用户名: 密码: 验证码:
氧化铁改性及氧化钛固有光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为高级氧化技术的一员,半导体光催化技术成为当今环境与能源领域的研究热点。通过利用清洁、可再生的太阳能,光催化技术可在较为温和的反应条件下,将有机物彻底矿化分解,不会造成二次污染,且常见的光催化剂通常无毒,价格低廉,在环境领域中有巨大的应用前景。自20世纪80年代以来,光催化在污染物的处理方面(水相和气相)取得了十足的发展,逐渐成为研究的热点与重点。以Ti02和Fe203等为代表的半导体光催化剂具有高活性、低成本,环境友好及稳定性好的优势,其原理及应用的相关研究日益受到广泛的重视。
     围绕这个主题,我们从光催化的基本原理入手,将Fe203分散于氧化铝载体上,制备了活性及稳定性较高的光催化剂。而通过对Ti02固有光催化活性的研究,首次发现高温处理得到的Ti02具有更强的光吸收,更多的表面缺陷,更高的空穴-电子分离效率,进而导致更高的“固有”光催化活性,强调了高温煅烧对于提高TiO2光催化活性的重要性。进一步,通过研究板钛矿TiO2的光催化活性,证实TiO2的固有光催化活性仅与煅烧温度有关,而与其晶型无直接联系。还通过使用氧化铈修饰金红石TiO2提高了其光催化活性。本论文分为七章,主要研究内容与成果如下:
     (1)通过溶胶-凝胶法将Fe203分散于氧化铝载体上,有效地减小氧化铁的粒子大小,增加了有机物的吸附量,进而有效提高了氧化铁的光催化活性。氧化铁的含量为25wt%,且煅烧温度为400℃的负载样品具有最高的反应活性。此种活性不仅明显高于氧化铁本身,也高于氧化硅负载的氧化铁样品。通过循环试验,发现氧化铁/氧化铝负载催化剂的光稳定性明显强于氧化铁/氧化硅负载催化剂。
     (2)通过水热法合成了三组具有不同粒径大小的锐钛矿Ti02:不同水热时间、不同煅烧温度及不同煅烧时间的TiO2。通过使用O2和Ag+作为电子捕获剂,考察了TiO2的煅烧温度和粒径对其降解苯酚速率的影响。研究结果清晰地表明:随着Ti02颗粒的增大,其“固有”光催化活性逐渐增大。然而,粒子大小并不是高温煅烧提高光催化活性的主要原因。在相同的粒子大小条件下,与低温水热合成的样品相比,高温处理得到的Ti02具有更强的光吸收,更多的表面缺陷,更高的空穴-电子分离效率,进而导致更高的“固有”光催化活性。此工作强调了高温煅烧对于提高TiO2光催化活性的重要性。
     (3)考察了板钛矿Ti02的固有光催化活性。以二(2-羟基丙酸)二氢氧化二铵合钛为钛源,通过水热法合成了纯相板钛矿Ti02。采用02或Ag+作为电子捕获剂,通过比较不同Ti02光催化降解苯酚与光催化还原Cr6+,发现:当Ti02表面的电子捕获剂浓度相同时,无论是光催化降解有机物,还是光还原过程,板钛矿Ti02的“固有”光催化活性与锐钛矿和金红石相同,仅由煅烧温度决定。此外,板钛矿与金红石之间存在混晶效应,可能的原因是由于02从板钛矿表面扩散至金红石表面,进而释放出高结晶金红石的高固有活性。
     (4)通过使用氧化铈修饰金红石Ti02提高了其光催化活性。采用O2或Ag+作为电子捕获剂,在紫外光照下考察了此种催化剂的光催化活性。结果表明,当使用02作为电子捕获剂时,Ce02的修饰可以显著提高金红石的光催化活性,且金红石的Ts越高,此种提高的效果越明显。而当使用Ag+作为电子捕获剂时,上述结果没有出现。另外,高温处理后的Ce02也不能改善金红石的光催化活性。通过综合考虑多种因素,我们认为低温处理的Ce02具有很强的储氧能力,当其与金红石接触后,Ce02贮存的O2会扩散至金红石的粒子表面,提高了光生载流子的分离效率,进而释放出高结晶金红石的高固有活性。
As a member of advanced oxidation technology, semiconductor photocatalytic technology becomes hot topic in today's environment and energy fields. By using the clean and renewable solar energy, photocatalytic technology can occur under milder reaction conditions, and completely mineralize the organic pollutants, without causing secondary pollution. The common photocatalysts are generally non-toxic, low prices, which have great application prospects in environmental field. Since1980's, photocatalysis in dealing with contaminants (water phase and gas phase) achieved full development, has become the hotspot in research. Semiconductor photocatalysts, such as TiO2and Fe2O3, have the advantages of high activity, low cost, environmentally friendly, and good stability, and the research in application and principles cause widespread attention.
     Around this theme, from the basic principles of photocatalysis, we prepared the the photocatalyst of high activity and stability by Fe2O3dispersed on the alumina support. And by studying the intrinsic photocatalytic activity of anatase TiO2, we found that the thermally treated TiO2has more surface defects than the hydrothermally treated one, which would facilitate charge separation, and consequently accelerate phenol degradation at the solid-liquid interface. Furthermore, by studying the brookite TiO2, we confirm that TiO2has the same "intrinsic" photocatalytic activity, regardless of the solid structures in the form of anatase, rutile and brookite. By modifying rutile TiO2with CeO2, we found that the positive effect of CeO2was observed with rutile TiO2, but not with anatase or P25TiO2. This thesis is mainly divided into seven chapters, the main research contents and results are as follows:
     (1) Silica supported hematite (Fe2O3/silica) that is more active but less stable than the supported hematite for organic photodegradation in aqueous solution has been reported. In this work, we report on alumina supported hematite (Fe2O3/alumina) with significantly improved activity and stability. The catalysts were prepared by mixing alumina with a pre-made colloidal iron oxide at various loading (0-100wt%), followed by sintering at different temperatures (200-900℃). Solid characterization with X-ray diffraction and N2adsorption showed that hematite particles were small in size, and large in surface area, as compared with the unsupported hematite prepared in parallel. The catalyst activity was evaluated with anionic Orange Ⅱ as a model substrate, and the reaction was carried out in aerated aqueous suspension under light irradiation at wavelengths longer than320nm. As the Fe2O3loading on alumina or the catalyst sintering temperature increased, the apparent rate constant of dye degradation increased, and then decreased. The maximum rate of dye degradation was obtained with25wt%Fe2O3/alumina, sintered at400℃. Moreover, five consecutive experiments for dye photodegradation showed that Fe2O3/alumina was much more stable than Fe2O3/silica, due to alumina that has a positively charged surface and thus facilitates the dissolved iron species back onto iron oxide. The higher activity of Fe2O3/alumina than Fe2O3/silica and bare hematite is ascribed to the combined effect between the reduced particle size of hematite and the enhanced surface adsorption of dye on the catalyst.
     (2) Photocatalytic activity of anatase TiO2that increases with the increase of its synthesis temperature has been widely reported, but the reason for that remains incompletely understood. In this work, the positive effect of synthesis temperature, presumably due to the growth of particle size, has been examined. Three series of anatase samples with various particle sizes were prepared from the hydrolysis of TiOSO4in water at150℃, followed by calcination in air. The particle size of TiO2, estimated by X-ray diffraction, and/or by N2adsorption, increased with the increases of the hydrothermal time, calcination time, and calcination temperature, respectively. For phenol photodegradation in aerated aqueous suspension, three series of the samples showed different correlation between the activity and particle size of TiO2. However, for phenol photodegradation in a N2-purged aqueous suspension, these catalysts with the same amount of Ag+adsorbed on the oxide surface showed activities all in proportion to the particle size of TiO2, whereas at given particle size, the thermally treated TiO2was much more active than the hydrothermally treated one. The observed effect of particle size is discussed in terms of the solid crystallinity, surface area, exposed facets, surface hydroxyl groups and light absorption, but they only correlate with the trend in the number of surface defects, as revealed by photoluminescence spectroscopy. Moreover, at given particle size, the thermally treated TiO2has more surface defects than the hydrothermally treated one, which would facilitate charge separation, and consequently accelerate phenol degradation at the solid-liquid interface.
