糖尿病及其相关并发症亟待解决的难题。
     过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activatedreceptor-gamma coactivator1alpha, PGC-1α)是1998年发现的一种调节线粒体功能和能量代谢的关键核转录因子,其通过与多种受体结合,参与线粒体增生、葡萄糖代谢、脂肪酸氧化、细胞分化及血管生成等。与此同时,近年来发现PGC-1α具有抗凋亡的作用。本课题组前期研究发现,PGC-1α能直接或间接通过Bcl/Bax途径和HIF途径,增强骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)抗凋亡和促血管生成潜能,促进糖尿病下肢缺血组织的血管生成。
     脂肪干细胞(adipose-derived stem cells, ASCs)是近年来干细胞移植领域研究的热点,与BMSCs相比,具有显著优势。脂肪组织中所含的ASCs比率高,是BMSCs的500多倍,低温冻存对细胞的生长和表型没有影响,具有免疫豁免潜力,获取方法简便,只需简单的抽脂术即可完成,患者较易接受,依从性更好。ASCs被认为是更符合再生医学和组织工程要求的理想干细胞来源。
     为此,本研究原代分离培养ASCs,并以ASCs为研究对象,通过检测过表达PGC-1α的ASCs在高糖、缺氧及无血清培养条件下细胞凋亡及活性氧簇物质(reactiveoxygen species, ROS)的产生情况,揭示过表达PGC-1α的ASCs耐凋亡及其机制,为干细胞移植治疗糖尿病及其并发症治疗提供新的靶细胞。
     材料与方法
     第一部分: Sprague-Dawley(SD)大鼠来源的脂肪干细胞分离培养及鉴定
     采用胶原酶消化法从SD大鼠腹股沟皮下脂肪组织分离培养原代ASCs,传至第3代时,进行以下检测:
     1.1倒置显微镜观察细胞形态;
     1.2流式细胞仪检测细胞表面分子标记:CD90、CD105、CD34、CD45;
     1.3多系分化检测:运用SD大鼠ASCs成脂诱导分化试剂盒所提供的特异性培养液对所培养的细胞进行成脂诱导分化后,采用油红O染色检测成脂能力;运用SD大鼠ASCs成骨诱导分化试剂盒所提供的特异性培养液对所培养的细胞进行成骨诱导分化后,采用茜素红染色检测成骨能力;
     1.4采用台盼蓝拒染法检测细胞活力。
     第二部分:PGC-1α基因修饰的脂肪干细胞在糖尿病微环境中耐凋亡的作用研究
     2.1腺病毒扩增及滴度测定
     2.1.1培养HEK293细胞用于扩增腺病毒;
     2.1.2TCID50(50%组织培养感染剂量)法测定重组腺病毒滴度。
     2.2ASCs转染携带绿色荧光蛋白(green fluorescent protein,GFP)和PGC-1α基因的腺病毒载体
     2.2.1流式细胞仪检测确立最佳感染系数(multiplicity of infection, MOI)值;
     2.2.2WB法检测PGC-1α转染ASCs后蛋白表达水平。
     2.3过表达PGC-1α的ASCs在高糖、缺氧及缺乏营养状态下耐凋亡效应
     2.3.1Annexin V-APC/7AAD细胞凋亡流式细胞仪检测试剂盒用于检测过表达PGC-1α的ASCs在高糖(30mmol/L)、缺氧(5%O2)、无血清0h、6h及24h状态下细胞凋亡率;
     2.3.2在高糖、缺氧、无血清状态下培养GFP-ASC及PGC-1α-ASC24h,ROS荧光探针-DHE标记细胞内ROS,流式细胞仪检测平均荧光强度;
     2.3.3Mito Tracker Red CM-H2XRos标记线粒体内ROS,激光共聚焦显微镜下观察线粒体内ROS产生情况;
     2.3.4透射电镜下观察细胞超微结构变化。
     结果:
     第一部分:ASCs分离培养及鉴定
     1.1SD大鼠腹股沟脂肪组织来源的多能干细胞可在体外培养并稳定增殖,细胞呈贴壁生长,呈明显的长梭形,细胞体细长,类似于成纤维细胞形态,排列规则,呈鱼群样,具有一定极性;传2-3代后,呈大而扁平的细胞形态。
     1.2分离培养ASCs传至第3代,经流式细胞仪检测细胞表面分子标记,结果显示,所培养的细胞CD90、CD105表达率分别为94.26%及95.83%,而CD34、CD45表达率分别仅为0.16%及0.09%。
     1.3分离培养的ASCs传至第3代,在成脂诱导分化培养液内能分化成为脂肪细胞,被油红O染成红色;在成骨诱导分化培养液内能分化成为成骨细胞,所形成的矿化结节被茜素红染成红色,而对照组均为阴性。
     1.4对所培养的ASCs经台盼蓝拒染法检测细胞活力,结果显示所培养的细胞台盼蓝拒染率为97%,被染成蓝色的死细胞数目极少,活细胞呈无色透明状,不被台盼蓝着色。
     第二部分:PGC-1α基因修饰的脂肪干细胞在糖尿病微环境中耐凋亡的作用研究
     2.1腺病毒扩增及滴度测定
     2.1.1HEK293细胞扩增腺病毒,Ad-PGC-1α感染HEK293细胞后24h,在荧光显微镜下观察可见约95%的细胞有GFP表达,感染48-72h细胞出现明显的细胞病变效应(cytopathic effect, CPE),感染96h可见部分细胞呈葡萄串珠样浮起,收获病毒。
     2.1.2TCID50法测定重组腺病毒滴度,经计算Ad-PGC-1α-GFP的滴度为2.0×108PFU/ml,Ad-GFP的滴度为2.5×108PFU/ml。
     2.2.重组腺病毒转染ASCs
     2.2.1最佳MOI值的确定:Ad-PGC-1α及Ad-GFP转染ASCs最佳MOI值为200,转染效率分别为95.3%及95.5%。
     2.2.2重组腺病毒转染ASCs48h后,经WB法检测PGC-1α蛋白表达,结果显示PGC-1α-ASC组的表达量是GFP-ASC组的2.8倍(P<0.01)。
     2.3过表达PGC-1α的ASCs在高糖、缺氧及缺乏营养状态下耐凋亡效应
     2.3.1经Annexin V-APC/7AAD法检测细胞在高糖、缺氧、无血清状态下凋亡率,结果显示:在高糖、缺氧及缺营养条件下培养ASC、GFP-ASC及PGC-1α-ASC24h,ASC组细胞凋亡率为(21.01±3.03%),GFP-ASCs组为(21.04±2.79%),显著高于PGC-1α-ASC组(14.73±1.57%)(P<0.01);在高糖、缺氧及缺营养条件下培养ASC、GFP-ASC及PGC-1α-ASC组6h及24h,PGC-1α-ASC组细胞存活率显著高于ASC组及GFP-ASCs组(P<0.01),而ASC组与GFP-ASC组比较,无统计学意义(P>0.05)。
     2.3.2经ROS荧光探针-DHE标记细胞内ROS,流式细胞仪检测结果表明:GFP-ASC组平均荧光强度为(853.44±76.72)显著高于PGC-1α-ASC组(688.67±43.98)(P<0.01)。
     2.3.3经Mito Tracker Red CM-H2XRos检测线粒体内ROS产生,激光共聚焦显微镜下可见PGC-1α-ASC组红色荧光强度明显低于GFP-ASC组。
     2.3.4透射电镜观察细胞内超微结构,可见GFP-ASC组细胞内线粒体形态结构异常,线粒体自噬严重,见细胞凋亡,而PGC-1α-ASC组细胞上述病变明显减轻。
     结论:
     从SD大鼠腹股沟皮下脂肪组织通过胶原酶消化法,可获取高存活率、稳定增殖、符合目前国内及国际鉴定标准的ASCs,为ASCs治疗糖尿病及相关并发症奠定了基础;通过重组腺病毒表达Ad-PGC-1α-GFP特异性上调ASCs中PGC-1α的表达,在高糖、缺氧及营养缺乏条件下,可能通过线粒体途径,抑制ASCs细胞及线粒体内ROS的产生发挥耐凋亡作用。表明,PGC-1α有可能成为糖尿病及其并发症的干细胞治疗关键的作用靶点,转染PGC-1α的ASCs可作为糖尿病及其并发症的干细胞治疗的靶细胞。
Background:
     Diabetes mellitus is a group of metabolic disease characterized by chronichyperglycaemia associated with a series of vascular and neural complications, which hassome features with high morbidity, large hazard, hard conventional therapy and expensivecost. The more effective therapeutic options are need badly to develop; stem cell therapyprovides new hope for diabetes and its complications in recent years. However, effect ofhyperglycaemia and deprivation of nutrient and oxygen in the diabetic regionmicroenvironment, the apoptosis or necrosis of a large number of transplanted stem cells isa critical issue that limits the therapeutic efficacy of stem cells. Therefore, how to increasethe survival rates of the stem cells and enchance angiogenesis potential has been an urgentresolved problem in the treatment of the diabetes and its complications.
     Peroxisome proliferator-activated receptor-gamma coactivator1alpha (PGC-1α) beinga key transcriptional coactivator involved in the regulation of mitochondrial function andenergy metabolism was found in1998, which binds with many receptors and plays animportant role in mitochondrial biogenesis, glucose metabolism, fatty acid oxidation, celldifferentiation and angiogenesis. In the meantime, many studies have shown that PGC-1αinvolves in anti-apoptosis in recent years. Our recent study suggested that PGC-1α plays animportant role in anti-apoptosis and mediated angiogenesis in mesenchymal stem cells indiabetic hindlimb ischaemia by inducing an increase in hypoxia inducible factor-1α(Hif-1α), a higher ratio of B-celllymphoma/leukaemia-2(Bcl-2)/Bcl-2-associated X protein(Bax) in bone marrow derived mesenchymal stem cells (BMSCs).
