用户名: 密码: 验证码:
现代便携式电子设备中低压高能效关键电路的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代集成电路技术的发展,以手机、数字播放器、随身医疗设备等为代表的便携式消费电子产品发展迅速,也使低压、高能效集成电路的设计技术受到高度关注。这不仅来自于工艺向纳米尺度发展的需要,也是为了适应电源低压化趋势,延长便携式产品等主要依赖电池供电设备的有效工作时间,且有利于节能环保。由于模拟电路在现代电子系统包括便携式设备的电源系统和一些关键模块中有广泛应用,而其工作模式又不同于数字电路,使得模拟电路的低压设计面临更多挑战。
     有鉴于此,本文对便携式设备的电源系统及若干常用模块的低压和高能效设计展开研究,并对相关新技术领域的发展给予极大关注,论文的主要内容和创新包括:
     1、新能源领域研究的突破使得微型燃料电池成为未来便携式设备最有希望的能量来源,可望解决锂电池能量密度有限的技术瓶颈。然而,微型燃料电池输出电压低的特点给其电路应用带来很大障碍。对此,论文提出低压启动模块的设计,利用动态衬底偏置技术实现boost变换器的亚阈值启动,且可以不依赖于特殊工艺,在满足超低电压启动的同时降低了制造成本。为更好配合boost变换器工作,还设计了独特的三阶段供电策略以及相应的供电切换模块,依据不同阶段采用不同的控制器供电策略。此外,由于燃料电池具有能量密度高但功率密度低的特点,当需要给锂离子电池充电时难以同时支持对负载供电和充电两项任务,论文为此提出一种基于单电感多输出的动态功率分配方法。该方法在抑制交叉调制的同时实现了输入功率限制,并具有对电池进行恒流/恒压充电的功能。
     2、电压基准几乎为所有电子系统所必备,而低电压基准是模拟设计中的一个技术难点。对此论文提出了一种新颖的亚阈值工作设计方案。为进一步提高其集成度和兼容性,还提出了一种全CMOS结构,使之与逻辑工艺有极好的兼容性。且具有低功耗的特点。所实现的低电压基准可广泛适用于植入式探头等微功耗应用场合。
     3、针对便携式设备中主要的耗能部件—背光源,论文在降压开关变换器和线性电流调整器相结合的方案基础上,提出采用自适应输出电压调整技术以进一步提高系统效率。该技术能够适应LED参数和工作温度变化,自动确定开关变换器的工作点,省去了器件筛选,降低了成本。
     论文提出的低压低功耗设计技术和验证模块均已通过流片试制和测试,验证了所提出设计方案的可行性。
As the development of modern integrated circuit technology, the portable consumer electronics like mobile phones, digital players, portable medical equipment are developing rapidly, which brings great attention to the design of low-voltage high efficiency integrated circuits (IC). It is not only due to the technology development to nanometer scale, but also because of the lowering trend of power supply voltage. It will be favorable to prolong the effective working time of battery-powered equipments as well as for energy saving and environmental protecting. Since the analog circuits are still widely applied to power supply system and other key modules in modern electronic systems including the portable devices, the low-voltage design of analog circuits faces more challenges than that of the digital ones due to their different working modes.
     In view of these, this dissertation focused on the research on low voltage high efficiency design of the power supply system for portable devices and other common modules. Meanwhile, the dissertation gives attention to the prospect of developing trend in related fields. The main contents and innovation include:
     1. The breakthrough in new energy research makes micro fuel cell become most promising energy source for future portable devices to solve the limited-energy-density bottleneck of the lithium battery. However, the issue is that its output voltage is too low to adapt to applications in these circuitries. To solve this problem, a novel low-voltage startup module is put forward, which employs a dynamic substrate biasing technique to implement sub-threshold operation of boost converters. Moreover, its process independence reduces the fabrication cost. In order to improve its coordination with boost converter, a three-stage control method together with a power supply switching module is put forward, which features the different control strategies for power supplying in different stages of the controller. In addition, to solve the issue that the fuel cell may fail to support supplying load and charging battery simultaneously due to its low power density while the lithium-ion battery charging is necessary during the operation of device. Thus, a dynamic power allocation method based on single-inductor dual-output topology is put forward. This method can limit the input power as well as suppress cross modulation. And a constant-current/constant voltage charging algorithm is also embedded.
