用户名: 密码: 验证码:
串—并混联研抛机床运动控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
串-并混联研抛机床是并联机床的进一步发展,运动控制系统是串-并混联研抛机床控制的核心。本文以课题组自主研发的JDYP51型串-并混联研抛机床为研究对象,以提高机床的控制响应速度与控制精度为目的,进行了机床运动控制系统控制策略和实现方法的理论与实验研究。
     JDYP51型研抛机床是一个包含多环闭链机构的复杂多体系统,它的核心部件是3-PTT并联机构。本文采用多刚体系统动力学的建模方法,得到简化的串-并混联研抛机床并联机构动力学模型方程式。基于该模型,分别研究了不同控制策略下运动控制系统的响应情况。仿真结果表明,采用基于高精度模糊控制器补偿的计算力矩控制器可以使得控制系统获得比较理想的跟踪效果。在此基础上,研究了一种NURBS曲线快速插补技术和一种抑制伺服系统干扰的离散小波算法,提高了系统的控制精度。以本课题组自主研发的混联机构为平台,进行了并联机构运动控制器硬件设计与相应功能软件的开发,形成了具有开放功能的基于TMS320F2812 DSP的PCI运动控制卡。针对本文所提出的算法,进行了串-并混联研抛机床运动控制系统中主要技术环节的实验研究,实验结果表明本文所研究的运动控制系统精度高、响应速度快,具有一定的开放性,可以完成一定高精度的快速控制任务。
     课题的研究工作得到了吉林省科技发展计划重点项目(仿人高效研抛自由曲面专用机床嵌入式控制系统的研究,编号:20040325)的资助。
At the present, with the competitive manufacturing market, the need for high accuracy, high speed and low-cost machines is demanding. Thereby, the disadvantage of traditional serial machine becomes obvious. The serial-parallel hybrid polishing machine tool is developed by introducing the parallel system into traditional serial system. The distinguish advantages of spacious work room, flexibility, high speed, high rigidity, and low cost make it become new trend.
     The integration of parallel and serial structure determines the complicity of electrical control. It is significant to design a good motion control system, which is also core technology of the serial-parallel hybrid polishing machine tool, the“brain”and“heart”of the machine tool. Compared to mechanical design of machine, the development of motion control system in China is relatively slow. In this dissertation, the theories and experimental results of a novel motion control system for a serial-parallel hybrid polishing machine tool-JDYP51, developed by University of Jilin, is discussed. This project is tested on“Embedded Motion Control System for High Efficient Free-Form Surface Grinding and Polishing (20040325)”supported by Science and Technology Development Plan of Jilin Province.
     JDYP51 serial-parallel hybrid polishing machine tool is composed of multiple close-loop subsystems, whose of core parts is 3-PTT parallel structure. The close-loop constraints generate the strong coupling relationship of each joint. The dynamic characteristics of parallel structure determine the performance of the machine. Therefore, it is significant to study the dynamic characterization, structure design, and rigidity and control methods for the machine. In this dissertation, the positioning of the serial structure is first analysis using a dynamic model of multiple rigid systems. The motion relationship of independent substructures, either of sliding rod, balance support and motion stage of the machine is solved using Lagrange function. The open-loop dynamic equations are derived without considering the structure coupling caused by close-loop constraints. After taking the constraints of the subsystems into the open-loop dynamic model, a simplified dynamic model for serial-parallel system is established by transforming independent coordinate systems to contradict the constraints.
     The key design for the serial-parallel hybrid polishing machine tool motion control system is to choose the proper motion control methods and to design the controller. The controller design consists of motion and dynamic control. For better performance the dynamic control system controls the entire parallel system based on the dynamic characteristics of the machine, especially at high speed control, required stricter dynamic control compared to motion control. Based on the dynamic model for serial-parallel hybrid polishing machine tool’s system proposed in this dissertation, the PD control, calculated matrix control, fuzzy control-compensated calculated matrix control, and high-accuracy fuzzy control-compensated calculated matrix control are discussed and used for simulation. The simulation results indicates that the conventional calculated matrix control can efficiently track the system input, but high static error presents due to the parametric errors in the model. Fuzzy control algorithm can reduce the track error, but is limited in static control. The improved fuzzy control algorithm can achieve the relatively ideal track by introducing non-linear quantization.