     Recently, adipose-derived stem cells (ASCs) have become the focus of attention in thefield of stem cells transplantation because of their ease of isolation, relative abundance, andrapidity of growth. Compared with BMSCs, the rate of stem cells derived from of fat tissueis higher than that of bone marrow. There is no influence of cryopreservation on cell growthand phenotype. ASCs have the potential of immune privilege. The method of harvest ASCs is simple and safe, which can be performed by liposuction. Emerging evidence suggests thatASCs will be an ideal source of stem cells in regenerative medicine and tissue engineering.
     Therefore, in this study, ASCs were isolated and cultured, whether the overexpressionof PGC-1α protects ASCs from apoptosis by reducing ROS production and ameliorating themitochondrial damage induced by a diabetic environment were examined, which maycontribute to the development of new approaches and provide target cells for preventingcomplications from diabetes.
     Materials and methods:
     1. Isolation, culture and identification of Sprague-Dawley (SD) rat ASCs
     ASCs were isolated and cultured with the method of collagenase digestion; cells wereexamined as follow after three passages.
     1.1The cell morphology was observed by inverted microscope.
     1.2The cell surface antigens CD90-FITC, CD105-FITC, CD34-PE and CD45-PE weredetected by flow cytometry.
     1.3Multilineage differentiation were accomplished using a special kit to determinewhether the culture cells were capable of adipogenic differentiation and osteogenicdifferentiation by oil red O staining and staining calcium deposits with alizarin red.
     1.4Trypan blue exclusion test was used to determine viability of cells.
     2. Overexpression of PGC-1α in ASCs using adenoviral vector encoding PGC-1α andGFP (Ad-GFP-PGC-1α or PGC-1α-ASC).
     2.1Adenovirus amplification and examination of the titer of the adenovirus.
     2.1.1HEK293cells were used to amplify the adenovirus.
     2.1.2The virus titer was determined by tissue culture infectious dose50(TCID50)assay.
     2.2ASCs transfection of adenovirus-mediated gene.
     2.2.1Multiplicity of infection (MOI) with high efficiency and low toxicity wasdetected by flow cytometry, and the ideal MOI was selected for the following experiments.
     2.2.2Western blotting (WB) was used to examine the protein levels of PGC-1α.
     2.3Resistant-apoptosis effect of ASCs with overexpression of PGC-1α under highglucose, hypoxia and serum deprivation conditions.
     2.3.1After being infected for48h, the apoptosis of ASCs modified with PGC-1α orGFP was induced by culture conditions of high glucose concentration (30mmol/L), hypoxia (5%O2) and serum deprivation. At0h,6h and24h after culture, the survival ratesof ASCs were measured using an Annexin V-APC/7-Amino-Actinomycin (7-AAD)apoptosis detection kit.
     2.3.2After being incubated GFP-ASC and PGC-1α-ASC under high glucose, hypoxiaand serum deprivation conditions for24h, the level of cellular ROS was deteced byfluorescent probe dihydroethidium (DHE) labelling.
     2.3.3Mitochondrial ROS production was detected by MitoTracker Red CM-H2XRos.
     2.3.4Transmission electron microscopy was used to observe the morphology andstructure of ASCs modified with PGC-1α or GFP under culture conditions of high glucose,hypoxia and serum deprivation for24h.
     Results:
     1. Isolation, culture and identification of rat ASCs
     1.1The multipotent stem cells being isolated from inguinal subcutaneous fat of SDrats could be culture and stable multiplication in vitro. The cells were able to grow adheringto the plastic wall and the morphology is obvious long fusiform shape like fibroblasts,which was present in regular arrange with certain polarity as school of fish. When beinggenerated to two or three passages, the cells morphology became big and flat.
     1.2After being generated third passage, the cell surface antigens were examined by theflow cytometry, the results showed that94.26%and95.83%ASCs were CD90and CD105positive respectively; however, only0.16%and0.09%ASCs were CD34and CD45antigenpositive respectively.
     1.3Multilineage differentiation was accomplished using a special kit to determinewhether the cultures were capable of adipogenic differentiation and osteogenicdifferentiation. The results indicated that the cultured rat ASCs could differentiate intoadipocytes, which could be stained by oil red O. ASCs could also differentiate intoadipocytes, the calcium deposits could be stained with alizarin red. But these of the controlwere all negative.
     1.4Trypan blue exclusion test was used to determine viability of cells; the resultshowed that the viability of cells was97%. The dead cells were few and could be stained bytrypan blue. The live cells were clear and could not be stained by trypan blue.
     2. Overexpression of PGC-1α in ASCs using adenoviral vector encoding PGC-1α andGFP (Ad-GFP-PGC-1α or PGC-1α-ASC)
     2.1Adenovirus amplification and examination of the titer of the adenovirus
     2.1.1HEK293cells were used to amplify the adenovirus.95%HEK293cellsexpressed GFP at24h after being infected with Ad-PGC-1α under fluorescence microscope,the cells appeared obvious cytopathic effect at48-72h after infection. The cells floatinglike string-of-bead grape could be harvested at96h after infection.
     2.1.2The virus titer was determined by TCID50assay. The virus titer ofAd-PGC-1α-GFP is2.0×108PFU/ml. The virus titer of Ad-GFP is2.5×108PFU/ml.
     2.2ASCs transfection of adenovirus-mediated gene
     2.2.1An ideal MOI of200with high efficiency and low toxicity was selected totransfect, the transfection efficiency of Ad-GFP-PGC-1α was95.3%and Ad-GFP was95.5%at48h after transfection, as being quantified to detect the number of GFP-positivecells by flow cytometry.
     2.2.2Expression of PGC-1α protein were2.8-fold higher in PGC-1α-transfected ASCsthan that in Ad-GFP transfected ASCs (P<0.01).
     2.3Resistant-apoptosis effect of ASCs with overexpression of PGC-1α under highglucose, hypoxia and serum deprivation conditions
     2.3.1Apoptosis of ASCs modified with PGC-1α or GFP was measured using anAnnexin V-APC/7-Amino-Actinomycin (7-AAD) apoptosis detection kit after beinginduced by culture conditions of high glucose concentration (30mmol/L), hypoxia (5%O2)and serum deprivation. At24h under conditions of high glucose, hypoxia and serumdeprivation, the apoptosis rate of the ASC group (21.01±3.03%) and the GFP-ASC group(21.04±2.79%) were significantly higher than that of the PGC-1α-ASC group(14.73±1.57%)(P<0.01). The survival rate of the PGC-1α-ASC group was significantlyhigher those of the ASC group and the GFP-ASC group at6h and24h of culture underthese conditions (P<0.01). There was no difference in ASC group and the GFP-ASC group(P>0.05).
     2.3.2GFP-ASCs and PGC-1α-ASC being incubated under high glucose, hypoxia andserum deprivation conditions for24h, the level of cellular ROS was estimated byfluorescent probe DHE labelling. The results showed that DHE-associated fluorescencesignificantly increased in GFP-ASCs (853.44±76.72) compared with PGC-1α-ASC(688.67±43.98)(P<0.01).
     2.3.3Mitochondrial ROS production being detected by MitoTracker Red CM-H2XRos also showed a reduction in red fluorescence accumulation in the mitochondria of thePGC-1α-ASC group.
     2.3.4Transmission electron microscopy was used to observe the morphology andstructure of ASCs modified with PGC-1α or GFP under culture conditions of high glucose,hypoxia and serum deprivation for24h. The results showed that The most striking changeswas abnomality of morphology and structure of mitochondria, obvious mitochondrialautophagia in GFP-ASC, but which relieved significantly in PGC-1α-ASC.
     Conclusions:
     ASCs can be harvested from inguinal subcutaneous fat pats of SD rats with the methodof collagenase digestion, the ASCs have a high live rate and can multiply in vitro. Themethod of isolation, culture and identification of ASCs is consistent with the standards ofdomestic and international standard, which establish a basis for the treatment of diabetesand its complications based on stem cells. Our data suggest that overexpression PGC-1αmay protect ASCs from apoptosis by reducing the overproduction of intracellular andintramitochondrial ROS, which can induce mitochondrial dysfunction under conditions ofhyperglycaemia and deprivation of nutrients and oxygen. These results have importantimplications because they indicate that PGC-1α is a potential target in the stem celltreatment of diabetes and its complications. PGC-1α transferred to ASCs can be useful stemcells in the treatment of diabetes and its complications.
引文
1Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: Mesenchymal stem cell treatment ofcomplications of diabetes mellitus. Stem Cells,2011,29(1):5-10.
    2Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate theremodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes,2008,116(2):104-11.
    3Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et al. Multipotent stromal cells from human marrow hometo and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A,2006,
    103(46):17438-43.
    4Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, et al. Transplantation of bone marrow-derivedmesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes,2008,57(11):3099-107.
    5Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derivedmesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol,2010,248(10):1415-22.
    6Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation andangiogenesis. Stem Cells,2007,25(10):2648-59.
    7Ishizuka T, Hinata T, Watanabe Y. Superoxide induced by a high-glucose concentration attenuates production ofangiogenic growth factors in hypoxic mouse mesenchymal stem cells. J Endocrinol,2011,208(2):147-59.
    8Lowell BB, Shulman GI. Mitochondrial dysfunction and type2diabetes. Science,2005,21;307(5708):384-7.
    1Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance.Nature,2006,440(7086):944-8.
    2Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev,2008,88(2):611-38.
    3Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator1alpha (PGC-1alpha):transcriptional coactivator and metabolic regulator. Endocr Rev,2003,24(1):78-90.