     2. The voltage reference is almost necessary for all electronic system. To come up with a design of voltage reference with low supply voltage is one of technical difficulties in analog circuit design. This dissertation puts forward a novel circuit design of low voltage reference based on sub-threshold operation. To improve its integration and compatibility further, a full-CMOS structure is proposed, which has excellent process compatibility with logic process as well as very low power consumption. The reference can be widely applied to micro-power electronic applications such as implantable probe.
     3. As to the back light source, the main energy dissipation component in portable devices, this dissertation proposes an adaptive-output-voltage-adjusting scheme to improve the efficiency of the system. This scheme is based on the combination of step-down switch converter and linear current regulator, which can adapt to the LED parameters and working temperature variations, and set the operating point of the switch converter automatically. By eliminating the device screening, it saves the cost and time.
     All the proposed low-voltage low-power design schemes and prototypes have been tapped-out and tested. Results verified the feasibility of the designs.
引文
[1]Vukicevic Marijana. Power Management Competitive Analysis [J]. iSuppli Corporation,2010.
    [2]Vukicevic Marijana. Power Management Semiconductors to Enjoy Unparalleled Growth This Year [J]. iSuppli Corporation,2010.
    [3]Jelinek Len. Analog and Interface Competitive Analysis [J]. iSuppli Corporation,2010.
    [4]Cheng Yuhua. A glance of technology efforts for design-for-manufacturing in nano-scale CMOS processes [J]. Science in China Series F:Information Sciences,2008,51(6):807-818.
    [5]Patounakis G. et al. A Fully Integrated On-Chip DC-DC Conversion and Power Management System [J]. IEEE Journal of Solid-State Circuits,2004,39(3): 443-451.
    [6]Hammes Markus et al. Evolution on SoC Integration:GSM Baseband-Radio in 0.13um CMOS Extended by Fully Integrated Power Management Unit [J]. IEEE Journal of Solid-State Circuits,2008,43(1):236-245.
    [7]-Peterchev A.V.,Sanders S.R. A 4-ua quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications [J]. IEEE Journal of Solid-State Circuits,2004,39(12):2342-2348.
    [8]Sahu Biranchinath,Rincon-Mora G.A. An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control [J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2007,54(2):312-321.
    [9]Sahu Biranchinath,Rincon-Mora G.A. A high-efficiency, dual-mode, dynamic, buck-boost power supply IC for portable applications [A]. In:Proceedings of 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design [C].2011:858-861.
    [10]Ma Dongsheng et al. Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode [J]. IEEE Journal of Solid-State Circuits,2003,38(1):89-100.
    [11]Le Hanh-Phuc et al. A Single-Inductor Switching DC-DC Converter with 5 Outputs and Ordered Power-Distributive Control [A]. In:Proceedings of IEEE International Solid-State Circuits Conference. Digest of Technical Papers [C]. 2007:534-620.
    [12]Texas Instruments. TPS65120 Datasheet [EB/OL]. http://focus.ti.com/lit/ds/symlink/tps65120.pdf,2004:
    [13]Stefanutti W. et al. Autotuning of Digitally Controlled Buck Converters Based on Relay Feedback [A]. In:Proceedings of IEEE 36th Conference on Power Electronics Specialists [C].2005:2140-2145.
    [14]Peng H.,Maksimovic Dragan. Digital current-mode controller for DC-DC converters [A]. In:Proceedings of Twentieth Annual IEEE Applied Power Electronics Conference and Exposition [C].2005:899-905.
    [15]Peterchev A.V.,Sanders S.R. Architecture and IC implementation of a digital VRM controller [J]. IEEE Transactions on Power Electronics,2003,18(1): 356-364.
    [16]Primarion Inc. PX7522 Datasheet [EB/OL].: http://images.ce-power.com/productattachment/40280311164e6e73011655f8e3 8c0331.pdf,2007:
    [17]Walko J. POISED TO POWER [Power over Ethernet] [J]. Power Engineer, 2005,9(1):38.