     (3) It has been reported that with the same amount of electron scavenger on the catalyst surfaces, anatase and rutile actually have a similar "intrinsic" photocatalytic activity at a given sintering temperature (Ts), for organic degradation or water oxidation. But for brookite TiO2, its "intrinsic" photocatalytic has not been studied. In this work, the brookite was synthesized by using a hydrothermal method. The characterizations reveal that the brookite is in pure phase. In the aerated aqueous suspension of TiO2, the initial rate of phenol photodegradation, per surface area of the catalyst, brookite shows higher photocatalytic activity than anatase. By using Ag+as the electron scavenger, we found that at the same amount of electron acceptor adsorbed on the catalyst surfaces, anatase, brookite and rutile actually have a similar photocatalytic activity at a given Ts, for organic oxidation. And for Cr(VI) photoreduction process, the similar result is found. Moreover, there is a synergistic effect between brookite and rutile particles for organic degradation in aerated aqueous suspension, and the higher activity is caused by the process of O2on brookite diffusing onto the rutile sites nearby.
     (4) Modification of anatase TiO2with CeO2resulting into enhancement in the photocatalytic activity for organic degradation has been widely reported, but the role of CeO2remains unclear. In this work, the biphase oxide has been prepared by mixing individual oxides together, without changes in the physical properties of TiO2itself. For phenol degradation in aqueous suspension under UV light, the positive effect of CeO2was observed with rutile TiO2, but not with anatase or P25TiO2. As the synthesis temperatures of rutile and CeO2increased, the activity enhancement of the mixed oxide increased and decreased, respectively. However, with the same amount of Ag+adsorbed on each catalyst for phenol degradation under N2, the CeO2-mixed TiO2was always less photoactive than parent TiO2(anatase, rutile and P25). Several factors were considered, including the photogeneration of H2O2, and the conduction band edge potentials measured with the oxides. It is proposed that nonstoichiometric CeO2produced at low temperature has ability to store and release oxygen to TiO2nearby, consequently exploring the masked photocatalytic activity of rutile for phenol degradation in aqueous suspension.
引文
(1)Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238,37-38.
    (2)Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A Review and Recent Developments in Photocatalytic Water-splitting Using TiO2 for Hydrogen Production. Renew. Sustain. Energy Rev.2007,11,401-425.
    (3)Kabra, K.; Chaudhary, R.; Sawhney, R. L. Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-phase Photocatalysis:A Review. Ind. Eng. Chem. Res.2004,43, 7683-7696.
    (4)Emeline, A. V.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. Application of a "Black Body" Like Reactor for Measurements of Quantum Yields of Photochemical Reactions in Heterogeneous Systems. J. Phys. Chem. B 2006,110,7409-7413.
    (5)Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev,2009,38,253-278.
    (6)Kudo, A.; Kato, H.; Nakagawa, S. Water Splitting into H2 and O2 on New Sr2M2O7 (M= Nb and Ta) Photocatalysts with Layered Perovskite Structures:Factors Affecting the Photocatalytic Activity. J. Phys. Chem. B 2000,104,571-575.
    (7)Wang, G.; Wang, H.; Ling, Y; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J.; Li, Y. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011,11,3026-3033.
    (8)Kato, H.; Kudo, A. Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A= Li, Na, and K). J. Phys. Chem. B 2001,105,4285-4292.
    (9)Cesar, I.; Kay, A.; Martinez, J. A. G.; Gratzel, M. Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:Nanostructure-Directing Effect of Si-Doping. J. Am. Chem. Soc,2006,128,4582-4583.
    (10)Maeda, K.; Takata, T.; Hara, M.; Saito, H.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN:ZnO Solid Solution as a Photocatalyst for Visible-light-driven Overall Water Splitting. J. Am. Chem. Soc.2005,127,8286-8287.
    (11)Kato, H.; Asakura, K.; Kudo, A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc.2003,125,3082-3089.
    (12)Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Recent Progress of Visible-light-driven Heterogeneous Photocatalysts for Overall Water Splitting. Solid State Ionics 2004,172,591-595.
    (13)Sayama, K.; Yase, K.; Arakawa, H.; Asakura, K.; Tanaka, A.; Domen, K.; Onishi, T. Photocatalytic Activity and Reaction Mechanism of Pt-intercalated K4Nb6O17 Catalyst on the Water Splitting in Carbonate Salt Aqueous Solution. J. Photochem. Photobiol. A:Chem.1998, 114,125-135.
    (14)Ye, J.; Zou, Z.; Matsushita, A. A Novel Series of Water Splitting Photocatalysts NiM2O6 (M= Nb, Ta) Active under Visible Light. Int. J. Hydrogen Energy 2003,28,51-655.
    (15)Galinska, A.; Walendziewski, J. Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacrificial Reagents. Energy Fuels 2005,19,1143-1147.
    (16)Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Suwaiyan, A. Production of Hydrogen and Oxygen by Water Splitting Using Laser Induced Photo-catalysis over Fe2O3. Appl. Catal. A: General 2004,268,159-167.
    (17)Carey, J. H.; Lawrence, J.; Tosine, H. M. Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol.1976,16,697-701.
    (18)Glaze, W. H. Drinking-water Treatment with Ozone. Environ. Sci. Technol.1987,21,224-230.
    (19)许宜铭.环境污染物的光催化降解:活性物种与反应机理.化学进展2009,21,524-533.
    (20)Kamat, P. V. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev.1993,93,207-300.
    (21)Gratzel, M. Photoelectrochemical Cells. Nature 2001,414,338-334.
    (22)Zhang, H.; Chen, G.; Bahnemann, D. W. Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem.2009,19,5089-5121.
    (23)Hoffinann, M. R.; Martin, S. T.; Choi, W.; Bahneman, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    (24)Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic Reactions:Design of New Photocatalysts. J. Phys. Chem. C 2007, 111,5259-5275.
    (25)Thompson, T. L.; Yates, J. T. Jr. Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes. Chem. Rev.2006,106,4428-4453.
    (26)Adin, C.; Carbajo, J.; Bahamonde, A.; Martinez-Arias, A. Phenol Photodegradation with Oxygen and Hydrogen Peroxide over TiO2 and Fe-doped TiO2. Catal. Today 2009,143, 247-252.
    (27)Tachikawa, T.; Majima, T. Single-Molecule Fluorescence Imaging of TiO2 Photocatalytic Reactions. Langmuir 2009,25,7791-7802.
    (28)Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr. Photocatalysis on TiO2 Surface:Principles, Mechanisms and Selected Results. Chem. Rev.1995,95,735-758.
    (29)孙琼.二氧化钛光催化、光敏化影响因素及机理研究:[博士毕业论文].杭州:浙江大学,2011.
    (30)Wu, G.; Wang, J.; Thomas, D. F.; Chen, A. Synthesis of F-Doped Flower-like TiO2 Nanostructures with High Photoelectrochemical Activity. Langmuir 2008,24,3503-3509.
    (31)Kumar, S. G.; Devi, L. G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011,115,13211-13241.
    (32)Jaeger, C. D.; Bard, A. J. Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at Titanium Dioxide Pariculate Systems. J. Phys. Chem.1979,83,3146-3152.
    (33)Schwarz, P. F.; Turro, N. J.; Bossmann, S. H.; Braun, A. M.; Wahab, A. A. A.; Durr, H. A New Method to Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions. J. Phys. Chem. B 1997,101, 7127-134.