    4Lu D, Zhang L, Wang H, Zhang Y, Liu J, Xu J, et al. Peroxisome proliferator-activated receptor-gammacoactivator-1alpha (PGC-1alpha) enhances engraftment and angiogenesis of mesenchymal stem cells in diabetic hindlimbischemia. Diabetes,2012,61(5):1153-9.
    1Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am JHypertens,2001,14:475–486.
    2Jiang XY, Lu DB, Chen B. Progress in stem cell therapy for the diabetic foot. Diabetes Research and Clinical Practice,2012,97(1):43-50.
    3Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: Mesenchymal stem cell treatment ofcomplications of diabetes mellitus. Stem Cells,2011,29(1):5-10.
    4Toma C, Pittenger MF, Cahill KS, Byrne BJ Kessler PD. Human mesenchymal stem cells diferentiate to aeardiomyoeyte phenotype in the adult mufine heart. Circulation,2002,105:93-98.
    5Haider H, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem celltransplantation. J Mol Cell Cardiol,2008,45(4):554-66.
    6Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, et al. Persistent high glucose concentrations
    7alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev,2010,19(12):1875-84.Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature,1990,347(6294):645-50.
    1Puigserver P, Wu Z, Park CW, Graves R, Wright W, Spiegelman BM. A cold-inducible coactivator of nuclear receptorslinked to adaptive thermogenesis. Cell,1998,92(6):829-39.
    2Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator1alpha (PGC-1alpha):
    3transcriptional coactivator and metabolic regulator. Endocr Rev,2003,24(1):78-90.Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrialbiogenesis and respiration through the thermogenic coactivator PGC-1. Cell,1999,98(1):115-24.
    4Gerhart-Hines Z, Rodgers JT, Bare O, Kim C, Kim SH, Mostoslavsky R, et al. Metabolic control of musclemitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo Journal,2007,26(7):1913-23.
    5Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function inmammalian cells. Gene,2002,286(1):81-9.
    6Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion,2008,8(4):329-37.
    7Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, et al. The genetic ablation of SRC-3protects againstobesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A,2008,105(44):17187-92.
    1Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causesmulti-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoSBiol,2005,3(4):e101.
    2Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1alpha regulates the mitochondrial antioxidant
    3defense system in vascular endothelial cells. Cardiovasc Res,2005,66(3):562-73.Won JC, Park JY, Kim YM, Koh EH, Seol S, Jeon BH et al. Peroxisome proliferator-activated receptor-γ coactivator1-αoverexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler Thromb VascBiol,2010,30(2):290-7.
    4Lu D, Zhang L, Wang H, Zhang Y, Liu J, Xu J, et al. Peroxisome proliferator-activated receptor-gammacoactivator-1alpha (PGC-1alpha) enhances engraftment and angiogenesis of mesenchymal stem cells in diabetic hindlimbischemia. Diabetes,2012,61(5):1153-9.
    5Arany Z, Foo SY, Ma YH, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and
    6angiogenesis by the transcriptional coactivator PGC-1alpha. Nature,2008,451(7181):1008-U8.Hsueh WA, Gupte AA. PGC-1α: The Missing Ingredient for Mesenchymal Stem Cell-Mediated Angiogenesis.Diabetes,2012,61(5):979-80.
    1Hammarstedt A, Jansson PA, Wesslau C, Wesslau C, Yang X, Smith U. Reduced expression of PGC-1andinsulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem Biophys Res Commun,2003,301(2):578-82.
    2Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells from human adipose tissue: implicationsfor cell-based therapies. Tissue Eng,2001,7(2):211-28.
    3Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology.Trends Biotechnol,2006,24(4):150-4.
    4Liu G, Zhou H, Li Y, et al. Evaluation of the viability and osteogenic differentiation of cryopreserved human
    5adipose-derived stem cells. Cryobiology,2008,57(1):182-24.Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adipose tissue is a source of multipotent stemcells. Mol Biol Cell,2002,13(12):4279-95.
    6Gimble JM, Guilak F, Bunnell BA.Clinical and preclinical translation of cell-based therapies using adiposetissue-derived cells. Stem Cell Res Ther,2010,19(2):19.
    7Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells. Br J Haematol,2005,129(1):118-29.
    8Sadat S, Gehmert S, Song YH, et al.The cardioprotective effect of stem cells is mediated by IGF-I and VEGF. Biochem
    9Biophys Res Commun,2007,363(3):674-679.Li B, Zeng Q,Wang H,et al.Effect of cytokines secreted by human adipose stromal cells on endothelial cells. JHuazhong Univ Sci Technolog Med Sci,2006,26(4):396-398.
    1Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived fromadipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem,2007,20(6):867-76.
    1Lopez MJ, Spencer ND. In vitro adult rat adipose tissue-derived stromal cell isolation and differentiation. Methods MolBiol,2011,702:37–46.
    1Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M. Adipogenic differentiation of adipose tissue derived adultstem cells in nude mouse. Biochem Biophys Res Commun,2006,345(2):631-7.
    1Zaminy A, Ragerdi Kashani I, Barbarestani M, Hedayatpour A, Mahmoudi R, Farzaneh Nejad A. Osteogenicdifferentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem
    2cells: melatonin as a differentiation factor. Iran Biomed J,2008,12(3):133-41.Gaiba S, Franca LP, Franca JP, Ferreira LM. Characterization of human adipose-derived stem cells. Acta Cir Bras,2002,27(7):471-6.
    1Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, LiQ, Zhou Z, Shan G, He J; China National Diabetes and Metabolic Disorders Study Group. Prevalence of diabetes among
    2men and women in China. N Engl J Med,2010,362(12):1090–101.Reiber GE, Pecoraro RE, Keopsell, ID. Rish factors for amputation in patients with diabetes mellitus: A case-controlstudy. Ann Intern Med,1992,117(2):97-105.
    1Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, et al. Comparison of angiogenic potency betweenmesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res,2005,66(3):543-51.
    2Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bonemarrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind,randomized, controlled trial. Diabetes Res Clin Pract,2011,92(1):26-36.
    1Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells from human adipose tissue: implicationsfor cell-based therapies. Tissue Eng,2001,7(2):211-28.
    2Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology.
    3Trends Biotechnol,2006,24(4):150-4.Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adipose tissue is a source of multipotent stemcells. Mol Biol Cell,2002,13(12):4279-95.
    4Gimble JM, Guilak F, Bunnell BA.Clinical and preclinical translation of cell-based therapies using adiposetissue-derived cells. Stem Cell Res Ther,2010,1(2):19.
    5Oishi K, Noguchi H, Yukawa H, et al. Cryop reservati on of mouse adipose tissue2derived stem progenit or cells. CellTrans p lant,2008,17(1-2):35-41.
    6Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells. Br J Haematol,2005,129(1):118-29.
    Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T, et al. Characterization of adipose tissue-derived cellsisolated with the Celution system. Cytotherapy,2008,10(4):417-26.
    1Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stem and regenerative cells. MethodsMol Biol,2011,702:87-105.
    2Gimble JM, Katz AJ Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res,2007,100(9):1249-60.
    3Kim Y, Kim H, Cho H, Bae Y, Sun K, Jung J. Direct comparison of human mesenchymal stem cells derived fromadipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem,2007,(20)6:867-76.
    Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissuerepair. Curr Opin Organ Transplant,2010,15(1):86-91.
    1Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissuerepair. Curr Opin Organ Transplant,2010,15(1):86-91.
    Fraser J, Wulur I, Alfonso Z, Zhu M, Wheeler E. Differences in stem and progenitor cell yield in different subcutaneousadipose tissue depots. Cytotherapy,2007,9(5):459-67.
    1Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells from human adipose tissue: implicationsfor cell-based therapies. Tissue Eng,2001,7(2):211-28.
    2Pei XT. Beijing: Science Press.2006:84-90.裴雪涛.干细胞实验指南[M].北京:科学出版社,2006:84-90.
    3Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for definingmultipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy,2006,8(4):315-7.
    1孙鹏宇,张艳玲,荆玉明,张信基.腺病毒滴度不同测定方法比较.南方医科大学学报,2011,31(2):88-92.
    1Zuk PA. Viral transduction of adipose-derived stem cells. Methods Mol Biol,2011,702:345-57.
    1McLaren A. Ethical and social considerations of stem cell research. Nature,2001,414(6859):129-31.
    2Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, et al. Multilineage cells from adipose tissue asgene delivery vehicles. Hum Gene Ther,2003,14(1):59-66.
    Zuk PA. Viral transduction of adipose-derived stem cells. Methods Mol Biol,2011,702:345-57.
    4Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, et al. Healing of critically sized femoral defects,using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng,2005,11(1-2):120-9.
    5Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J, et al. Bone induction by BMP-2transduced stem cellsderived from human fat. J Orthop Res,2003,21(4):622-9.
    6Feng G, Wan Y, Balian G, Laurencin CT, Li X. Adenovirus-mediated expression of growth and differentiation factor-5promotes chondrogenesis of adipose stem cells. Growth Factors,2008,26(3):132-42.
    7Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebraltransplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol,2003,183(2):355-66.
    1Won JC, Park JY, Kim YM, Koh EH, Seol S, Jeon BH et al. Peroxisome proliferator-activated receptor-γ coactivator1-αoverexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler Thromb VascBiol,2010,30(2):290-7.
    2Lu D, Zhang L, Wang H, Zhang Y, Liu J, Xu J, et al. Peroxisome proliferator-activated receptor-gammacoactivator-1alpha (PGC-1alpha) enhances engraftment and angiogenesis of mesenchymal stem cells in diabetic hindlimbischemia. Diabetes,2012,61(5):1153-9.
    3Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxideproduction blocks three pathways of hyperglycaemic damage. Nature,2000,404:787-90.
    Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeuticapproaches. Ann N Y Acad Sci,2005,1066:136-51.