    [18]Braun James E. Intelligent Building Systems-Past, Present, and Future [A]. In: Proceedings of American Control Conference [C].2007:4374-4381.
    [19]Hariman George,Richardson Chris. Control Method Solves Low Duty-Cycle Dilemmas [J]. Power Engineer,2006,20(2):3.
    [20]Sheehan Robert. Current-Mode Modeling For Peak, Valley And Emulated Control Methods [EB/OL].: http://www.national.com/appinfo/power/files/CurrentModeModelingReference Guide.pdf,2001:
    [21]National Semiconductor. LM5574 Datasheet [EB/OL].: http://www.national.com/ds/LM/LM5574.pdf,2009:
    [22]Quintero J. et al. Bandwidth and Dynamic Response Decoupling in a Multi-phase VRM by applying Linear-Non-Linear Control [A]. In;.Proceedings of IEEE International Symposium on Industrial Electronics [C].2007: 3373-3378.
    [23]Angkititrakul S. et al. Active Inductor Current Balancing for Interleaving Multi-Phase Buck-Boost Converter [A]. In:Proceedings of twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition [C].2009: 527-532.
    [24]Yang Jen-Wei et al. On-Chip DC-DC Converter with Frequency Detector for Dynamic Voltage Scaling Technology [A]. In:Proceedings of IEEE Asia Pacific Conference on Circuits and Systems [C].2006:666-669.
    [25]Ma Dongsheng et al. A single-inductor dual-output integrated DC/DC boost converter for variable voltage scheduling [A]. In:Proceedings of ASP-DAC [C]. 2001:19-20.
    [26]Monticelli D.M. Taking a system approach to energy management [A]. In: Proceedings of 29th European Solid-State Circuits Conference [C].2011:15-19.
    [27]Linear Technology. LTC3783 Datasheet [EB/OL].: http://cds.linear.com/docs/Datasheet/3783fb.pdf,2006:
    [28]Leyva R. et al. MPPT of photovoltaic systems using extremum-seeking control [J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1): 249-258.
    [29]Tokushima Daiki et al. A new MPPT control for photovoltaic panels by instantaneous maximum power point tracking [J]. Electrical Engineering in Japan,2006,157(3):73-80.
    [30]Pandey Ashish et al. Design Issues in Implementing MPPT for Improved Tracking and Dynamic Performance [A]. In:Proceedings of 32nd Annual Conference on IEEE Industrial Electronics [C].2006:4387-4391.
    [31]Egiziano L. et al. Photovoltaic Inverters with Perturb & Observe MPPT Technique and One-Cycle Control [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2006:3718-3721.
    [32]Linear Technology. LT3652 Datasheet [EB/OL].: http://cds.linear.com/docs/Datasheet/3652fc.pdf,2010:
    [33]Matsuo Osamu et al. A Hybrid Type DC-DC Converter with New Control Strategy for a Micro-Fuel Cell Power Supply System [A]. In:Proceedings of Twenty-Eighth International Telecommunications Energy Conference [C].2006: 1-6.
    [34]Kim Wonjong et al. A Platform-Based SoC Design of a 32-Bit Smart Card [J]. ETRI Journal,2003,25(6):510-516.
    [35]Carlson Eric J. et al. A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting [J]. IEEE Journal of Solid-State Circuits,2010,45(4):741-750.
    [36]Sodano H. A. et al. Generation and Storage of Electricity from Power Harvesting Devices [J]. Journal of Intelligent Material Systems and Structures, 2005,16(1):67-75.
    [37]Linear Technology. LTC3588 Datasheet [EB/OL].: http://cds.linear.com/docs/Datasheet/35881fa.pdf,2010:
    [38]Vukicevic Marijana. Efficient Battery-Powered Devices and Alternate Energy Markets to Drive Power Management Growth in 2011 [J]. iSuppli Corporation, 2011.
    [39]Larminie James,Dicks Andrew. Fuel Cell Systems Explained [M]. Chichester:J. Wiley.,2001:10-148.