    (34)Nosaka, Y.; Komori, S.; Yawata, K.; Hirakawa, T.; Nosaka, A. Y. Photocatalytic OH Radical Formation in TiO2 Aqueous Suspension Studied by Several Detection Methods. Phys. Chem. Chem. Phys.2003,5,4731-4735.
    (35)Murakami, Y.; Kenji, E.; Nosaka, A. Y.; Nosaka, Y. Direct Detection of OH Radicals Diffused to the Gas Phase from the UV-Irradiated Photocatalytic TiO2 Surfaces by Means of Laser-Induced Fluorescence Spectroscopy. J. Phys. Chem. B 2006,110,16808-16811.
    (36)Murakami, Y; Kenji, E.; Ohta, I.; Nosaka, A. Y.; Nosaka, Y. Can OH Radicals Diffuse from the UV-Irradiated Photocatalytic TiO2 Surfaces? Laser-Induced-Fluorescence Study. J. Phys. Chem. C2007,111,11339-11346.
    (37)Vincent, G.; Aluculesei, A.; Parker, A.; Fittschen, C.; Zahraa, O.; Marquaire, P. Direct Detection of OH Radicals and Indirect Detection of H2O2 Molecules in the Gas Phase near a TiO2 Photocatalyst Using LIE J. Phys. Chem. C 2008,112,9115-9119.
    (38)Sun, Y.; Pignatello, J. J. Evidence for a Surface Dual Hole-radical Mechanism in the Titanium Dioxide Photocatalytic Oxidation of 2,4-D. Environ. Sci. Technol.1995,29,2065-2072.
    (39)Huston, P. L.; Pignatello, J. J. Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding Mineralization by the Photo-Fenton Reaction. Environ. Sci. Technol.1996,30,3457-3463.
    (40)Richard, C. Regioselectivity of Oxidation by Positive Holes (h+) in Photocatalytic Aqueous Transformations. J Photochem Photobiol A:Chem.1993,72,179-182.
    (41)Turchi, C. S.; Ollis, D. F. Photocatalytic Degradation of Oranic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. J. Catal.1990,122,178-192.
    (42)Richard, C.; Lemaire, J. Analytical and Kinetic Study of the Phototransformation of Furfuryl Alcohol in Aqueous ZnO Suspensions. J Photochem Photobiol A:Chem.1990,55,127-134.
    (43)Kim, S.; Choi, W. Dual Photocatalytic Pathways of Trichloroacetate Degradation on TiO2: Effects of Nanosized Platinum Deposits on Kinetics and Mechanism. J. Phys. Chem. B 2002, 105,13311-13317.
    (44)Choi, W.; Termin, A.; Hoffmann, M. R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem.1994, 98,13669-13679.
    (45)丛杉.二氧化钛光催化机理:表面修饰和混晶效应:[博士毕业论文].杭州:浙江大学,2011.
    (46)刘守新,刘宏.光催化及光电催化基础与应用.北京:化学工业出版社,2006.
    (47)Curco, D.; Gimenez, J.; Addardak, A.; Cervera-March, S.; Esplugas, S. Effects of Radiation Absorption and Catalyst Concentration on the Photocatalytic Degradation of Pollutants. Catal. Today2002,177-188.
    (48)Karunakaran, C.; Senthilvelan, S. Photooxidation of Aniline on Alumina with Sunlight and Artificial UV Light. Catal. Comm.2005,6,159-165.
    (49)Qamar, M.; Muneer, M.; Bahnemann, D. Heterogeneous Photocatalysed Degradation of Two Selected Pesticide Derivatives, Triclopyr and Daminozid in Aqueous Suspensions of Titanium Dioxide. J. Environ. Manage.2006,80,99-106.
    (50)Yang, L.; Yu, L. E.; Ray, M. B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res.2008,42,3480-3481.
    (51)Xu, Y; Langford, C. H. Variation of Langmuir Adsorption Constant Determined for TiO2-photocatalyzed Degradation of Acetophenone Under Different Light Intensity. J. Photochem. Photobiol. A:Chem.2000,133,67-71.
    (52)Agrios, A. G.; Pichat, P. Recombination Rate of Photogenerated Charges versus Surface Area: Opposing Effects of TiO2 Sintering Temperature on Photocatalytic Removal of Phenol, Anisole, and Pyridine in Water. J. Photochem. Photobiol. A 2006,180,130-135.
    (53)Kominami, H.; Kohno, M.; Kera, Y. Synthesis of Brookite-type Titanium Oxide Nano-crystals in Organic Media. J. Mater. Chem.2000,10,1151-1156.
    (54)Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powders by Dissolving the Anatase Component in HF Solution. J. Phys. Chem. B 2001,105,2417-2420.
    (55)Ryu, J.; Choi, W. Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application. Environ. Sci. Technol.2008,42,294-300.
    (56)Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal Faces of Rutile and Anatase TiO2 Particles and Their Roles in Photocatalytic Reactions. New J. Chem.2002,25,1167-1170.
    (57)Ohtani, B.; Ogawa, Y.; Nishimoto, S. Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997,101,3746-3752.
    (58)Sun, Q.; Xu, Y. Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water. J. Phys. Chem. C 2010,114,18911-18918.
    (59)Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2:A Combined Effect of O2 and Crystallinity.J. Phys. Chem. C 2011,115,21161-21168.
    (60)Krysa, J.; Keppert, M.; Jirkovsky, J.; Stengl, V.; Subrt, J. The Effect of Thermal Treatment on the Properties of TiO2 Photocatalyst. Mater. Chem. Phys.2004,86,333-339.
    (61)Ilisz, I.; Laszlo, Z.; Dombi, A. Investigation of the Photodecomposition of Phenol in Near-UV-irradiated Aqueous TiO2 Suspensions. I:Effect of Charge-trapping Species on the Degradation Kinetics. Appl. Catal. A:General 1999,180,25-33.
    (62)Saquib, M.; Muneer, M. TiO2-mediated Photocatalytic Degradation of a Triphenylmethane Dye (Gentian Violet), in Aqueous Suspensions. Dye. Pigment.2003,56,37-49.
    (63)Hu, C.; Wang, Y; Tang, H. Destruction of Phenol Aqueous Solution by Photocatalysis or Direct Photolysis. Chemosphere 2000,41,1205-1209.
    (64)Du, W.; Xu, Y; Wang, Y Photoinduced Degradation of Orange II on Different Iron (hydr)oxides in Aqueous Suspension:Rate Enhancement on Addition of Hydrogen Peroxide, Silver Nitrate, and Sodium Fluoride. Langmuir 2008,24,175-181.
    (65)Tariq, M. A.; Faisal, M.; Muneer, M.; Bahnemann, D. Photochemical Reactions of a Few Selected Pesticide Derivatives and Other Priority Organic Pollutants in Aqueous Suspensions of Titanium Dioxide. J. Mol. Catal. A:Chem.2007,265,231-236.
    (66)Bhatkhande, D. S.; Kamble, S. P.; Sawant, S. B.; Pangarkar, V. G. Photocatalytic and Photochemical Degradation of Nitrobenzene Using Artificial UV Radiation. Chem. Eng. J. 2004,102,283-290.
    (67)Palmisano, G.; Addamo, M.; Augugliaro, V.; Caronna, T.; Paola, A. D.; Lopez, E.G.; Loddo, V.; Marci, G.; Palmisano, L.; Schiavello, M. Selectivity of Hydroxyl Radical in the Partial Oxidation of Aromatic Compounds in Heterogeneous Photocatalysis. Catal. Today 2007,122, 118-127.
    (68)Ferrere, S.; Zaban, A.; Gregg, B. A. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. J. Phys. Chem. B1997,101,4490-4493.