    1Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrialbiogenesis and respiration through the thermogenic coactivator PGC-1. Cell,1999,98(1):115-24.
    2Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genesinvolved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet,2003,34(3):267-73.
    Giugliano D, Ceriello A, Paolisso G: Oxidative stress and diabetic vascular complications. Diabetes Care,1996,19:257-267.
    4Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D et al. Diabetes associated cell stress anddysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol,2007,583(Pt a):9-24.
    5Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK et al. Elevated PGC-1alpha activity sustainsmitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab,2012,15(5):778-86.
    6Won JC, Park JY, Kim YM, Koh EH, Seol S, Jeon BH et al. Peroxisome proliferator-activated receptor-γ coactivator1-αoverexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler Thromb VascBiol,2010,30(2):290-7.
    1Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha and Gabpa/b specifyPGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad SciU S A,2004,101(17):6570-5.
    2Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, et al. The estrogen-related receptor alpha(ERRalpha) functions in PPARgamma coactivator1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc NatlAcad Sci U S A,2004,101(17):6472-7.
    1Yamanaka S, Takahashi K. Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu KakusanKoso,2006,51(15):2346-51.
    2Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther,2008,10(5):223.
    Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp Hematol,1976,4(5):267-74
    1Caplan AI. Mesenchymal stem cells. J Orthop Res,1991,9(5):641-50.
    2Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells from human adipose tissue: implicationsfor cell-based therapies. Tissue Eng,2001,7(2):211-28.
    3Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell,2010,21(11):1783-7.
    4Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adipose tissue is a source of multipotent stemcells. Mol Biol Cell,2002,13(12):4279-95.
    Gimble JM, Katz AJ Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res,2007,100(9);1249-60.
    1Zuk PA. Consensus statement. Paper presented at: International Fat Applied Technology Society2nd InternationalMeeting,2004, Pittsburg, PA.
    2Gimble JM, Katz AJ Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res,2007,100(9);1249-60.
    3Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell,2010,21(11):1783-7.
    4Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg,1999,26(4):587-603.
    De Ugarte D A, Morizono K, Elbarbary A, et al. Comparison of multilineage cells from human adipose tissue and bonemarrow. Cells Tissues Organs,2003,174(3):101-109.
    1von Heimburg D, Hemmrich K, Haydarlioglu S, Staiger H, Pallua N. Comparison of viable cell yield from excisedversus aspirated adipose tissue. Cells Tissues Organs,2004,178(2):87-92.
    2Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stemcells from liposuction aspirates. Cytotherapy,2004,6(1):7-14.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology.Trends Biotechnol,2006,24(4):150-4.
    4Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of humanadipose tissue-derived stromal cells. J Cell Physiol,2001,189(1):54-63.
    5Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adipose tissue is a source of multipotent stemcells. Mol Biol Cell,2002,13(12):4279-95.
    6Gimble JM, Guilak F, Bunnell BA.Clinical and preclinical translation of cell-based therapies using adiposetissue-derived cells. Stem Cell Res Ther,2010,19(2):19.
    Oishi K, Noguchi H, Yukawa H, et al. Cryop reservati on of mouse adipose tissue-derived stem progenit or cells. CellTrans p lant,2008,17(122):35-41.
    1Aust L,Devlin B, Foster SJ, et al. Yield of human adipose derived adult stem cells from liposuction aspirates.Cytotherapy,2004,6(1):7-14.
    2Li B,Zeng Q,Wang H,et al.Effect of cytokines secreted by human adipose stromal cells on endothelial cells. JHuazhong Univ Sci Technolog Med Sci,2006,26(4):396-398.
    3Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells:a critical role of secretory factorson human dermal fibroblasts. J Dermatol Sci,2007,48(1):15-24.
    4Lee SW, Padmanabhan P, Ray P, Gambhir SS, Doyle T, Contag C, et al. Stem cell-mediated accelerated bone healingobserved with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res,2009,27(3):295-302.
    5Miranville, A, Heeschen, C, Sengenès C et al. Improvement of postnatal neovascularization by human adiposetissue-derived stem cells. Circulation,2004,110,349-355.
    6Sadat S, Gehmert S, Song YH, et al.The cardioprotective effect of stem cells is mediated by IGF-I and VEGF [J].Biochem Biophys Res Commun,2007,363(3):674-679.
    Li B,Zeng Q,Wang H,et al.Effect of cytokines secreted by human adipose stromal cells on endothelial cells. JHuazhong Univ Sci Technolog Med Sci,2006,26(4):396-398.
    1Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of Bone marrow and cord blood mesenchymal stem cells invitro is Regulated by stromal-derived factor-1-CXCR4and hepatocyte growth factor-c-met axes and involves matrixmetalloproteinases. Stem Cells,2006,24(5):1254-1264.
    Kilroy GE,Foster SJ,Wu X,et al.Cytokine profile of human dipose-derived stem cells: expression of angiogenic,hematopoietic, and proinflammatory factors. J Cell Physiol,2007,212(3):702-709.
    1Lendechel S, Jodiche A, Christophis P, et al: Autolopous stem cells (adipose) and fibrin glue used to treat widespreadtraumatic calvarial defect: case report. J Craniomaxillofac Surg,2004,32:370-373.
    2Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: Adipose-derived stromal vascular fraction cells and stemcells: let's not get lost in translation. Stem Cells,2011,29(5):749-54.
    3Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R, et al. Cytosine deaminaseexpressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med,2008,10(10):1071-82.
    4Miranville, A, Heeschen, C, Sengenès C et al. Improvement of postnatal neovascularization by human adiposetissue-derived stem cells. Circulation,2004,110,349-355.
    5Planat-Benard, V, Silvestre, JS, Cousin, B et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives. Circulation,2004,109,656-663..
    6Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev,2011,20(10):1805-16
    7Ando Y, Inaba M, Sakaguchi Y, et al. Subcutaneous adipose tissue-derived stem cells facilitate colonic mucosalrecovery from2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Inflamm Bowel Dis,2008,14(6):826-838.
    1Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells:a critical role of secretory factorson human dermal fibroblasts. J Dermatol Sci,2007,48(1):15-24.
    Shigemura N, Okumura M, Mizuno S, et al. Autologous transplantation of adipose tissue-derived stromal cellsameliorates pulmonary emphysema. Am J Transplant,2006,6(11):2592-2600.
    3Lu F,Mizuno H,Uysal CA,et al.Improved viability of random pattern skin flaps through the use of adipose-derived stemcells.Plast Reconstr Surg,2008,121(1):50-58.
    4Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert OpinBiol Ther,2009,9(7):879-87.
    5Nambu M, Ishihara M, Nakamura S, et al: Enhanced healing of mitomycin C-treated wounds in rats using inbredadipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen,2007,15(4):505-510.
    Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG. Adipose-derived stem cells for wound healingapplications. Ann Plast Surg,2011,66(2):210-215.
    1Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration.Proc Natl Acad Sci U S A,2006,103(5):1283-8.
    2Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, et al. Treatment of type1diabetes with adipose tissue-derived stemcells expressing pancreatic duodenal homeobox1. Stem Cells Dev,2009,18(10):1399-406.
    3Garcia MM, Fandel TM, Lin G, Shindel AW, Banie L, Lin CS, et al. Treatment of erectile dysfunction in the obese typediabetic ZDF rat with adipose tissue-derived stem cells. J Sex Med,2010,7(1Pt1):89-98.
    4McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Halvorsen YD, Ting JP, Storms RW,Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose derived cells: temporal changes in vitro.Stem Cells,2006,24:1245–1253.
    1Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T, et al. Characterization of adipose tissue-derived cellsisolated with the Celution system. Cytotherapy,2008,10(4):417-26
    Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stem and regenerative cells. MethodsMol Biol,2011,702:87-105.
    1Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature,1990,347(6294):645-50.
    2Puigserver P, Ribot J, Serra F, Gianotti M, Bonet ML, Nadal-Ginard B, et al. Involvement of the retinoblastoma proteinin brown and white adipocyte cell differentiation: functional and physical association with the adipogenic transcriptionfactor C/EBPalpha. Eur J Cell Biol,1998,77(2):117-23.
    3Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator actived receptor gamma coactivator1beta (PGC-1beta), a noval PGC-1-related transcription coactivator with hose cell factor. J Biol Chen,2002,277(3):1645-1648.
    4Andersson U, Scarpulla RC. PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratoryfactor1-dependent transcription in mammalian cell. Mol Cell Biol,2001,21(11):3738-3749.
    5Puigserver P, Ribot J, Serra F, Gianotti M, Bonet ML, Nadal-Ginard B, et al. Involvement of the retinoblastoma proteinin brown and white adipocyte cell differentiation: functional and physical association with the adipogenic transcriptionfactor C/EBPalpha. Eur J Cell Biol,1998,77(2):117-23.
    1Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrialbiogenesis and respiration through the thermogenic coactivator PGC-1. Cell,1999,98(1):115-24
    2Gerhart-Hines Z, Rodgers JT, Bare O, Kim C, Kim SH, Mostoslavsky R, et al. Metabolic control of musclemitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo Journal,2007,26(7):1913-23.
    3Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator1alpha (PGC-1alpha):Transcriptional coactivator and metabolic regulator. Endocrine Reviews,2003,24(1):78-90.
    4Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, et al. The genetic ablation of SRC-3protects againstobesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A,2008,5105(44):17187-92.
    Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev,2008,88(2):611-38.
    1Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrialbiogenesis and respiration through the thermogenic coactivator PGC-1. Cell,1999,98(1):115-24
    2Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function inmammalian cells. Gene,2002,286(1):81-9.
    3Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism withCNS-linked hyperactivity in PGC-1alpha null mice. Cell,2004,119(1):121-35.
    Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism withCNS-linked hyperactivity in PGC-1alpha null mice. Cell,2004,119(1):121-35.
    5Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrialbiogenesis and respiration through the thermogenic coactivator PGC-1. Cell,1999,98(1):115-24
    6Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-relatedcoactivator. Ann N Y Acad Sci,2008,1147:321-34.
    7Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev,82004,84:277-359.
    Nisoli E, Clementi E, Paolucci, etal, Mitochondrial biogenesis in mammals: the role of endogenous notric oxide.Science,2003,299:896-899.
    1Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type2diabetes.Diabetes,2002,51(10):2944-50.
    Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly:possible role in insulin resistance. Science,2003,300(5622):1140-2
    3Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genesinvolved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet,2003,34(3):267-73.
    4Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated withimprovements in insulin sensitivity in obesity. Diabetes,2003,52(9):2191-7.
    5Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance.Nature,2006,440(7086):944-8.
    Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesisthrough FOXO1-PGC-1alpha interaction. Nature.2003May29;423(6939):550-5.
    1Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, et al. Mutation analysis of peroxisomeproliferator-activated receptor-gamma coactivator-1(PGC-1) and relationships of identified amino acid polymorphismsto Type II diabetes mellitus. Diabetologia.2001Dec;44(12):2220-6.
    2Muller YL, Bogardus C, Pedersen O, Baier L. A Gly482Ser missense mutation in the peroxisome proliferator-activatedreceptor gamma coactivator-1is associated with altered lipid oxidation and early insulin secretion in Pima Indians.Diabetes.2003Mar;52(3):895-8.
    3Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, et al. A genetic variation in the PGC-1gene could conferinsulin resistance and susceptibility to Type II diabetes. Diabetologia.2002May;45(5):740-3.
    4单莉,王辰,纪立农,杨泽,朱倩. PGC-1基因Gly482Ser多态性与2型糖尿病的相关性研究.中国糖尿病杂志,2006,17(3):77-82.
    5Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causesmulti-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoSBiol,2005,3(4):e101.
    1Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha and Gabpa/b specifyPGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad SciU S A,2004,101(17):6570-5.
    2Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, et al. The estrogen-related receptor alpha(ERRalpha) functions in PPARgamma coactivator1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc NatlAcad Sci U S A,2004,101(17):6472-7.
    3Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, et al. The estrogen-related receptor alpha(ERRalpha) functions in PPARgamma coactivator1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc NatlAcad Sci U S A,2004,101(17):6472-7.
    4Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha and Gabpa/b specifyPGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad SciU S A,2004,101(17):6570-5.
    [1] Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: Mesenchymalstem cell treatment of complications of diabetes mellitus. Stem Cells,2011,29(1):5-10.
    [2] Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cellsinduce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. ExpClin Endocrinol Diabetes,2008,116(2):104-11.
    [3] Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, et al. Hsp20-engineeredmesenchymal stem cells are resistant to oxidative stress via enhanced activation ofAkt and increased secretion of growth factors. Stem Cells,2009,27(12):3021-31.
    [4] Stroedter D, Schmidt T, Bretzel RG, Federlin K. Glucose metabolism and leftventricular dysfunction are normalized by insulin and islet transplantation in milddiabetes in the rat. Acta Diabetol,1995,32(4):235-43.
    [5] Abdel Aziz MT, El-Asmar MF, Haidara M, Atta HM, Roshdy NK, Rashed LA, et al.Effect of bone marrow-derived mesenchymal stem cells on cardiovascularcomplications in diabetic rats. Med Sci Monit,2008,14(11):BR249-55.
    [6] Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA. Systemicadministration of multipotent mesenchymal stromal cells reverts hyperglycemia andprevents nephropathy in type1diabetic mice. Biol Blood Marrow Transplant,2008,14(6):631-40.
    [7] Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et al. Multipotent stromalcells from human marrow home to and promote repair of pancreatic islets and renalglomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A,2006,103(46):17438-43.
    [8] Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, et al.Transplantation of bone marrow-derived mesenchymal stem cells improves diabeticpolyneuropathy in rats. Diabetes,2008,57(11):3099-107.
    [9] Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy byengrafted human adipose-derived mesenchymal stem cells in streptozotocin diabeticrats. Graefes Arch Clin Exp Ophthalmol,2010,248(10):1415-22.
    [10] Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, et al. Treatmentwith bone marrow-derived stromal cells accelerates wound healing in diabetic rats.Int Wound J,2008,5(3):453-63.
    [11] Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance woundhealing through differentiation and angiogenesis. Stem Cells,2007,25(10):2648-59.
    [12] Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologousbone marrow-derived cultured mesenchymal stem cells delivered in a fibrin sprayaccelerate healing in murine and human cutaneous wounds. Tissue Eng,2007,13(6):1299-312.
    [13] Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, et al. Advanced glycationend-products attenuate human mesenchymal stem cells and prevent cognatedifferentiation into adipose tissue, cartilage, and bone. J Bone Miner Res,2005,20(9):1647-58.
    [14] Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, et al.Persistent high glucose concentrations alter the regenerative potential ofmesenchymal stem cells. Stem Cells Dev,2010,19(12):1875-84.
    [15] Ishizuka T, Hinata T, Watanabe Y. Superoxide induced by a high-glucoseconcentration attenuates production of angiogenic growth factors in hypoxic mousemesenchymal stem cells. J Endocrinol,2011,208(2):147-59.
    [16] Lowell BB, Shulman GI. Mitochondrial dysfunction and type2diabetes. Science,2005,21;307(5708):384-7.
    [17] Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physicalactivity is associated with improvements in insulin sensitivity in obesity. Diabetes,2003,52(9):2191-7.
    [18] Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role inmultiple forms of insulin resistance. Nature,2006,440(7086):944-8.
    [19] Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis andfunction. Physiol Rev,2008,88(2):611-38.
    [20] Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion,2008,8(4):329-37.
    [21] Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gammacoactivator1alpha (PGC-1alpha): transcriptional coactivator and metabolic regulator.Endocr Rev,2003,24(1):78-90.
    [22] Knutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab,2001,12(8):360-5.
    [23] Lu D, Zhang L, Wang H, Zhang Y, Liu J, Xu J, et al. Peroxisomeproliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) enhancesengraftment and angiogenesis of mesenchymal stem cells in diabetic hindlimbischemia. Diabetes,2012,61(5):1153-9.
    [24] Virsaladze D, Kipiani V. Endothelial dysfunction in diabetic vasculopathy. AnnBiochem Res Educ,2001,1:44–48.
    [25] Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabeticvasculopathy: an overview. Am J Hypertens,2001,14:475–486.
    [26] Clark CM Jr, Lee DA. Prevention and treatment of the complications of diabetesmellitus. N Engl J Med,1995,332:1210–1217.
    [27]陈兵.糖尿病足的干细胞治疗[J].中国处方药,2010,102:44-46.
    [28] Jiang XY, Lu DB, Chen B. Progress in stem cell therapy for the diabetic foot.Diabetes Research and Clinical Practice,2012,97(1):43-50.
    [29] Lu D, Chen B, Liang Z, et al. Comparison of bone marrow mesenchymal stem cellswith bone marrow-derived mononuclear cells for treatment of diabetic critical limbischemia and foot ulcer: A double-blind, randomized, controlled trial. Diabetes ResClin Pract,2011;(92):26-36.
    [30] Toma C, Pittenger MF, Cahill KS, Byrne BJ Kessler PD. Human mesenchymal stemcells diferentiate to a eardiomyoeyte phenotype in the adult mufine heart. Circulation,2002,105:93-98.
    [31] Meyer, G P,Wollert KC, Lotz J, Steffens J, Lippolt P et al. Intracoronary bone marrowcell transfer after myocardial infarction: eighteen months follow—up data from therandomized, controlled BOOST (Bone marrow transfer to enhance ST elevationinfarct regeneration)trial.Circulation,2006,113(10):1287-1294.
    [32] Haider H, Ashraf M. Strategies to promote donor cell survival: combiningpreconditioning approach with stem cell transplantation. J Mol Cell Cardiol,2008,45(4):554-66.
    [33] Issemann I, Green S. Activation of a member of the steroid hormone receptorsuperfamily by peroxisome proliferators. Nature,1990,347(6294):645-50.
    [34] Puigserver P, Ribot J, Serra F, Gianotti M, Bonet ML, Nadal-Ginard B, et al.Involvement of the retinoblastoma protein in brown and white adipocyte celldifferentiation: functional and physical association with the adipogenic transcriptionfactor C/EBPalpha. Eur J Cell Biol,1998,77(2):117-23.
    [35] Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al.Mechanisms controlling mitochondrial biogenesis and respiration through thethermogenic coactivator PGC-1. Cell,1999,98(1):115-24
    [36] Gerhart-Hines Z, Rodgers JT, Bare O, Kim C, Kim SH, Mostoslavsky R, et al.Metabolic control of muscle mitochondrial function and fatty acid oxidation throughSIRT1/PGC-1alpha. Embo Journal,2007,26(7):1913-23.
    [37] Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1family oftranscription coactivators. Cell Metab,2005,1(6):361-70.
    [38] Scarpulla RC. Transcriptional activators and coactivators in the nuclear control ofmitochondrial function in mammalian cells. Gene,2002,286(1):81-9.
    [39] Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis andfunction. Physiol Rev,2008,88(2):611-38.
    [40] Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion,2008,8(4):329-37.
    [41] Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, et al. The geneticablation of SRC-3protects against obesity and improves insulin sensitivity byreducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A,2008,105(44):17187-92.
    [42] Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al.PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscledysfunction, abnormal weight control and hepatic steatosis. PLoS Biol,2005,3(4):e101.
    [43] Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1alpha regulatesthe mitochondrial antioxidant defense system in vascular endothelial cells.Cardiovasc Res,2005,66(3):562-73.