     In order to improve the positioning accuracy of the motion control system, the high accuracy interpolation algorithm is required for motion tracking. NURBS method is widely adopted for free-form curve and surface interpolation. But the NURBS interpolation demands the high-speed digital system to process. To speed up the interpolation, a fast improved NURBS curve interpolation based on Newton iterative method is used. In this method, the iteration is used to replace the complicated differential process so as to realize the embedded system. The increment through the interpolation method can be output to control motion through DDA. In addition, the points interpolated by NURBS algorithm are located onto the curve, no radical error. The interpolation profile error is generated from the normal distance error by approximating the small segments to real curve. The error is also anglicized for improving the response speed and accuracy of the motion control.
     The motion control system is digital controlled. The noise and interference, the common issues in the digital system, cause the big static errors, or even unsteady vibration. To remove the noise online, a fast discrete wavelet algorithm is proposed. With the fast development of VLSI technology and mature of FFT-based DSP technology, the wavelet transformation algorithm can be easily implemented on hardware configuration.
     The motion control can efficiently realize the motion tracking or parametric motion control through real-time controlling the location and speed of motors in the transmission mechanism. In order to realizing high-speed, high-accuracy simulation and testing motion control algorithm, the multi-processing is used in the motion controller. It separates the logic functionality and motor real-time control. A multi-axis motion control PCI card is designed with TMS320F2812 in DSP chip, expandable motor control interfaces, high accuracy DDA interpolation circuit, encoder signal processing, DAC interface circuit, and I/O level processing.
     The multi-axis motion control PCI card can be remotely controlled by PCI device driver program developed on Window environment. The device driver program varies with Window operating system. Window driver model (WDM), an upgraded WinNT drive program, is used in this project. It can be applied to Win98, Win200, and WinXP operating system, supports power management, auto-configuration, and plug and play. The driver development wizard provided by WinDriver can make the PCI9052 driver development easy and realize the remote control via PC.
     The motion and dynamical control design proposed in this dissertation is tested and analyzed on the JDYP51 serial-parallel hybrid polishing machine tool, Panasonic servo adaptor controller MADDT1207N, Panasonic servo motor MSMD022P, the home-developed motion controller for parallel structure and PC. The testing results indicate that the proposed motion control system has the advantages of high accuracy, high response speed, and flexibility and realize the design requirement.
引文
[1]雷源忠.现代制造科学的新发展.中国机械工程[J].1999(9):962-965
    [2]雷源忠.先进制造技术基础研究的跨世纪目标.武汉交通科技大学学报[J].1997(4):124-131
    [3]盛伯浩.我国数控机床现况与技术发展策略[J].制造技术与机床,2006(2):17-21
    [4]徐礼钜,范守文.一种混联虚拟轴机床的位置正解与工作空间分析[J].机械传动,2003,27(5):5-8
    [5]邬昌峰,高荣慧.并联机床的特点、研究现状及展望[J].机械,2003,30(1):1-6
    [6]李金泉,丁洪生等.并联机床的历史、现状及展望[J].机床与液压,2003(3):3-8
    [7] (中)张曙,(德)U.Heisel.并联运动机床(Parrallel kinematics machine tool)[M].北京:机械工业出版社,2003
    [8] R.Neugebauer,M.Schwaar,St.Ihlenfeldt.New approaches to machine structures to overcomethe limits of classical parallel structures[J].CIRP Annals-Manufacturing Technology,2002,51(1):293-296
    [9]李金泉,丁洪生,付铁等.并联机床的历史、现状及展望[J].机床与液压,2003,3:3-8
    [10]黄真,孔令富等.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997
    [11]李长和,蔡光起.并联机床发展与国内外研究现状[J].青岛理工大学,2008,29(1):7-13
    [12]周凯.虚拟轴机床的发展趋势-混联机床[J].现代制造工程,2002,3:5-7
    [13] Ji Zhao,Jianming Zhan,Rencheng Jin and Minzhong Tao.An oblique ultrasonic polishing method by robot for free-form surfaces.Int.J.Mach.Tools Manufact.(6):2000.795-808
    [14] J.M.Zhan,J.Zhao and M.Yu.Compliant EDM for free-form surfaces polishing.Key Engineering Materials Trans.Tech.Publication in Switzerland(瑞士科技文献出版公司).(202-203):2001.73-787
    [15] Miao Yu,Ji Zhao et al.Collision Prediction in Robotic Ultrasonic polishing of Moulds with Curved Surfaces.CIRP International Symposium,1997,August,21-22
    [16]刘阳,蔡光起,罗季曼.虚拟轴机床的发展与展望[J].机床设计与制造,2003(6):115-116.