    (69)Pelet, S.; Moser, J. E.; Gratzel, M. Cooperative Effect of Adsorbed Cations and Iodide on the Interception of back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2. J. Phys. Chem. B 2000,104,1791-1795.
    (70)Ferrere, S.; Gregg, B. A. New Perylenes for Dye Sensitization of TiO2. New J. Chem.2002, 26,1155-1160.
    (71)Islam, A.; Sugihara, H.; Hara, K.; Singh, L. P.; Katoh, R.; Yanagida, M.; Takahashi, Y; Murata, S.; Arakawa, H. Dye Sensitization of Nanocrystalline Titanium Dioxide with Square Planar Platinum (II) Diimine Dithiolate Complexes. Inorg. Chem.2001,40,5371-5380.
    (72)Falaras, P. Synergetic Effect of Carboxylic Acid Functional Groups and Fractal Surface Characteristics for Efficient Dye Sensitization of Titanium Oxide. Sol. Energy Mater. Sol. Cells 1998,53,163-175.
    (73)Sakata, T; Hashimoto, K.; Hiramoto, M. New Aspects of Electron Transfer on Semiconductor Surface:Dye-sensitization System. J. Phys. Chem.1990,94,3040-3045.
    (74)Sauve, G.; Cass, M. E.; Coia, G.; Doig, S. J.; Lauennann, I.; Pomykal, K. E.; Lewis, N. S. Dye Sensitization of Nanocrystalline Titanium Dioxide with Osmium and Ruthenium Polypyridyl Complexes. J. Phys. Chem. B 2000,104,6821-6836.
    (75)Walters, K. A.; Gaal, D. A.; Hupp, J. T. Interfacial Charge Transfer and Colloidal Semiconductor Dye-Sensitization:Mechanism Assessment via Stark Emission Spectroscopy. J. Phys. Chem. B 2002,106,5139-5142.
    (76)Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2 (Rutile) (110) and (100) Surfaces: Dependence on Solution pH. J. Am. Chem. Soc.2007,129,11569-11578.
    (77)Parks, G. A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chem. Rev.1965,65,177-198.
    (78)Tanaka, S.; Saha, U. K. Effects of pH on Photocatalysis of 2,4,6-trichlorophenol in Aqueous TiO2 Suspensions. Water Sci. Technol.1994,30,47-57.
    (79)Ryu, J.; Choi, W. Effects of TiO2 Surface Modifications on Photocatalytic Oxidation of Arsenite:The Role of Superoxides. Environ. Sci. Technol.2004,38,2928-2933.
    (80)Tratnyek, P. G.; Holgne, J. Oxidation of Substituted Phenols in the Environment:A QSAR Analysis of Rate Constant for Reaction with Singlet Oxygen. Environ. Sci. Technol 1991,25, 1596-1604.
    (81)Burrows, H. D.; Ernestova, L. S.; Kemp, T. J.; Skurlatov, Y. I.; Purmal, A. P.; Yermakov, A. N. Kinetics and Mechanism of Photodegradation of Chlorophenols. Prog. React. Kinet.1998, 23,145-207.
    (82)Schmelling, D. C.; Gray, K. A.; Kamat, P. V. The Influence of Solution Matrix on the Photocatalytic Degradation of TNT in TiO2 Slurries. Wat. Res.1997,31,1439-1447.
    (83)Matsumoto, Y.; Yoshikawa, T.; Sato, E. Dependence of the Band Bending of the Oxide Semiconductors on pH. J. Electrochem. Soc.1989,136,1389-1391.
    (84)Fox, M. A.; Dulay, M. T. Heterogeneous Photocatalysis. Chem. Rev.1993,93,341-357.
    (85)Evgenidou, E.; Fytianos, K.; Poulios, I. Semiconductor-sensitized Photodegradation of Dichlorvos in Water Using TiO2 and ZnO as Catalysts. Appl. Catal. B:Environ.2005,59, 81-89.
    (86)Tunesi, S.; Anderson, M. A. Photocatalysis of 3,4-DCB in TiO2 Aqueous Suspensions; Effects of Temperature and Light Intensity; CIR-FTIR Interfacial Analysis. Chemosphere 1987,16,1447-1456.
    (87)Muradov, N. Z.; T-Raissi, A.; Muzzey, D.; Painter, C. R.; Kemme, M. R. Selective Photocatalytic Destruction of Airborne VOCs. Sol. Energy 1996,56,445-453.
    (88)Kim, T.; Park, K.; Rho, S.; Kim, S.; Cho, S. Bactericidal Effect of TiO2 on the Selected Vibrio Parahaemolyticus and Optimization Using Response Surface Methodology. J. Nanosci. Nanotechnol.2007,7,3709-3712.
    (89)Abdullah, M.; Low, G. K.-C.; Matthews, R. W. Effects of Common Inorganic Anions on Rates ofPhotocatalytic Oxidation of Organic Carbon over Illuminated Titanium Dioxide.J. Phys. Chem.1990,94,6820-6825.
    (90)Zhu,X.;Nanny,M.A.;Butler,E.C.Effect of Inorganic Anions on the Titanium Dioxide-based Photocatalytic Oxidation of Aqueous Ammonia and Nitrite.J.Photochem. Photobiol.A:Chem.2007,185,289-294.
    (91)Minero,C.;Mariella,G.;Maurino,V;Pelizzetti,E.Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions.1.Hydroxyl-mediated and Direct Electron-transfer Reactions of Phenol on a Titanium Dioxide-fluoride System.Langmuir 2000, 16,2632-2641.
    (92)Mrowetz,M.;Selli,E.Enhanced Photocatalytic Formation of Hydroxyl Radicals on Fluorinated TiO2.Phys.Chem.Chem.Phys.2005,7,1100-1102.
    (93)Xu,Y;Lv,K.;Xiong,Z.;Leng,W.;Du,W.Liu,D.;Xue,X.Rate Enhancement and Rate Inhibition of Phenol Degradation over Irradiated Anatase and Rutile TiO2 on the Addition of NaF:New Insight into the Mechanism.J. Phys.Chem.C 2007,111,19024-19032.
    (94)KeUy,C.A.;Farzad,F.;Thompson,D.W:;Stipkala,J.M.;Meyer,G.J.Cation-controlled Interfacial Charge Injection in Sensitized Nanocrystalluine TiO2.Langmuir 1999,15,7047-7054.
    (95)Montanarit,I.;Nelson,J.;Durrant,J.R.lodide Electron Transfer Kinetics in Dye-sensitized Nanocrystalline TiO2 films.J. Phys.Chem.B 2002,106,12203-12210.
    (96)Vamathevan,V.;Tse,H.;Amal,R.;Low,G.;McEvoy,S.Effects of Fe3+ and Ag+ Ions on the Photocatalytic Degradation of Sucrose in Water.Catal.Today 200l,68,201-208.
    (97)Ohno,T.;Haga,D.;Fujihara,K.;Kaizaki,K.;Matsumura,M.Unique Effects of Iron(Ⅲ) Ions on Photocatalytic and Photodectrochemical Properties of Titanium Dioxide.J.Phys. Chem.B 1997,101,6415-6419.
    (98)Lam,S.W.Chiang,K.;Lim,T. M.;Amal,R.;Low,G.K.-C.Effect of Charge Trapping Species of Cupric Ions on the Photocatalytic Oxidation of Resorcinol.Appl.Catal.B:Environ. 2005,55,123-132.
    (99)Chen,C.;Li,X.;Ma,W:;Zhao,J.Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation:A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism.J. Phys.Chem.B 2002,106,318-324
    (100)Kyung, H.; Lee, J.; Choi, W. Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2 Suspensions under Visible-light Illumination. Environ. Sci. Technol.2005,39,2376-2382.