    [44] Won JC, Park JY, Kim YM, Koh EH, Seol S, Jeon BH et al. Peroxisomeproliferator-activated receptor-γ coactivator1-α overexpression prevents endothelialapoptosis by increasing ATP/ADP translocase activity. Arterioscler Thromb Vasc Biol,2010,30(2):290-7.
    [45] Arany Z, Foo SY, Ma YH, Ruas JL, Bommi-Reddy A, Girnun G, et al.HIF-independent regulation of VEGF and angiogenesis by the transcriptionalcoactivator PGC-1alpha. Nature,2008,451(7181):1008-U8.
    [46] Hsueh WA, Gupte AA. PGC-1α: The Missing Ingredient for Mesenchymal StemCell-Mediated Angiogenesis. Diabetes,2012,61(5):979-80.
    [47] Hammarstedt A, Jansson PA, Wesslau C, Wesslau C, Yang X, Smith U. Reducedexpression of PGC-1and insulin-signaling molecules in adipose tissue is associatedwith insulin resistance. Biochem Biophys Res Commun,2003,301(2):578-82.
    [48] Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells fromhuman adipose tissue: implications for cell-based therapies. Tissue Eng,2001,7(2):211-28.
    [49] Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source ofstem cells for biotechnology. Trends Biotechnol,2006,24(4):150-4.
    [50] Liu G, Zhou H, Li Y, et al. Evaluation of the viability and osteogenic differentiation ofcryopreserved human adipose-derived stem cells. Cryobiology,2008,57(1):182-24.
    [51] Oishi K, Noguchi H, Yukawa H, et al. Cryop reservati on of mouse adipose tissue2derived stem progenit or cells. Cell Trans p lant,2008,17(122):352-41.
    [52] Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adiposetissue is a source of multipotent stem cells. Mol Biol Cell,2002,13(12):4279-95.
    [53] García-Arranz M, Gómez-Pinedo U, Hardisson D, et al. ological analysis of humanspecimens removed from the injection area of expanded adipose-derived stem cells.Histopathology,2010,56(7):979-982.
    [54] Fang B, Li Y, Song Y,et al. Human adipose tissue-derived adult stem cells can lead tomultiorgan engraftment. Transplant Proc,2010,42(5):1849-1856.
    [55] Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells:recent scientific consensus and controversy. Aesthet Surg J,2010,30(3):381-387.
    [56] Estes BT, Diekman BO, Gimble JM, et al. Isolation of adipose-derived stem cells andtheir induction to a chondrogenic phenotype. Nat Protoc,2010,5(7):1294-1311.
    [57] Gimble JM, Guilak F, Bunnell BA.Clinical and preclinical translation of cell-basedtherapies using adipose tissue-derived cells. Stem Cell Res Ther,2010,19(2):19.
    [58] Aust L,Devlin B, Foster SJ, et al. Yield of human adipose derived adult stem cellsfrom liposuction aspirates. Cytotherapy,2004,6(1):7-14.
    [59] Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adiposetissue-derived adult stem cells: comparison with bone marrow mesenchymal stemcells. Br J Haematol,2005,129(1):118-29.
    [60] Wolbank, S, Peterbauer, A, Fahrner, M, et al. Dose-dependent immunomodulatoryeffect of human stem cells from amniotic membrane: a comparison with humanmesenchymal stem cells from adipose tissue. Tissue Eng,2007,13(6):1173-83.
    [61] Sadat S, Gehmert S, Song YH, et al.The cardioprotective effect of stem cells ismediated by IGF-I and VEGF. Biochem Biophys Res Commun,2007,363(3):674-679.
    [62] Li B, Zeng Q,Wang H,et al.Effect of cytokines secreted by human adipose stromalcells on endothelial cells. J Huazhong Univ Sci Technolog Med Sci,2006,26(4):396-398.
    [63] Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of humanmesenchymal stem cells derived from adipose tissues and bone marrow in mediatingneovascularization in response to vascular ischemia. Cell Physiol Biochem,2007,20(6):867-76.
    [64] Lopez MJ, Spencer ND. In vitro adult rat adipose tissue-derived stromal cell isolationand differentiation. Methods Mol Biol,2011,702:37–46.
    [65] Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M. Adipogenic differentiation ofadipose tissue derived adult stem cells in nude mouse. Biochem Biophys ResCommun,2006,345(2):631-7.
    [66] Zaminy A, Ragerdi Kashani I, Barbarestani M, Hedayatpour A, Mahmoudi R,Farzaneh Nejad A. Osteogenic differentiation of rat mesenchymal stem cells fromadipose tissue in comparison with bone marrow mesenchymal stem cells: melatoninas a differentiation factor. Iran Biomed J,2008,12(3):133-41.
    [67] Gaiba S, Franca LP, Franca JP, Ferreira LM. Characterization of humanadipose-derived stem cells. Acta Cir Bras,2002,27(7):471-6.
    [68] Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS. Characterizationand expression analysis of mesenchymal stem cells from human bone marrow andadipose tissue. Cell Physiol Biochem,2004,14(4-6):311-24.
    [69] Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J,Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J; China National Diabetesand Metabolic Disorders Study Group. Prevalence of diabetes among men andwomen in China. N Engl J Med,2010,362(12):1090–101.
    [70] Reiber GE, Pecoraro RE, Keopsell, ID. Rish factors for amputation in patients withdiabetes mellitus: A case-control study. Ann Intern Med,1992,117(2):97-105.
    [71] Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, et al. Comparison ofangiogenic potency between mesenchymal stem cells and mononuclear cells in a ratmodel of hindlimb ischemia. Cardiovasc Res,2005,66(3):543-51.
    [72] Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrowmesenchymal stem cells with bone marrow-derived mononuclear cells for treatmentof diabetic critical limb ischemia and foot ulcer: A double-blind, randomized,controlled trial. Diabetes Res Clin Pract,2011,92(1):26-36.
    [73] Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells fromhuman adipose tissue: implications for cell-based therapies. Tissue Eng,2001,7(2):211-28.
    [74] Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source ofstem cells for biotechnology. Trends Biotechnol,2006,24(4):150-4.
    [75] Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adiposetissue is a source of multipotent stem cells. Mol Biol Cell,2002,13(12):4279-95.
    [76] García-Arranz M, Gómez-Pinedo U, Hardisson D, et al. ological analysis of humanspecimens removed from the injection area of expanded adipose-derived stem cells.Histopathology,2010,56(7):979-982.
    [77] Fang B, Li Y, Song Y,et al. Human adipose tissue-derived adult stem cells can lead tomultiorgan engraftment. Transplant Proc,2010,42(5):1849-1856.
    [78] Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells:recent scientific consensus and controversy. Aesthet Surg J,2010,30(3):381-387.
    [79] Estes BT, Diekman BO, Gimble JM, et al. Isolation of adipose-derived stem cells andtheir induction to a chondrogenic phenotype. Nat Protoc,2010,5(7):1294-1311.
    [80] Gimble JM, Guilak F, Bunnell BA.Clinical and preclinical translation of cell-basedtherapies using adipose tissue-derived cells. Stem Cell Res Ther,2010,19(2):19.
    [81] Liu G, Zhou H, Li Y, et al. Evaluation of the viability and osteogenic differentiation ofcryopreserved human adipose-derived stem cells. Cryobiology,2008,57(1):18-24.
    [82] Oishi K, Noguchi H, Yukawa H, et al. Cryop reservati on of mouse adipose tissue2derived stem progenit or cells. Cell Trans p lant,2008,17(122):35-41.
    [83] Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adiposetissue-derived adult stem cells: comparison with bone marrow mesenchymal stemcells. Br J Haematol,2005,129(1):118-29.
    [84] Wolbank, S, Peterbauer, A, Fahrner, M, et al. Dose-dependent immunomodulatoryeffect of human stem cells from amniotic membrane: a comparison with humanmesenchymal stem cells from adipose tissue. Tissue Eng,2007,13(6):1173-83.
    [85] Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T, et al. Characterizationof adipose tissue-derived cells isolated with the Celution system. Cytotherapy,2008,10(4):417-26.
    [86] Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stemand regenerative cells. Methods Mol Biol,2011,702:87-105.
    [87] Gimble JM, Katz AJ Bunnell BA. Adipose-derived stem cells for regenerativemedicine. Circ Res,2007,100(9):1249-60.
    [88] Direct comparison of human mesenchymal stem cells derived from adipose tissuesand bone marrow in mediating neovascularization in response to vascular ischemia.Cell Physiol Biochem,2007,(20)6:867-76.
    [89] Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stemcells in vascular growth and tissue repair. Curr Opin Organ Transplant,2010,15(1):86-91.
    [90] Fraser J, Wulur I, Alfonso Z, Zhu M, Wheeler E. Differences in stem and progenitorcell yield in different subcutaneous adipose tissue depots. Cytotherapy,2007,9(5):459-67.
    [91] Banas A. Purification of adipose tissue mesenchymal stem cells and differentiationtoward hepatic-like cells. Methods Mol Biol,2012,826:61-72.
    [92] De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al.Comparison of multi-lineage cells from human adipose tissue and bone marrow. CellsTissues Organs,2003,174(3):101-9.
    [93] Pei XT. Beijing: Science Press.2006:84-90.裴雪涛.干细胞实验指南[M].北京:科学出版社,2006:84-90.
    [94] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al.Minimal criteria for defining multipotent mesenchymal stromal cells. TheInternational Society for Cellular Therapy position statement. Cytotherapy,2006,8(4):315-7.
    [95] Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells--basicand clinical implications for novel cell-based therapies. Stem Cells,2007,25(4):818-27.
    [96]孙鹏宇,张艳玲,荆玉明,张信基.腺病毒滴度不同测定方法比较.南方医科大学学报,2011,31(2):88-92.