    [17] Gosselin C M J.Dyn.Sys.Meas.Control[J].Trans. Of t he ASME ,1996 ,118 (4) : 22-28
    [18]杨建新,郁鼎文,王立平等.并联机床研究现状与展望[J].机械设计与制造工程,2002 (3) :10-14
    [19] Qinchuan Li,David,Zhen Huang. Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements[J].IEEE Transactions on Robotics & Automation , 2004 , 20 (2):173-180
    [20]蔡光起,胡明.机器人化的三腿磨削机床的研究[J].制造技术与机床,1998 (10) :4-6
    [21]杨斌久,蔡光起,赵亮.三杆五自由度并联机床运动学研究[J].工具技术,2005,39 (2) :14-16
    [22] Bonev I.The True Origins of Parallel Robots.The Parallel Mechanisms Information Center.2002.www.paralemic.org
    [23] Martin A.Das Hexapod-Teleskop.Spica.2000.10.www.bph.ruhr-unibochum.de.
    [24] X Z Zheng,H Z Bin,Y G Luo. Kinematic analysis of a hybrid serial-parallel manipulator[J]. Int Adv Manuf Technol, 2004,(23):925-930
    [25] Fan Liangzhi, A T Elatta, Li Xiaoping. Kinamatic calibration for a hybrid SDOF manipulator based on 3-RPS in-actuated parallel manipulator. Adv Manuf Techno1,2004,(20):100-105
    [26]丛爽,李泽湘.实用运动控制技术[M].北京:电子工业出版社,2006
    [27]陈先锋,舒志兵.先进运动控制策略及运动控制新技术[J].电气时代,2005 (2) :129-131
    [28]丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001
    [29]刘善增,余跃庆,杜兆才等.并联机器人的研究进展与现状[J].组合机床与自动化加工技术,2007(8):5-13
    [30]王蕾,宋文忠.PID控制[J].自动化仪表,2004,25(4):2-6
    [31]胡月明.变结构控制理论与应用[M].北京:科学出版社,2003
    [32] Nguyen C.C.,Pooran F. J. Dynamic analysis of 6 DOF robot end-effector for dual-arm telerobot systems[J]. Robotics an d Autonomous Systems,1989(5): 37-39
    [33] I. F. Chung,H. H. Chung,C. T. Lin. Fuzzy control of a six-degree motion platform with stability analysis[J].Proc. Of the 38thConference on Decision& Control, Dec. 1999
    [34] Se-Han Lee, Jae-Bok Song.Controller Design for a Stewart Platform using Small Workspace Characteristics[J].Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,2001:2184-2189
    [35]孔令富,黄真.力前馈控制的并联机器人自适应系统的研究[J].东北重型机械学院学报,1995,19(1):26-30
    [36]李成刚,丁洪生,吴平东.自适应控制在并联机床上的应用[J].机床与液压,2004,(11):25-27
    [37]张建明,王宁,王树青.使用模糊转换器的并联机器人神经元控制[J].系统仿真学报,2001,13(1):28-33
    [38]王洪斌,王洪瑞,肖金壮.并联机器人轨迹跟踪积分变结构控制的研究[J].燕山大学学报,2003,27(1):25-28
    [39]朱龙彪,龚建伟,徐海黎等.并联六自由度机器人智能控制算法的研究[J].机械设计与制造,2004(5):47-48.