    [40]Frank Mirko et al. An Integrated Power Supply System for Low Power 3.3 V Electronics Using On-Chip Polymer Electrolyte Membrane (PEM) Fuel Cells [J]. IEEE Journal of Solid-State Circuits,2010,45(1):205-213.
    [41]Leung C.Y. et al. A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies [J]. IEEE Journal of Solid-State Circuits,2005. 40(11):2265-2274.
    [42]Texas Instruments. TPS61200 Datasheet [EB/OL].: http://focus.ti.com/lit/ds/symlink/tps61200.pdf,2008:
    [43]Linear Technology. LTC3528 Datasheet [EB/OL].: http://cds.linear.com/docs/Datasheet/3528bfd.pdf,2005:
    [44]Seiko Instruments Inc. S-882Z Series Datasheet [EB/OL].: http://datasheet.sii-ic.com/en/charge_pump_ic/S882Z_E.pdf,2010:
    [45]Linear Technology. LTC2952 Datasheet [EB/OL]. http://www.powerdirect.com.tw/DS/2952f.pdf,2006:
    [46]Yodprasit Uroschanit,Ngarmnil Jitkasame. Efficient low-power designs using MOSFETs in the weak inversion region [A]. In:Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems [C].1998:45-48.
    [47]Yan Shouli,SANCHEZ-SINENCIO Edgar. Low voltage analog circuit design techniques:A tutorial [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2000, E83-A(2):179-196.
    [48]Comer D.J.,Comer D.T. Operation of Analog MOS Circuits in the Weak or Moderate Inversion Region [J]. IEEE Transactions on Education,2004,47(4): 430-435.
    [49]Vittoz E.,Fellrath J. CMOS analog integrated circuits based on weak inversion operations [J]. IEEE Journal of Solid-State Circuits,1977,12(3):224-231.
    [50]Becker-Gomez A. et al. A Low-Supply-Voltage CMOS Sub-Bandgap Reference [J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2008,55(7): 609-613.
    [51]Buck Ae et al. A CMOS bandgap reference without resistors [J]. IEEE Journal of Solid-State Circuits,2002,37(1):81-83.
    [52]De Vita G.,Iannaccone Giuseppe. A Sub-1-V,10 ppm/℃, Nanopower Voltage Reference Generator [J]. IEEE Journal of Solid-State Circuits,2007,42(7): 1536-1542.
    [53]Ferreira L et al. A CMOS threshold voltage reference source for very-low-voltage applications [J]. Microelectronics Journal,2008,39(12): 1867-1873.
    [54]Leung Ka Nang,Mok P.K.T. A CMOS voltage reference based on weighted AV/sub GS/for CMOS low-dropout linear regulators [J]. IEEE Journal of Solid-State Circuits,2003,38(1):146-150.
    [55]Ueno Ken et al. A 300 nW,15 ppm/℃,20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs [J]. IEEE Journal of Solid-State Circuits,2009,44(7):2047-2054.
    [56]Broeck Heinz van der et al. Power driver topologies and control schemes for LEDs [A]. In:Proceedings of Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition [C].2007:1319-1325.
    [57]Nishida M.,Ohyabu H. Temperature dependence of MOSFET characteristics in weak inversion [J]. IEEE Transactions on Electron Devices,1977,24(10): 1245-1248.
    [58]Chowdhury Inshad,Ma Dongsheng. An integrated reconfigurable switched-capacitor DC-DC converter with a dual-loop adaptive gain-pulse control [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2008:2610-2613.
    [59]Boni Andrea et al. DC-DC converter for fuel-cells and portable devices in digital CMOS technology [J]. Analog Integrated Circuits and Signal Processing, 2008,55(1):93-102.
    [60]Texas Instruments. TPS61220 Datasheet [EB/OL].: http://focus.ti.com/lit/ds/symlink/tps61220.pdf,2009:
    [61]Sze Ngok-Man et al. Threshold Voltage Start-up Boost Converter for Sub-mA Applications [A]. In:Proceedings of 4th IEEE International Symposium on Electronic Design, Test and Applications [C].2008:338-341.
    [62]Sun N.X. et al. A high performance integrated boost DC-DC converter for portable power supply [A]. In:Proceedings of Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition [C].2004:1039-1044.