    (101)Tryba, B.; Morawski, A. W.; Inagaki, M.; Toyoda, M. The Kinetics of Phenol Decomposition Under UV Irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 Photocatalysts. Appl. Catal. B 2006,63,215-221.
    (102)Sawyer, D. T.; Valentine, J. S. How Super is Superoxide? Acc. Chem. Res.1981,14, 93-400.
    (103)Rivera, A. P.; Tanaka, K.; Hisanaga, T. Photocatalytic Degradation of Pollutant over TiO2 in Different Crystal Structures. Appl. Catal. B 1993,3,37-44.
    (104)Sclafani, A.; Palmisano, L.; Davi, E. Photocatalytic Degradation of Phenol by TiO2 Aqueous Dipersions-rutile and Anatase Activity. New J. Chem.1990,14,265-268.
    (105)D. F. Ollis, H. Al-Ekabi (eds), Photocatalytic purification and treatment of water and air, Elsevier Science Publishes B. V., Amsterdam,1993.
    (106)Faust, B. C.; Hoffmann, M. R. Photoinduced Reductive Dissolution of α-Fe2O3 by Bisulfite. Environ. Sci. Technol.1986,20,943-948.
    (107)Duret, A.; Gratzel, M. Visible Light-Induced Water Oxidation on Mesoscopic a-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis. J. Phys. Chem. B 2005,109,17184-17191.
    (108)Faust, B. C.; Helz, G. R.; Zepp, R. G.; Crosby (eds.), D. G. Aquatic and Surface Photochemistry, Lewis Publishers, Boca Raton, FL,1994.
    (109)Leland, J. K.; Bard, A. J.; Photochemistry of Colloidal Semiconducting Iron Oxide Polymorphs. J. Phys. Chem.1987,91,5076-5083.
    (110)Pehkonen, S. O.; Slefert, R.; Erei, Y.; Webb, S.; Hoffinann, M. R. Photoreduction of Iron Oxyhydroxides in the Presence of Important Atmospheric Organic Compounds. Environ. Sci. Technol.1993,27,2056-2062.
    (111)Sulzberger, B.; Laubscher, H. Reactivity of Various Types of Iron(Ⅲ) (hydr)oxides towards Light-induced Dissolution. Mar. Chem.1995,50,103-115.
    (112)Mazellier, P.; Bolte, M. Heterogeneous Light-induced Transformation of 2,6-dimethylphenol in Aqueous Suspensions Containing Goethite. J. Photochem. Photobiol. A: Chem.2000,132,129-135.
    (113)Bandara, J.; Mielczarski, J. A.; Lopez, A.; Kiwi, J.2. Sensitized Degradation of Chlorophenols on Iron Oxides Induced by Visible light:Comparison with Titanium Oxide. Appl. Catal. B:Environ.2001,34,321-333.
    (114)He, J.; Tao, X.; Ma, W.; Zhao, J. Heterogeneous Photo-Fenton Degradation of an Azo Dye in Aqueous H2O2/Iron Oxide Dispersions at Neutral pHs. Chem. Lett.2002,1,86-87.
    (115)Andreozzi, R.; Caprio, V.; Marotta, R. Iron(Ⅲ) (hydr)oxide-mediated Photooxidation of 2-aminophenol in Aqueous Solution:A Kinetic Study. Water Res.2003,37,3682-3688.
    (116)Feng, J.; Hu, X.; Yue, P. L. Discoloration and Mineralization of Orange Ⅱ Using Different Heterogeneous Catalysts Containing Fe:A Comparative Study. Environ. Sci. Technol.2004,38,5773-5778.
    (117)Bandara, J.; Klehm, U.; Kiwi, J. Raschig Rings-Fe2O3 Composite Photocatalyst Activate in the Degradation of 4-chlorophenol and Orange Ⅱ under Daylight Irradiation. Appl. Catal. B: Environ. 2007,76,73-81.
    (118)Zhou, X.; Yang, H.; Wang, C.; Mao, X.; Wang, Y.; Yang, Y.; Liu, G. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-dimensional Iron Oxide Particles. J. Phys. Chem. C 2010,114,17051-17061.
    (119)Zhang, Z.; Hossain, F.; Miyazaki, T.; Takahashi, T. Gas Phase Photocatalytic Activity of Ultrathin Pt Layer Coated on a-Fe2O3 Films under Visible Light Illumination. Environ. Sci. Tehcnol. 2010,44,4741-4746.
    (120)Xie, H.; Li, Y.; Jin, S.; Zhao, J. X. Facile Fabrication of 3D-ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity. J. Phys. Chem. C 2010,114,9706-9712.
    (121)Rodriguez, E. M.; Fernandez, G.; Alvarez, P. M.; Hernandez, R.; Beltran, F. J. Photocatalytic Degradation of Organics in Water in the Presence of Iron Oxides:Effects of pH and Light Source. Appl. Catal. B:Environ.2011,102,572-583.
    (122)Bandara, J.; Mielczarski, J. A.; Kiwi, J.2. Photosensitized Degradation of Azo Dyes on Fe, Ti, and Al Oxides. Mechanism of Charge Transfer during the Degradation. Langmuir 1999, 15,7680-7687.
    (123)Sugimoto, T.; Wang, Y.; Itoh, H.; Muramatsu, A. Systematic Control of Size, Shape and Internal Structure of Monodisperse a-Fe2O3 Particles. Colloid. Surface. A 1998,134,265- 279.
    (124)Katsuki, H.; Komarneni, S. Role of a-Fe2O3 Morphology on the Color of Red Pigment for Porcelain. J. Am. Ceram. Soc.2003,86,183-185.
    (125)Escardino, A.; Mestre, S.; Barba, A.; Beltran, V.; Blasco, A. Synthesis Mechanism of an Iron-Chromium Ceramic Pigment. J. Am. Ceram. Soc.2000,83,29-32.
    (126)Shentu, B.; Gan, T.; Weng, Z. Modification of Fe2O3 and its Effect on the Heat-resistance of Silicone Rubber. J. Appl. Polym. Sci.2009,113,3202-3206.
    (127)Yurkov, G. Y.; Astaf'ev, D. A.; Nikitin, L. N.; Koksharov, Y. A.; Kataeva, N. A.; Shtykova, E. V; Dembo, K. A.; Volkov, V. V; Khokhlov, A. R.; Gubin, S. P. Fe-Containing Nanoparticles in Siloxane Rubber Matrices. Inorg. Mater.2006,42,496-502.
    (128)Suter, D.; Banwart, S.; Stumm, W. Dissolution of Hydrous Iron(Ⅲ) Oxides by Reductive Mechanisms. Langmuir 1991,7,809-813.
    (129)Tartaj, P.; Gonzalez-Carreno, T.; Serna, C. J. Magnetic Behavior of y-Fe2O3 Nanocrystals Dispersed in Colloidal Silica Particles. J. Phys. Chem. B 2003,707,20-24.
    (130)Liu, X. Q.; Tao, S. W.; Shen, Y. S.; Preparation and Characterization of Nanocrystalline a-Fe2O3 by a Sol-gel Process. Sensor. Actuator. B:Chem.1997,40,161-165.
    (131)Cantalini, C.; Pelino, M.; Sun, H. T.; Faccio, M.; Santuccid, S.; Lozzid, L.; Passacantando, M. Cross Sensitivity and Stability of NO2 Sensors from WO3 Thin Film. Sensor. Actuator. B:Chem.1996,35,112-118.
    (132)Chen, X.; Cai, Q.; Yin, L.; He, J. Progress in Research and Application of Nano-hematite Photocatalyst. Mater. Rev.:Rev.2010,24,118-124.
    (133)王妍.氧化铁光催化、金属酞菁光敏化降解水中有机物研究:[硕士毕业论文].杭州:浙江大学,2010.
    (134)杜卫平.(羟基)氧化铁光催化有机染料降解和金属银回收的研究:[博士毕业论文].杭州:浙江大学,2007.