    [97] Zuk PA. Viral transduction of adipose-derived stem cells. Methods Mol Biol,2011,702:345-57.
    [98] McLaren A. Ethical and social considerations of stem cell research. Nature,2001,414(6859):129-31.
    [99] Lomax GP, Shepard KA. Return of results in translational iPS cell research:considerations for donor informed consent. Stem Cell Res Ther,2013,21;4(1):6.
    [100] Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, et al.Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther,2003,14(1):59-66.
    [101] Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J, et al. Bone inductionby BMP-2transduced stem cells derived from human fat. J Orthop Res,2003,21(4):622-9.
    [102] Dragoo JL, Lieberman JR, Lee RS, Deugarte DA, Lee Y, Zuk PA, et al.Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat.Plast Reconstr Surg,2005,115(6):1665-73.
    [103] Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, et al. Healing ofcritically sized femoral defects, using genetically modified mesenchymal stem cellsfrom human adipose tissue. Tissue Eng,2005,11(1-2):120-9.
    [104] Feng G, Wan Y, Balian G, Laurencin CT, Li X. Adenovirus-mediated expression ofgrowth and differentiation factor-5promotes chondrogenesis of adipose stem cells.Growth Factors,2008,26(3):132-42.
    [105] Jin X, Sun Y, Zhang K, Wang J, Shi T, Ju X, et al. Ectopic neocartilage formationfrom predifferentiated human adipose derived stem cells induced byadenoviral-mediated transfer of hTGF beta2. Biomaterials,2007,28(19):2994-3003.
    [106] Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurologicaldeficits by intracerebral transplantation of human adipose tissue-derived stromal cellsafter cerebral ischemia in rats. Exp Neurol,2003,183(2):355-66.
    [107] Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al.Normalizing mitochondrial superoxide production blocks three pathways ofhyperglycaemic damage. Nature,2000,404:787-90.
    [108] Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol,2003,552,335-344.
    [109] Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury: Mechanisms indiabetes mellitus and therapeutic approaches. Ann N Y Acad Sci,2005,1066:136-51.
    [110] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress andstress-activated signaling pathways: a unifying hypothesis of type2diabetes. EndocrRev,2002,23(5),599-622.
    [111] Brownlee M. The pathobiology of diabetic complications: a unifying mechanism.Diabetes,2005,54,1615-1625.
    [112] Greenman IC, Gomez E, Moore CE, Herbert TP. Distinct glucose-dependent stressresponses revealed by translational profiling in pancreatic beta-cells. J Endocrinol,2007,192(1):179-187.
    [113] Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinatelydownregulated in human diabetes. Nat Genet,2003,34(3):267-73.
    [114] Giugliano D, Ceriello A, Paolisso G: Oxidative stress and diabetic vascularcomplications. Diabetes Care,1996,19:257-267.
    [115] Yorek MA. The role of oxidative stress in diabetic vascular and neural disease. FreeRadic Res,2003,37:471-80.
    [116] Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D et al.Diabetes associated cell stress and dysfunction: role of mitochondrial andnon-mitochondrial ROS production and activity. J Physiol,2007,583(Pt a):9-24.
    [117] Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK et al.Elevated PGC-1alpha activity sustains mitochondrial biogenesis and muscle functionwithout extending survival in a mouse model of inherited ALS. Cell Metab,2012,15(5):778-86.
    [118] Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha andGabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expressionthat is altered in diabetic muscle. Proc Natl Acad Sci U S A,2004,101(17):6570-5.
    [119] Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, et al. Theestrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A,2004,101(17):6472-7.
    [120] Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. The transcriptionalcoactivator PGC-1regulates the expression and activity of the orphan nuclearreceptor estrogen-related receptor alpha (ERRalpha). J Biol Chem,2003,278(11):9013-8.
    [121] Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC, Jr., Martin R, et al. Regulationof PPARgamma coactivator1alpha (PGC-1alpha) signaling by an estrogen-relatedreceptor alpha (ERRalpha) ligand. Proc Natl Acad Sci U S A,2004,101(24):8912-7.
    [1] Yamanaka S, Takahashi K. Induction of pluripotent stem cells from mouse fibroblastcultures. Tanpakushitsu Kakusan Koso,2006,51(15):2346-51.
    [2] Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther,2008,10(5):223.
    [3] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal andirradiated mouse hematopoietic organs. Exp Hematol,1976,4(5):267-74
    [4] Caplan AI. Mesenchymal stem cells. J Orthop Res,1991,9(5):641-50.
    [5] Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells fromhuman adipose tissue: implications for cell-based therapies. Tissue Eng,2001,7(2):211-28.
    [6] Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell,2010,21(11):1783-7.
    [7] Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno, H. Human adiposetissue is a source of multipotent stem cells. Mol Biol Cell,2002,13(12):4279-95.
    [8] Gimble JM, Katz AJ Bunnell BA. Adipose-derived stem cells for regenerativemedicine. Circ Res,2007,100(9);1249-60.
    [9] Zuk PA. Consensus statement. Paper presented at: International Fat AppliedTechnology Society2nd International Meeting,2004, Pittsburg, PA.
    [10] Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissueengineering of fat. Clin Plast Surg,1999,26(4):587-603.
    [11] De Ugarte D A, Morizono K, Elbarbary A, et al. Comparison of multilineage cellsfrom human adipose tissue and bone marrow. Cells Tissues Organs,2003,174(3):101-109.
    [12] van Harmelen V, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I, et al.Effect of BMI and age on adipose tissue cellularity and differentiation capacity inwomen. Int J Obes Relat Metab Disord,2003,27(8):889-95.
    [13] von Heimburg D, Hemmrich K, Haydarlioglu S, Staiger H, Pallua N. Comparison ofviable cell yield from excised versus aspirated adipose tissue. Cells Tissues Organs,2004,178(2):87-92.
    [14] Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield ofhuman adipose-derived adult stem cells from liposuction aspirates. Cytotherapy,2004,6(1):7-14.
    [15] Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damagedtissues. Expert Opin Biol Ther,2006,6(6):567-78.
    [16] Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source ofstem cells for biotechnology. Trends Biotechnol,2006,24(4):150-4.
    [17] Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surfaceprotein characterization of human adipose tissue-derived stromal cells. J Cell Physiol,2001,189(1):54-63.
    [18] García-Arranz M, Gómez-Pinedo U, Hardisson D, et al. ological analysis of humanspecimens removed from the injection area of expanded adipose-derived stem cells.Histopathology,2010,56(7):979-982.
    [19] Fang B, Li Y, Song Y,et al. Human adipose tissue-derived adult stem cells can lead tomultiorgan engraftment. Transplant Proc,2010,42(5):1849-1856.
    [20] Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells:recent scientific consensus and controversy. Aesthet Surg J,2010,30(3):381-387.
    [21] Estes BT, Diekman BO, Gimble JM, et al. Isolation of adipose-derived stem cells andtheir induction to a chondrogenic phenotype. Nat Protoc,2010,5(7):1294-1311.
    [22] Gimble JM, Guilak F, Bunnell BA.Clinical and preclinical translation of cell-basedtherapies using adipose tissue-derived cells. Stem Cell Res Ther,2010,19(2):19.
    [23] Liu G, Zhou H, Li Y, et al. Evaluation of the viability and osteogenic differentiation ofcryopreserved human adipose-derived stem cells. Cryobiology,2008,57(1):18-24.
    [24] Oishi K, Noguchi H, Yukawa H, et al. Cryop reservati on of mouse adipose tissue2derived stem progenit or cells. Cell Trans p lant,2008,17(122):35-41.
    [25] Aust L, Devlin B, Foster SJ, et al. Yield of human adipose derived adult stem cellsfrom liposuction aspirates. Cytotherapy,2004,6(1):7-14.
    [26] Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adiposetissue-derived adult stem cells: comparison with bone marrow mesenchymal stemcells. Br J Haematol,2005,129(1):118-29.
    [27] Wolbank S, Peterbauer A, Fahrner M, et al. Dose-dependent immunomodulatoryeffect of human stem cells from amniotic membrane: a comparison with humanmesenchymal stem cells from adipose tissue. Tissue Eng,2007,13(6):1173-83.
    [28] Li B, Zeng Q, Wang H, et al.Effect of cytokines secreted by human adipose stromalcells on endothelial cells. J Huazhong Univ Sci Technolog Med Sci,2006,26(4):396-398.
    [29] Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stemcells:a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci,2007,48(1):15-24.
    [30] Kilroy GE, Foster SJ,Wu X, et al.Cytokine profile of human adipose-derived stemcells:expression of angiogenic, hematopoietic, and proinflammatory factors. J CellPhysiol,2007,212(3):702-709.
    [31] Lee SW, Padmanabhan P, Ray P, Gambhir SS, Doyle T, Contag C, et al. Stemcell-mediated accelerated bone healing observed with in vivo molecular and smallanimal imaging technologies in a model of skeletal injury. J Orthop Res,2009,27(3):295-302.
    [32] Miranville A, Heeschen C, Sengenès C, et al. Improvement of postnatalneovascularization by human adipose tissue-derived stem cells. Circulation,2004,110,349-355.
    [33] Sadat S, Gehmert S, Song YH, et al.The cardioprotective effect of stem cells ismediated by IGF-I and VEGF. Biochem Biophys Res Commun,2007,363(3):674-679.
    [34] Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of Bone marrow and cordblood mesenchymal stem cells in vitro is Regulated by stromal-derivedfactor-1-CXCR4and hepatocyte growth factor-c-met axes and involves matrixmetalloproteinases. Stem Cells,2006,24(5):1254-1264.
    [35] Kilroy GE,Foster SJ,Wu X,et al.Cytokine profile of human dipose-derived stem cells:expression of angiogenic, hematopoietic, and proinflammatory factors. J CellPhysiol,2007,212(3):702-709.