    [63]Bing Yuan et al. The Design of a Start-up Circuit for BOOST DC-DC Converter with Low Supply Voltage [A]. In:Proceedings of 6th International Conference on ASIC [C].2005:512-515.
    [64]Lou Jh,Kuo J.B. A 1.5-V full-swing bootstrapped CMOS large capacitive-load driver circuit suitable for low-voltage CMOS VLSI [J]. IEEE Journal of Solid-State Circuits,1997,32(1):119-121.
    [65]Shin Jongshin et al. A new charge pump without degradation in threshold voltage due to body effect [J]. IEEE Journal of solid-state circuits,2000,35(8): 1227-1230.
    [66]Torres Erick O,Rincon-Mora Gabriel A. A 0.7-μm BiCMOS Electrostatic Energy-Harvesting System IC [J]. IEEE Journal of Solid-State Circuits,2010, 45(2):483-496.
    [67]Jia Hailong et al. A Novel DC-DC Charge Pump Circuit for Passive RFID Transponder [A]. In:Proceedings of International Workshop on Electron Devices and Semiconductor Technology (EDST) [C].2007:218-221.
    [68]COLOMER J et al. Efficient low-voltage low-power Converters for Self Powered Microsystems (SPMS) based on 0.13 μm technology [A]. In: Proceedings of 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics [C].2006:74-79.
    [69]Lee Yu-huei et al. Current mode DC-DC buck converters with optimal fast-transient control [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2008:3045-3048.
    [70]Forghani-zadeh H. Pooya,Rincon-Mora Gabriel A. A lossless, accurate, self-calibrating current-sensing technique for DC-DC converters [A]. In: Proceedings of 32nd Annual Conference of IEEE Industrial Electronics Society [C].2005:549-554.
    [71]Du Mengmeng,Lee Hoi. A 2.5MHz,97%-accuracy on-chip current sensor with dynamically-biased shunt feedback for current-mode switching DC-DC converters [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2008:3274-3277.
    [72]Chen Jiann-jong et al. On-chip current sensing technique for hysteresis current controlled DC-DC converter [A]. In:Proceedings of 2nd Annual IEEE Northeast Workshop on Circuits and Systems [C].2004:181-184.
    [73]Ki Wing-Hung. Analysis of subharmonic oscillation of fixed-frequency current-programming switch mode power converters [J], IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1998,45(1): 104-108.
    [74]Oloughlin Mike. Bootstrap Circuit for Green Mode Applications [EB/OL]. http://www.eettaiwan.com/STATIC/PDF/200901/20090121_TI_AN01.pdf, 2006:
    [75]Williams Rk et al. The bidirectional power NMOS-a new concept in battery disconnect switching [A]. In:Proceedings of International Symposium on Power Semiconductor Devices and IC's [C].1995:480-485.
    [76]Degrauwe M.G.R. et al. CMOS voltage references using lateral bipolar transistors [J]. IEEE Journal of Solid-State Circuits,1985,20(6):1151-1157.
    [77]Tajalli A. et al. Design and optimization of a high PSRR CMOS bandgap voltage reference [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2004:45-48.
    [78]Fayomi Christian Jesus B. et al. Sub 1 V CMOS bandgap reference design techniques:a survey [J]. Analog Integrated Circuits and Signal Processing,2009, 62(2):141-157.
    [79]Banba Hironori et al. A CMOS bandgap reference circuit with sub-1-V operation [J]. IEEE Journal of Solid-State Circuits,1999,34(5):670-674.
    [80]Shen Hui Wu Xiaobo. A Precise Bandgap Reference with High PSRR [A]. In: Proceedings of IEEE Conference on Electron Devices and Solid-State Circuits [C].2005:267-270.
    [81]Popa Cosmin,Mitrea Octavian. Micropower CMOS bandgap voltage reference [A]. In:Proceedings of 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces [C].2001:502-506.
    [82]Miller S.,MacEachern L. A Nanowatt Bandgap Voltage Reference For Ultra-Low Power Applications [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2006:645-648.
    [83]Filanovsky Im,Allam A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2001,48(7):876-884.