    (135)Zboril, R.; Mashlan, M.; Petridis, D. Iron(Ⅲ) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mossbauer Spectroscopy Characterization, and Applications. Chem. Mater.2002,14,969-982.
    (136)Shankar, S. S.; Patil, U. S.; Prasad, B. L. V; Sastry, M. Liquid Foam as a Template for the Synthesis of Iron Oxyhydroxide Nanoparticles. Langmuir 2004,20,8853-8857.
    (137)Weckler, B.; Lutz, H. D.; Lattice Vibration Spectra. Part XCV. Infrared Spectroscopic Studies on the Iron Oxide Hydroxides Goethite (a), Akaganeite (β), Lepidocrocite (y), and Feroxyhite (δ). Eur. J. Solid State Inorg. Chem.1998,35,531-544.
    (138)Matsumoto, Y. Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides. J. Solid State Chem.1996,126,227-234.
    (139)Labertya, C.; Navrotsky, A. Energetics of Stable and Metastable Low-temperature Iron Oxides and Oxyhydroxides. Geochim. Cosmochim. Acta 1998,62,2905-2913.
    (140)Jia, C.; Sun, L.; Yan, Z.; You, L.; Luo, F.; Han, X.; Pang, Y.; Zhang, Z.; Yan, C. Single-Crystalline Iron Oxide Nanotubes. Angew. Chem.2005,117,4402-4407.
    (141)Jolivet, J.; Chaneac, C.; Tronc, E. Iron oxide chemistry. From Molecular Clusters to Extended Solid Networks. Chem. Commun.2004,481-483.
    (142)Xiong, H.; Zhou, L. Synthesis of Iron Oxyhydroxides of Different Crystal Forms and their Roles in Adsorption and Removal of Cr(Ⅵ) from Aqueous Solutions. Acta Petr. ET Miner.2008,27,559-566.
    (143)Cavicchi, R. E.; Silsbee, R. H. Coulomb Suppression of Tunneling Rate from Small Metal Particles. Phys. Rev. Lett.1984,52,1453-1462.
    (144)Hu, L.; Chen, M. Preparation of Ultrafine Powder:the Frontiers of Chemical Engineering. Mater. Chem. Phys.1996, 43,212-219.
    (145)Ekimov, A. I.; Efros, Al. L.; Onushchenko, A. A. Quantum Size Effect in Semiconductor Microcrystals. Solid State Commun.1985,56,921-924.
    (146)Wang, Y.; Herron, N. Nanometer-sized Semiconductor Clusters:Materials Synthesis, Quantum Size Effects, and Photophysical Properties. J. Phys. Chem.1991,95,525-532.
    (147)Flynn, Jr. C. M. Hydrolysis of Inorganic Iron(Ⅲ) salts. Chem. Rev.1984,84,31-41.
    (148)Mira, R.; Svetozar, M.; Matjaz, G. Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 Particles Precipitated by Hydrolysis of Fe3+Ions in Perchlorate Containing Aqueous Solutions. J. Alloys Compounds 2006,417,292-299.
    (149)Kakuta, S.; Abe, T. Photocatalysis for Water Oxidation by Fe2O3 Nanoparticles Embedded in Clay Compound:Correlation between its Polymorphs and their Photocatalytic Activities. J. Mater. Sci.2009,44,2890-2898.
    (150)Woo, K.; Lee, H. J.; Ahn, J. Park, Y. S. Sol-Gel Mediated Synthesis of Fe2O3 Nanorods. Advan. Mater.2003,15,1761-1764.
    (151)Dong, W.; Zhu, C. Use of Ethylene Oxide in the Sol-gel Synthesis of a-Fe2O3 Nanoparticles from Fe(Ⅲ) Salts. J. Mater. Chem.2002,12,1676-1683.
    (152)Palanisamya, B.; Babua, C. M.; Sundaravela, B.; Anandanb, S.; Murugesan, V. J. Hazard. Mater.2013,252,233-242.
    (153)Wang, Y.; Du, W.; Xu, Y. Effect of Sintering Temperature on the Photocatalytic Activities and Stabilities of Hematite and Silica-dispersed Hematite Particles for Organic Degradation in Aqueous Suspensions. Langmuir 2009,25,2895-2899.
    (154)Kayo A.; Yamaguchi, T.; Tanabe, K. The Effect of Preparation Method on the Acidic and Catalytic Properties of Iron Oxide. J. Catal.1983,83,99-105.
    (155)Richardson, J. T.; Dubus, R. J. Preparation Variables in Nickel Catalysts. J. Catal.1978, 54,201-218.
    (156)He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L;. Xie, S. S.; Yang, G. Z.; Zou, B. S. Size and Structure Effect on Optical Transitions of Iron Oxide Nanocrystals. Phys. Rev. B 2005,71,125411.
    (157)Akl, A. A. Optical Properties of Crystalline and Non-crystalline Iron Oxide Thin Films Deposited by Spray Pyrolysis. Appl. Surf. Sci.2004,233,307-319.
    (158)Ouertania, B.; Ouerfellia, J.; Saadouna, M.; Ezzaouiab, H.; Bessais, B. Characterisation of Iron Oxide Thin Films Prepared from Spray Pyrolysis of Iron Trichloride-based Aqueous Solution. Thin Solid Films 2008,516,8584-8586.
    (159)Ma, J.; Lian, J.; Duan, X.; Liu, X.; Zheng, W.α-Fe2O3:Hydrothermal Synthesis, Magnetic and Electrochemical Properties. J. Phys. Chem. C 2010,114,10671-10676.
    (160)Hu, X.; Yu, J. C.; Gong, J. Li, Q.; Li, G. a-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties. Advan. Mater.2007, 19,2324-2329.
    (161)Ni, Y.; Ge, X.; Zhang, Z.; Ye, Q. Fabrication and Characterization of the Plate-Shaped y-Fe2O3 Nanocrystals. Chem. Mater.2002,14,1048-1052.
    (162)Young, K. M. H.; Klahr, B. M.; Zandi, O.; Hamann, T. W. Photocatalytic Water Oxidation with Hematite Electrodes. Catal. Sci. Technol.2013,3,1660-1671.
    (163)Marusak, L. A.; Messier, R.; White, W. B. Optical Absorption Spectrum of Hematite, α-Fe2O3 near IR to UV. J. Phys. Chem. Solids 1980,41,981-984.
    (164)Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N, S. Solar Water Splitting Cells. Chem. Rev.2010,110,6446-6473.
    (165)Fenton, H. J. H. Oxidation of Tartaric Acid in the Presence of Iron. Chem.Soc.Trans. 1894,65,899-910.
    (166)Pulgarin, C.; Kiwi, J. Iron Oxide-Mediated Degradation, Photodegradation, and Biodegradation of Aminophenols. Langmuir 1995,11,519-526.
    (167)He, J.; Ma, W.; Song, W.; Zhao, J.; Qian, X.; Zhang, S.; Yu, J. Photoreaction of Aromatic Compounds at Alpha-FeOOH/H2O Interface in the Presence of H2O2:Evidence for Organic-goethite Surface Complex Formation. Water Res.2005,39,119-128.
    (168)Dotan, H.; Sivula, K.; Gratzel, M.; Rothschild, A.; Warren, S. C. Probing the Photoelectrochemical Properties of Hematite (a-Fe2O3) Electrodes Using Hydrogen Peroxide as a Hole Scavenger. Energy Environ. Sci.2011,4,958-964.
    (169)Cao, S.; Zhu, Y. Hierarchically Nanostructured a-Fe2O3 Hollow Spheres:Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment. J. Phys. Chem. C2008,112,6253-6257.
    (170)Yu, J.; Yu, X.; Huang, B.; Zhang, X.; Dai, Y. Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres. Cryst. Growth Des. 2009,9,1474-1480.