    [40] Smith,D.A.Reaction force analysis in generalized machine systems[J].ASME Journal of Engineering and Industry,1973,Vol.95,617-623
    [41] Paul,B. Analytical dynamics of mechanism-A computer oriented overview[J].Mechanismand Machine Theory,1975,Vol. 10,481-507
    [42] Wittenburg,J.Dynamics of Systems of Rigid Bodies[J].B.G.Teubner,Stuttgart,1977
    [43] Yiu,Y.K.,Cheng,H.,Xiong,etc.On the dynamics of parallel Manipulators[J].Proceeding of IEEE International Conference on Robotics and Automation,2001,16(3),3766-3771
    [44] Aghili,F.A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator:applications to control and simulation[J].IEEE Transactions on Robotics and Automation,2005,21(5),834-849
    [45] Chiacchio P.Task Space Dynamic Analysis of Multiarm System Configurations.The Int.J.of Rob.Res.10(6):1991b.708-715
    [46] Freeman R A.,Tesar D.Dynamic Modeling of Serial and Parallel Mechanisms Robotic System:Part 1.ASME.15(3):1988a.7-18
    [47] Freeman R A.,Tesar D.Dynamic Modeling of Serial and Parallel Mechanisms Robotic System:Part 2.ASME.15(3):1988b.19-27
    [48] Sklar M,Tesar D.Dynamic Analysis of Hybrid Serial Manipulator System Containing Parallel Modules.J.Mech.Trans.and Aut.Des.1988.105-115
    [49] Song S M,Liu B S. Dynamic Modeling Stability and Energy Efficiency of a Quadruped Walking Machine.IEEE Conf.On Rob.&Aut.1993.367-373
    [50] Lee K M,Shah D K.Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator [J].IEEE Journal of Robotics and Automation,1988,4(3):354-360
    [51]刘红军.一种四自由度并联机构的误差分析及其标定补偿[J].机器人,2005,27(1):6-9
    [52] Arnold,V.I.Mathematical methods of classical mechanics[J].Springer-Verlag,1989
    [53] Aghili , F.A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: application to control and simulation[J].IEEE Transaction on Robotics and Automation,2005,21(5),834-849
    [54]张耀新.高性能平面二自由度并联机器人研究[D].安徽:中国科技大学,2006
    [55]张代治.串-并混联研抛机床的运动与控制研究[D].吉林:吉林大学,2005
    [56] Nahon,Meyer A,Angeles,Jorge. Force optimization in Redundantly-actuated Closed Kinematic Chains[J] . IEEE Int Conf Rob Autom,1989
    [57]刘豹.现代控制理论[M].北京:机械工业出版社,2000
    [58]代颖.不确定性机器人鲁棒自适应控制方法研究[D].西安:西安交通大学,1998
    [59] Qu.Z.Linear Learning Control of Robot Motion[J].J.of Robotic System,1993,10(1):123-140
    [60]田勇.高精度模糊控制策略研究及应用[D].南京:河海大学,2006
    [61]章卫国,薛璞,段富海.一种高精度模糊控制系统的设计方法[J].测控技术,1997,16(2):22-24
    [62]范晓英,陆培新,陈文楷.一个新型模糊控制器[J].控制理论与应用,1995,12(5),597-601
    [63] Han-xiong Li and H.B Gatland. Conventional Fuzzy Control and Its Enhancement[J]. IEEE TRANSACTION ON SYSTEM , MAN AND CYBERNETICS-PARTB :CYBERNETICS.Vol.26,No.5 1996:791-797
    [64]卢广山,姜长生等.高精度机载光电跟踪系统的自适应模糊控制[J].兵工学报,2002,23(4):533-535
    [65]张特键,王元航,方明星.高精度模糊控制器及其在温度控制中的应用[J].自动化仪表,2002,23(7)
    [66] Yanan Zhao,Emmanuel G. Collins,Jr.Fuzzy PI Control Design for an Industrial Weigh Belt Feeder[J].IEEE Transactions on Fuzzy systems,2003,11(3):312-319
    [67]任海鹏,刘丁,李琦. DSP在无刷直流电动机伺服系统中的应用[J].微电机,2000,33(2):21-24
    [68]汪锐,许静宇.基于DSP芯片的永磁无刷直流电机控制器[J].微电机,2000,33(4):27-29
    [69] LI Han-Xiong, CHEN Guan-Rong. Dual Features of Conventional Fuzzy[J].自动化学报,2001,27(4):448-459