    [84]Carvalho Ferreira L.H. de,Pimenta T.C. The use of extracted BSIM3v3 MOS parameters for fast design of circuits on weak inversion [A]. In:Proceedings of 16th International Conference on Microelectronics [C].2005:84-87.
    [85]Gupta V.,Rincon-Mora G.A. A Low Dropout, CMOS Regulator with High PSR over Wideband Frequencies [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2005:4245-4248.
    [86]Leung Wing Yan et al. A high precision, output-capacitor-free low-dropout regulator for system-on-chip design [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2008:2242-2245.
    [87]Hancock Jm. Improving the Performance of Flyback Power Supplies [J]. Power Electronics Technology,2005,31(9):33-43.
    [88]Bonizzoni Edoardo et al. A 200mA 93% Peak Efficiency Single-Inductor Dual-Output DC-DC Buck Converter [A]. In:Proceedings of IEEE International Solid-State Circuits Conference. Digest of Technical Papers [C].2007:526-619.
    [89]Bayer E.,Thiele G. A Single-Inductor Multiple-Output Converter with Peak Current State-Machine Control [A]. In:Proceedings of Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition [C].2006: 153-159.
    [90]Belloni Massimiliano et al. On the design of single-inductor multiple-output DC-DC buck converters [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2008:3049-3052.
    [91]Hu Zongqi,Ma Dongsheng. A Pseudo-CCM Buck Converter With Freewheel Switching Control [A]. In:Proceedings of IEEE International Symposium on Circuits and Systems [C].2005:3083-3086.
    [92]Jia Jingbin,Leung Ka Nang. A single-inductor dual-output pseudo-DCM/CCM buck and boost converter in 90nm CMOS technology [A]. In:Proceedings of 9th International Conference on Solid-State and Integrated-Circuit Technology [C].2008:1937-1940.
    [93]Ma Dongsheng et al. A pseudo-CCM/DCM SIMO switching converter with freewheel switching [J]. IEEE Journal of Solid-State Circuits,2003,38(6): 1007-1014.
    [94]Lopez J. et al. Fast-charge in lithium-ion batteries for portable applications [A]. In:Proceedings of 10th International Workshop on Computational Electronics [C].2004:19-24.
    [95]Potanin E.E.,Potanin V.Y. Li-Ion Battery Charger with Three-Parameter Regulation Loop [A]. In:Proceedings of IEEE 36th Conference on Power Electronics Specialists [C].2005:2836-2840.
    [96]Meeks Daniel. Loop Stability Analysis of Voltage Mode Buck Regulator With Different Output Capacitor Types-Continuous and Discontinuous Modes [EB/OL].:2008:
    [97]Ng David C. W. et al. An Efficient Transfer-Function-Based Approach for the Fast Tuning and Design of DC-DC Converters [A]. In:Proceedings of 2nd IEEE Conference on Industrial Electronics and Applications [C].2007: 682-686.
    [98]OSRAM Opto Semiconductors Gmbh. LCW CP7P Datasheet [EB/OL].: http://catalog.osram-os.com/catalogue/catalogue.do?act=showBookmark&favOi d=000000060001860b0377003a,2009:
    [99]Oh In-hwan. An analysis of current accuracies in peak and hysteretic current controlled power LED drivers [A]. In:Proceedings of Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition [C].2008: 572-577.
    [100]Wens Mike.Steyaert Michiel. A fully-integrated 0.18μm CMOS DC-DC step-down converter, using a bondwire spiral inductor [A]. In:Proceedings of IEEE Custom Integrated Circuits Conference [C].2008:17-20.
    [101]Sansen Willy. Analog design challenges in nanometer CMOS technologies [A]. In:Proceedings of IEEE Asian Solid-State Circuits Conference [C].2007:5-9.
    [102]Lee Dongwoo et al. Analysis and minimization techniques for total leakage considering gate oxide leakage [A]. In:Proceedings of 40th conference on Design automation [C].2003:175.
    [103]Zhang Yan et al. HotLeakage:A Temperature-Aware Model of Subthreshold and Gate Leakage for Architects [EB/OL].: http://www.cs.virginia.edu/-skadron/Papers/leakage_tr2003_05.pdf,2003:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700