    [36] Lendechel S, Jodiche A, Christophis P, et al: Autolopous stem cells (adipose) andfibrin glue used to treat widespread traumatic calvarial defect: case report. JCraniomaxillofac Surg,2004,32:370-373.
    [37] Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: Adipose-derived stromalvascular fraction cells and stem cells: let's not get lost in translation. Stem Cells,2011,29(5):749-54.
    [38] Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R, etal. Cytosine deaminase expressing human mesenchymal stem cells mediated tumourregression in melanoma bearing mice. J Gene Med,2008,10(10):1071-82.
    [39] Miranville, A, Heeschen, C, Sengenès C et al. Improvement of postnatalneovascularization by human adipose tissue-derived stem cells. Circulation,2004,110(3):349-55.
    [40] Planat-Benard, V, Silvestre, JS, Cousin, B et al. Plasticity of human adipose lineagecells toward endothelial cells: physiological and therapeutic perspectives.Circulation,2004,109(5):656-63.
    [41] Baer PC. Adipose-derived stem cells and their potential to differentiate into theepithelial lineage. Stem Cells Dev,2011,20(10):1805-16.
    [42] Ando Y, Inaba M, Sakaguchi Y, et al. Subcutaneous adipose tissue-derived stem cellsfacilitate colonic mucosal recovery from2,4,6-trinitrobenzene sulfonic acid(TNBS)-induced colitis in rats. Inflamm Bowel Dis,2008,14(6):826-38.
    [43] Shigemura N, Okumura M, Mizuno S, et al. Autologous transplantation of adiposetissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant,2006,6(11):2592-2600.
    [44] Lu F, Mizuno H, Uysal CA, et al. Improved viability of random pattern skin flapsthrough the use of adipose-derived stem cells.Plast Reconstr Surg,2008,121(1):50-58.
    [45] Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects ofadipose-derived stem cells. Expert Opin Biol Ther,2009,9(7):879-87.
    [46] Nambu M, Ishihara M, Nakamura S, et al: Enhanced healing of mitomycin C-treatedwounds in rats using inbred adipose tissue-derived stromal cells within anatelocollagen matrix. Wound Repair Regen,2007,15(4):505-10.
    [47] Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG. Adipose-derivedstem cells for wound healing applications. Ann Plast Surg,2011,66(2):210-15.
    [48] Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cellscan rescue aerobic respiration. Proc Natl Acad Sci U S A,2006,103(5):1283-8.
    [49] Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, et al. Treatment of type1diabeteswith adipose tissue-derived stem cells expressing pancreatic duodenal homeobox1.Stem Cells Dev,2009,18(10):1399-406.
    [50] Garcia MM, Fandel TM, Lin G, Shindel AW, Banie L, Lin CS, et al. Treatment oferectile dysfunction in the obese type2diabetic ZDF rat with adipose tissue-derivedstem cells. J Sex Med,2010,7(1Pt1):89-98.
    [51] McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A,Halvorsen YD, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Theimmunogenicity of human adipose derived cells: temporal changes in vitro. Stem Cells,2006,24:1245–1253.
    [52] Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B,Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatoryeffect of human adipose tissue-derived adult stem cells: comparison with bone marrowmesenchymal stem cells. Br J Haematol,2005,129:118–129.86.
    [53] Cui L, Yin S, Yang P, Liu B, Zhang Y, LiuW, Cao YL. Human adipose derived stemcells suppress lymphocyte proliferation induced by cellular or nonspecific mitogenicstimuli. Zhonghua Yi Xue Za Zhi,2005,85:1890–1894.
    [54] Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T, et al. Characterizationof adipose tissue-derived cells isolated with the Celution system. Cytotherapy,2008,10(4):417-26.
    [55] Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stemand regenerative cells. Methods Mol Biol,2011,702:87-105.
    [1] Issemann I, Green S. Activation of a member of the steroid hormone receptorsuperfamily by peroxisome proliferators. Nature,1990,347(6294):645-50.
    [2] Puigserver P, Ribot J, Serra F, Gianotti M, Bonet ML, Nadal-Ginard B, et al.Involvement of the retinoblastoma protein in brown and white adipocyte celldifferentiation: functional and physical association with the adipogenic transcriptionfactor C/EBPalpha. Eur J Cell Biol,1998,77(2):117-23.
    [3] Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferatoractived receptor gamma coactivator1beta (PGC-1beta), a noval PGC-1-relatedtranscription coactivator with hose cell factor. J Biol Chen,2002,277(3):1645-1648.
    [4] Andersson U, Scarpulla RC. PGC-1-related coactivator, a novel, serum-induciblecoactivator of nuclear respiratory factor1-dependent transcription in mammalian cell.Mol Cell Biol,2001,21(11):3738-3749.
    [5] Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanismscontrolling mitochondrial biogenesis and respiration through the thermogeniccoactivator PGC-1. Cell,1999,98(1):115-24
    [6] Gerhart-Hines Z, Rodgers JT, Bare O, Kim C, Kim SH, Mostoslavsky R, et al.Metabolic control of muscle mitochondrial function and fatty acid oxidation throughSIRT1/PGC-1alpha. Embo Journal,2007,26(7):1913-23.
    [7] Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gammacoactivator1alpha (PGC-1alpha): Transcriptional coactivator and metabolic regulator.Endocrine Reviews,2003,24(1):78-90.
    [8] Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, et al. The geneticablation of SRC-3protects against obesity and improves insulin sensitivity by reducingthe acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A,2008,105(44):17187-92.
    [9] Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis andfunction. Physiol Rev,2008,88(2):611-38.
    [10] Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion,2008,8(4):329-37.
    [11] Scarpulla RC. Transcriptional activators and coactivators in the nuclear control ofmitochondrial function in mammalian cells. Gene,2002,286(1):81-9.
    [12] Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1family oftranscription coactivators. Cell Metab,2005,1(6):361-70.
    [13] Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects inadaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice.Cell,2004,119(1):121-35.
    [14] Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controlsperoxisome proliferator-activated receptor gamma coactivator1alpha expression inmuscle. Proc Natl Acad Sci U S A,2003,100(12):7111-6.
    [15] Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha andGabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expressionthat is altered in diabetic muscle. Proc Natl Acad Sci U S A,2004,101(17):6570-5.
    [16] Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratoryfactors and PGC-1-related coactivator. Ann N Y Acad Sci,2008,1147:321-34.
    [17] Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion,2008,8(4):329-37.
    [18] Cannon B, Nedergaard J. Brown adipose tissue: function and physiologicalsignificance. Physiol Rev,2004,84:277-359.
    [19] Nisoli E, Clementi E, Paolucci, etal, Mitochondrial biogenesis in mammals: the role ofendogenous notric oxide. Science,2003,299:896-899.
    [20] Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in humanskeletal muscle in type2diabetes. Diabetes,2002,51(10):2944-50.
    [21] Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al.Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science,2003,300(5622):1140-2
    [22] Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrialactivity in the insulin-resistant offspring of patients with type2diabetes. N Engl J Med,2004,350(7):664-71.
    [23] Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinatelydownregulated in human diabetes. Nat Genet,2003,34(3):267-73.
    [24] Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, et al.Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression inmuscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A,2001,98(7):3820-5.
    [25] Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physicalactivity is associated with improvements in insulin sensitivity in obesity. Diabetes,2003,52(9):2191-7.
    [26] Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physicalactivity is associated with improvements in insulin sensitivity in obesity. Diabetes,2003,52(9):2191-7.
    [27] Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role inmultiple forms of insulin resistance. Nature,2006,440(7086):944-8.
    [28] Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, et al. Regulation ofhepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement forhepatocyte nuclear factor4alpha in gluconeogenesis. Proc Natl Acad Sci U S A.2003Apr1;100(7):4012-7.
    [29] Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al.Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction.Nature.2003May29;423(6939):550-5.
    [30] Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, et al.Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1(PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetesmellitus. Diabetologia.2001Dec;44(12):2220-6.
    [31] Muller YL, Bogardus C, Pedersen O, Baier L. A Gly482Ser missense mutation in theperoxisome proliferator-activated receptor gamma coactivator-1is associated withaltered lipid oxidation and early insulin secretion in Pima Indians. Diabetes.2003Mar;52(3):895-8.
    [32] Lacquemant C, Chikri M, Boutin P, Samson C, Froguel P. No association between theG482S polymorphism of the proliferator-activated receptor-gamma coactivator-1(PGC-1) gene and Type II diabetes in French Caucasians. Diabetologia.2002Apr;45(4):602-3; author reply4.
    [33] Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, et al. A genetic variation inthe PGC-1gene could confer insulin resistance and susceptibility to Type II diabetes.Diabetologia.2002May;45(5):740-3.
    [34]单莉,王辰,纪立农,杨泽,朱倩. PGC-1基因Gly482Ser多态性与2型糖尿病的相关性研究.中国糖尿病杂志,2006,17(3):77-82.
    [35] Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al.PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscledysfunction, abnormal weight control and hepatic steatosis. PLoS Biol,2005,3(4):e101.
    [36] Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha andGabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expressionthat is altered in diabetic muscle. Proc Natl Acad Sci U S A,2004,101(17):6570-5.
    [37] Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, et al. Theestrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A,2004,101(17):6472-7.
    [38] Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. The transcriptional coactivatorPGC-1regulates the expression and activity of the orphan nuclear receptorestrogen-related receptor alpha (ERRalpha). J Biol Chem,2003,278(11):9013-8.
    [39] Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC, Jr., Martin R, et al. Regulationof PPARgamma coactivator1alpha (PGC-1alpha) signaling by an estrogen-relatedreceptor alpha (ERRalpha) ligand. Proc Natl Acad Sci U S A,2004,101(24):8912-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700