    [70]李玉翔.用组合模糊控制器实现液压缸位置调节[J],机床与液压,2001(3):38-40
    [71]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS)[M].北京:航空航天大学出版社,1994
    [72]于亚婷,杜平安,王振伟.基于NURBS的复杂域边界单元改进方法[J].电子科技大学学报,2006,35(6):973-976
    [73]朱心雄.自由曲线曲面造型技术.北京:科学出版社,2000
    [74] Y.S.Lee.Non-isoparametric tool path planning by machining strip evaluation for five-axis sculptured surface machining[J].Computer-Aided Design,1998,30(7):559-570
    [75] Herbert Schuiz.High speed Machining[J].Annals of the CIRP,1992,41(2):637~643
    [76] Han GC,Kim DI,Kim HG,etc.A high speed machining algorithm for CNC machine tools[J].IECON‘99 Proceedings of the 25th Annual Conference of the IEEE,1999: 1493-1499
    [77]周正干,王美清,李和平等.高速加工的核心技术和方法[J].航空制造技术,2000(3):13~16
    [78] Lei W T,Sung M P.NURBS based fast geometric error compensation for CNC machine tools[J].International Journal of Machine Tools&Manufacture,2008,48(3):307-319
    [79]赵毅.曲线的通用参数插补算法[J].机械科学与技术,1997,16(4):627-629
    [80]封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001:182-216
    [81]彭炎午.计算机数控(CNC)系统[M].西安工业大学出版社,1998
    [82]游有鹏,王珉,朱剑英.NURBS曲线高速高精度加工的插补控制[J].计算机辅助设计与图形学学报.2001,13(10):943-947
    [83]刘雄伟,张定华,王增强等,数控加工理论与编程技术.北京:机械工业出版社,2001
    [84] Kaan Erkorkmaz,Yusuf Altintas.High speed CNC system design.PartⅠ:jerk limited trajectory generation and quintic spline interpolation,International Journal of Machine Tools&Manufacture,2001,41:1323-1345
    [85]游有鹏,王珉,朱剑英.参数曲线的自适应控制插补算法[J].南京航空航天大学学报,2000(12):667-671
    [86]张翼,李文,孙玉敏,罗学科. NURBS曲线插补算法的研究[J].机械研究与应用,2007,20(3):21-22
    [87] FRANKLIN.动态系统的反馈控制(第4版)[M].北京:电子工业出版社,2000
    [88]高晋占.微弱信号检测.北京:清华大学出版社[M],2004
    [89]张文博,范大鹏,张智永,李凯.光电稳定跟踪装置中微机电陀螺应用研究[J].光学精密工程,2006,14(4):689-696
    [90]孙传友.测控系统原理与设计[M].北京:北京航空航天大学出版社,2002
    [91]丛爽,杜浩藩.几种消除干扰的方法效果的对比研究[J].工业控制计算机,2002,15(12):43-45
    [92]蔡鹏,蔡凯亮.基于卡尔曼滤波的舰船传感器信号的小波阈值去噪.青岛大学学报(自然科学版) [J],2005,18(3):81-84
    [93]彭玉华.小波变换与工程应用[M].北京:科学出版社,2002
    [94]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社, 1998
    [95] Mallat S. Theory for multi-resolution signal decomposition:The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693
    [96]韩震宇,申旭娟,石章林.信号的多分辨分析及其在消噪中的应用[J].四川联合大学学报,1999,3(1):52-58
    [97] Mallat S,Hwang WL. Singularity detection and processing with wavelets [J].IEEE Transaction on Information Theory,1992,38(2):617-643
    [98]杜芳,卢文胜,曹文清.振动台试验测试信号去噪的小波变换方法[J].振动与冲击,1999,18(2):26-29
    [99]刘曙光,殷明.子波消噪技术及其应用[J].西北纺织工学院学报,1999,13(1):16-20
    [100]彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116
    [101] Donoho DL. Adapting to unknown smoothness via wavelet shrinkage [J]. J Amer Statist Assoc ,1995,90:1200-1224
    [102] Donoho DL,John stoneI. Wavelet shrinkage asymptopia [J]. Journal of Royal Statistical Society ,1995,57(2):301-369
    [103] Donoho DL. Denoising by soft-thresholding [J]. IEEE Transaction on Information,1995(3):613-627
    [104]张子瑜,吴镇扬,陈进.机组运行趋势的小波包掩模去噪研究[J].机械工程学报,2000,36(5):93-96
    [105]杨其俊,裴峻峰,孙辉.小波消噪及其在往复泵振动监测信号处理中的应用[J].振动与冲击,2000,19(2):20-23