    (1.71)Xia, H.; Zhuang, H.; Zhang, T.; Xiao, D. Visible-light-activated Nanocomposite Photocatalyst of Fe2O3/SnO2. Mater. Lett.2008,62,1126-1128.
    (172)Chambers, S. A.; Williams, J. R.; Henderson, M. A.; Joly, A. G.; Varela, M.; Pennycook, S. J. Structure, Band Offsets and Photochemistry at Epitaxial a-Cr2O3/a-Fe2O3 heterojunctions. Surf. Sci.2005,587,197-207.
    (173)Dhananjeyan, M. R.; Kiwi, J.; Albers, P.; Enea, O. Photo-Assisted Immobilized Fenton Degradation up to pH 8 of Azo Dye Orange II Mediated by Fe3+/Nafion/Glass Fibers. Helv. Chim. Acta.2001,84,3433-3445.
    (174)Sclafani, A.; Herrmann, J. M. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. J. Phys. Chem.1996,100,13655-13661.
    (175)Dambournet, D.; Belharouak, L; Amine, K. Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite:Mechanism of Formation and Electrochemical Properties. Chem. Mater.2010,22,1173-1179.
    (176)龙海云.纳米二氧化钛粉末的制备及其在水相介质中的分散性研究:[硕士毕业论文].长沙:中南大学,2007.
    (177)Hu, W.; Li, L.; Li, G.; Tang, G.; Sun, L. High-Quality Brookite TiO2 Flowers:Synthesis, Characterization, and Dielectric Performance. Cryst. Growth Des.2009,9,3676-3682.
    (178)Yang, S.; Luo, W.; Zhu, Y.; Liu, Y.; Zhao, J.; Wang, Z.; Zou, G. Preparation of Brookite TiO2 Micro-crystals with Single Phase. Chem. Res. Chinese Univ.2003,24,1933-1936.
    (179)Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107,2891-2959.
    (180)Sugimoto, A.; Zhou, X.; Muramatsu, A. Synthesis of Uniform Anatase TiO2 Nanoparticles by gel-sol method:4. Shape control. J. Colloid Interface Sci.2003,259,53-61.
    (181)Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M. Fabrication, Characterization and Raman Study of Anatase-TiO2 Nanorods by a Heating-sol-gel Template Process. Cryst. Growth 2004,264,246-252.
    (182)Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M. Heating-sol-gel Template Process for the Growth of TiO2 Nanorods with Rutile and Anatase Structure. Appl. Surf. Sci. 2004,238,175-179.
    (183)Qiu, J.; Yu, W.; Gao, X.; Li, X. Sol-gel Assisted ZnO Nanorod Array Template to Synthesize TiO2 Nanotube Arrays. Nanotechnol.2006,17,4695-4698.
    (184)Sakulkhaemaruethai, S.; Pavasupree, S.; Suzuki, Y. Yoshikawa, S. Photocatalytic Activity of Titania Nanocrystals Prepared by Surfactant-assisted Templating Method—Effect of Calcination Conditions. Mater. Lett.2005,59,2965-2968.
    (185)Senthilkumaar, S.; Porkodi, K.; Vidyalakshmi, R. Photodegradation of a Textile Dye Catalyzed by Sol-gel Derived Nanocrystalline TiO2 via Ultrasonic Irradiation. J. Photochem. Photobiol. A:Chem.2005,170,225-232.
    (186)Kolen'ko, Yu, V.; Churagulov, B. R.; Kunst, M.; Mazerolles, L.; Colbeau-Justin, C. Photocatalytic Properties of Titania Powders Prepared by Hydrothermal Method. Appl. Catal. B 2004,54,51-58.
    (187)Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. Lithium-Ion Intercalation into TiO2-B Nanowires. Advan. Mater.2005,17,862-865.
    (188)Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. TiO2-B Nanowires. Angew. Chem. Int. Ed 2004,43,2286-2288.
    (189)Yoshida, R.; Suzuki, Y; Yoshikawa, S. Syntheses of TiO2(B) Nanowires and TiO2 Anatase Nanowires by Hydrothermal and Post-heat Treatments. J. Solid State Chem.2005, 178,2179-2185.
    (190)Zhang, Q.; Gao, L. Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method:Insights from Rutile TiO2. Langmuir 2003,19,967-971.
    (191)Feng, X.; Zhai, J.; Jiang, L. The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films. Angew. Chem. Int. Ed.2005,44,5115-5118.
    (192)Nian, J.; Teng, H. Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor. J. Phys. Chem. B 2006,110,4193-4198.
    (193)Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of Titanium Oxide Nanotube. Langmuir 1998,14,3160-3163.
    (194)Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C. Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes. J. Phys. Chem. B 2005,109,19422-19427.
    (195)Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Xu, H. Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes. J. Am. Chem. Soc.2003,125,12384-12385.
    (196)Kim, C.; Moon, B. K.; Park, J.; Chung, S. T.; Son, S. Synthesis of Nanocrystalline TiO2 in Toluene by a Solvothermal Route. J. Cryst. Growth 2003,254,405-410.
    (197)Li, X.; Peng, Q.; Yi, J.; Wang, X.; Li, Y. Near Monodisperse TiO2 Nanoparticles and Nanorods. Chem.-Eur. J.2006,12,2383-2391.
    (198)Wen, B.; Liu, C.; Liu, Y. Solvothermal Synthesis of Ultralong Single-Crystalline TiO2 Nanowires. New J. Chem.2005,29,969-971.
    (199)Dam, H.; Lee, B.; Kim, S.; Jung, C.; Lee, J.; Park, S. Preparation of Ultrafine Crystalline TiO2 Powders from Aqueous TiCl4 Solution by Precipitation. Jpn. J. Appl. Phys. 1998,37,4603-4608.
    (200)Park, H. K.; Kim, D. K.; Kim, C. H. Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4,. J. Am. Ceram. Soc.1997,80,742-749.
    (201)Seifried, S.; Winterer, M.; Hahn, H. Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis. Chem. Vap. Deposition 2000,6,239-244.
    (202)Wu, J.; Yu, C. Aligned TiO2 Nanorods and Nanowalls. J. Phys. Chem. B 2004,108, 3377-3379.
    (203)Pradhan, S. K.; Reucroft, P. J.; Yang, F.; Dozier, A. Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition. J. Cryst. Growth 2003,256,83-88.
    (204)Lee, M. S.; Park, S. S.; Lee, G.; Ju, C.; Hong S. Synthesis of TiO2 Particles by Reverse Microemulsion Method using Nonionic Surfactants with Different Hydrophilic and Hydrophobic Group and Their Photocatalytic Activity. Catal. Today 2005,101,283-290.
    (205)Sakai, H.; Kawahara, H.; Shimazaki, M. Abe, M. Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles:Effect of Alcohol Addition. Langmuir 1998,14,2208-2212.
    (206)Wu, J.; Shih, H. C.; Wu, W. Electron Field Emission from Single Crystalline TiO2 Nanowires Prepared by Thermal Evaporation. Chem. Phys. Lett.2005,413,490-494.
    (207)Wu, J.; Shih, H. C.; Wu, W.; Tseng, Y.; Chen, I. Thermal Evaporation Growth and the Luminescence Property of TiO2 Nanowires. J. Cryst. Growth 2005,281,384-390.
    (208)Lei, Y.; Zhang, L. D.; Fan, J. C. Fabrication, Characterization and Raman Study of TiO2 Nanowire Arrays Prepared by Anodic Oxidative Hydrolysis of TiCl3. Chem. Phys. Lett.2001, 338,231-236.
    (209)Liu, S.; Huang, K. Straightforward Fabrication of Highly Ordered TiO2 Nanowire Arrays in AAM on Aluminum Substrate. Energy Mater. Sol. Cells 2004,85,125-131.