    [106] Coifman RR,Donoho DL.Translation-invariant denoising,wavelets and statistics [M]. New York:Springer-Verlag,1995:125-150
    [107] Goodman TNT, Lee SL.Wavelets of multiplicity [J]. Trans of Amer Math Soc, 1994,,342(1) :307-324
    [108] Chen S,Donoho DL.Atomic decomposition by basispursuit [J]. SIAM Journal on Scientific Computing,1999,20(1):33-61
    [109] Dowine TR,Silverman BW.The discrete multiple wavelet transform and thresholding methods [J]. IEEE Trans SP,1998,46(9):2558-2561
    [110] Bui TD,Chen G. Translation-invariant denoising using multi wavelets [J].IEEE Trans SP,1998,46(12):3414-3420
    [111] Yang HT,Liao CC. A de-noising scheme for enhancing wavelet-based power quality monitoring system [J]. IEEE Trans. on Power Delivery,2001,16(3):353-359
    [112] Carl T. The what,how,and why of wavelet shrinkage denoising[J]. Computing in Science & Engineering,2000,2(3):12-19
    [113]飞思科技产品研发中心. MATLAB 6.5辅助小波分析与应用[M].北京:电子工业出版社.2003
    [114]文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版) . 2002,25(2) :168-172
    [115] Yu Xiangbin,Bi Guangguo. Study on algorithms of long sequence fast correlation and convolution [J]. Journal of Circuits and Systems,2001,6(4):78-83
    [116]程佩青.数字信号处理教程[M].北京:清华大学出版社
    [117] Donoho DL,Johnstone I. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika,1994,81(3):425-455
    [118]卢艳军,林浒,任朝晖,任立义.基于RTLinux操作系统的开放式数控系统运动控制器的研究[J].机械设计与制造,2004(3):47-49
    [119] Raymond E.Open-architecture CNC continue advancing[J].Manufacturing Engineering,2001,127(1):48-52
    [120]孙迪生,王炎.机器人控制技术[M].北京:机械工业出版社,1997
    [121]顾会靖.印制电路板设计应注意的几个问题[J].宁夏工程技术,2003,2(2):147-149
    [122]王立华.DSP系统的电源和复位电路设计[J].电子世界,2005,(8):29-30
    [123] TPS3823 DATA SHEET.Texas Instruments,2004
    [124] AM26LS32 DATA SHEET.Texas Instruments.2002
    [125]韩壮志,李伟,王田苗等.光电码盘四倍频分析[J].电子技术应用,2000,(12):38-40
    [126]李宏胜.机床数控技术及应用[M].北京:高等教育出版社,2001:110~121
    [127]刘映杰,张在峰,刘玮.用WinDriver开发PCI设备驱动程序[J].信息技术,2004,(28),78-80
    [128] Panasonic使用说明书AC伺服电机·驱动器(MINASA4系列).http://www.xagoldsun.com
    [129]张培晓.串-并混联研抛机床运动控制器的研究[D].吉林:吉林大学,2007.
    [130]刘晓刚.五坐标虚拟轴研抛机床开放式数控系统的研究[D].吉林:吉林大学,2007.
    [131]王丽,吴忠.基于Matlab/Simulink的永磁交流电动机仿真研究[J].系统仿真学报,2009,21(1):272-276
    [132]梁得亮,鲁军勇,丰向阳.永磁直线无刷直流电动机的建模与仿真[J].西安交通大学学报,2004,38(2):186-189
    [133] Coifman RR,Donoho DL.Translation-invariant denoising,wavelets and statistics[M].New York:Springer-Verlag,1995:125~150
    [134] Dong Kim, Jae Wook Jeon, and Sungwun Kim. Software acceleration/deceleration methods for industrial robots and cnc machine tools.Mechatronics,4(1):37-53,1994
    [135] Jae Wook Jeon and Young Youl Ha. Ageneralized approach for the acceleration and deceleration of industrial robots and cnc machine tools. IEEE Transactions On Industrial Electronics,47(1):133-139,2000
    [136]严爱珍.机床数控原理与系统[M].北京:机械工业出版社,2004
    [137]李恩林.插补原理[M].北京:机械工业出版社,1984
    [138]屠晓明.直线Bresenham生成算法的三维推广[J].计算机辅助设计与图形学学报,2001,13(9):779~782
    [139]王先逵.超精密加工切削和磨削机理研究[J].焦作大学学报,2002,2:1~7
    [140]杨向红,赵巍.三维直线插补算法的优化及精度分析.天津工程师范学院学报,2005,4(15):14~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700