    (210)Corradi, A. B.; Bondioli, F.; Focher, B.; Ferrari, A. M.; Grippo, C.; Mariani, E.; Villa, C. Conventional and Microwave-Hydrothermal Synthesis of TiO2 Nanopowders. J. Am. Ceram. Soc.2005,88,2639-2641.
    (211)Gressel-Michel, E.; Chaumont, D.; Stuerga, D. From a Microwave Flash-synthesized TiO2 Colloidal Suspension to TiO2 Thin Films. J. Colloid Interface Sci.2005,285,674-679.
    (212)Riegel, G.; Bolton, J. R. Photocatalytic Efficiency Variability in TiO2 Particles. J. Phys. Chem.1995,99,4215-4224.
    (213)Rao, M. V.; Rajeshwar, K.; Pal Verneker, V. R.; DuBow, J. Photosynthetic Production of H2 and H2O2 on Semiconducting Oxide Grains in Aqueous Solutions. J. Phys. Chem.1980,84, 1987-1991.
    (214)Hurum, D. C.; Agrios, A. G.; Gray, K. A. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003,107,4545-4549.
    (215)Hurum, D. C.; Gray, K. A.; Rajh, T.; Thumauer, M. C. Recombination Pathways in the Degussa P25 Formulation of TiO2:Surface versus Lattice Mechanisms. J. Phys. Chem. B 2005,109,977-980.
    (216)Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir 2003,19,3151-3156.
    (217)Dachille, F.; Simons, P. Y.; Roy, R. Pressure-temperature Studies of Anatase, Brookite, Rutile and TiO2-II. Am. Mineral.1968,53,1929-1937.
    (218)Li, W.; Gong, X.; Lu, G.; Selloni, A. Different Reactivities of TiO2 Polymorphs: Comparative DFT Calculations of Water and Formic Acid Adsorption at Anatase and Brookite TiO2 Surfaces. J. Phys. Chem. C 2008,112,6594-6596.
    (219)Ohtani, B.; Handa, J.; Nishimoto, S. I.; Kagiya, T. Highly Active Semiconductor Photocatalyst:Extra-fine Crystallite of Brookite TiO2 for Redox Reaction in Aqueous Propan-2-ol and/or Silver Sulfate Solution. Chem. Phys. Lett.1985,120,292-294.
    (220)Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W. Tailored Titanium Dioxide Nanomaterials:Anatase Nanoparticles and Brookite Nonorods as Highly Active Photocatalysts. Chem. Matter.2010,22,2050-2060.
    (221)Ismail, A.A.; Kandiel, T.A.; Bahnemann, D.W. Novel (and better?) Titania-based Photocatalysts:Brookite Nanorods and Mesoporous Structures. J. Photochem. Photobiol A 2010,216,183-193.
    (222)Boppella, R.; Basak, P.; Manorama, S.V. Viable Method for the Synthesis of Biphasic TiO2 Nanocrystals with Tunable Phase Composition and Enabled Visible-light Photocatalytic Performance. ACS Appl. Mater. Interfaces 2012,4,1239-1246.
    (223)Yu, Y; Xu, D. Single-crystalline TiO2 Nanorods:Highly Active and Easily Recycled Photocatalysts. Appl. Catal.B 2007,73,166-171.
    (224)Xu, H.; Zhang, L. Controllable One-pot Synthesis and Enhanced Photocatalytic Activity of Mixed-phase TiO2 Nanocrystals with Tunable Brookite/Rutile Ratios. J. Phys. Chem. C 2009,113,1785-1790.
    (225)Ohtani, B.; Bowman, R. M.; Colombo, D. P.; Kominami, H.; Noguchi, H.; Uosaki, K. Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium (Ⅳ) Oxide Suspension: Correlation of Electron-hole Recombination Kinetics with Photocatalytic Activity. Chem. Lett. 1998,27,579-580.
    (226)Porter, J. E; Li, Y; Chan, C. K. The Effect of Calcination on the Microstructural Characteristics and Photoreactivity of Degussa P-25 TiO2. J. Mater. Sci.1999,34,1523-1531.
    (227)Inagaki, M.; Nonaka, R.; Tryba, B.; Morawski, A. W. Dependence of Photocatalytic Activity of Anatase Powders on Their Crystallinity. Chemosphere 2006,64,437-445.
    (228)Zhang, H.; Banfield, J. F. Thermodynamic Analysis of Phase Stability of Nanocrystalline Titania.J. Mater. Chem.1998,8,2073-2076.
    (229)Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y. Photocatalytic Hydrogenation of Propyne with Water on Small-particle Titania:Size Quantization Effects and Reaction Intermediates. J. Phys. Chem.1987,91,4305-4310.
    (230)Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization or Direct Transitions in This Indirect Semiconductor? J. Phys. Chem.1995,99,16646-16654.
    (231)Serpone, N.; Lawless, D.; Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2 Colloidal Sols (Particle Sizes Rp= 1.0-13.4 nm). Relevance to Heterogeneous Photocatalysis. J. Phys. Chem.1995,99,16655-16661.
    (232)Murakami, N.; Katayama, S.; Nakamura, M.; Tsubota, T.; Ohno, T. Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium(Ⅳ) Oxide Nanorods. J. Phys. Chem. C 2011,775,419-424.
    (233)Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman Spectroscopy:A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets. J. Phys. Chem. C 2012,116, 7515-7519.
    (234)Wu, Q.; Liu, M.; Wu, Z.; Li, Y.; Piao, L. Is Photooxidation Activity of{001} Facets Truly Lower Than That of{101} Facets for Anatase TiO2 Crystals? J. Phys. Chem. C 2012, 116,26800-26804.
    (235)D'Arienzo, M.; Carbajo, J.; Bahamonde, A.; Crippa, M.; Polizzi, S.; Scotti, R.; Wahba, L.; Morazzoni, F. Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals:A Probe to Evaluate the Role of Crystal Facets in Photocatalytic Processes. J. Am. Chem. Soc. 2011,133,17652-17661.
    (236)Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. J. Am. Chem. Soc. 2012,134,6751-6761.
    (237)Conte, P.; Loddo, V.; Pasquale, C. D.; Marsala, V.; Alonzo, G.; Palmisano, L. Nature of Interactions at the Interface of Two Water-Saturated Commercial TiO2 Polymorphs. J. Phys. Chem. C2013,117,5269-5273.
    (238)Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A. Mul. G. Toward a Physically Sound Structure-Activity Relationship of TiO2-Based Photocatalysts. J. Phys. Chem. C 2010,114, 327-332.
    (239)Nagaveni, K.; Hegde, M. S.; Ravishankar, N.; Subbanna, G. N.; Madras, G. Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir 2004,20,2900-2907.
    (240)Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. J. Phys. Chem.1990,94,829-832.
    (241)Chen, Y.; Li, D.; Wang, X.; Wang, X.; Fu, X. H2-O2 Atmosphere Increases the Activity of Pt/TiO2 for Benzene Photocatalytic Oxidation by Two Orders of Magnitude. Chem. Commun.2004,2304-2305.
    (242)Augugliaro, V.; Coluccia, S.; Loddo, V.; Marchese, L.; Martra, G.; Palmisano, L.; Schiavello, M. Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation. Appl. Catal. B:Environ.1999,20,15-27.
    (243)Nowotny, M. K.; Sheppard, L. R.; Bak, T. Nowotny, J. Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. J. Phys. Chem. C 2008,112,5275-5300.
    (244)Sirisuk, A.; Klansorn, E.; Praserthdam, P. Effects of Reaction Medium and Crystallite Size on Ti3+ Surface Defects in Titanium Dioxide Nanoparticles Prepared by Solvothermal Method. Catal. Commun.2008,9,1810-1814.
    (245)Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc.2011,133,16414-16417.
    (246)Serpone, N.; Borgarello, E.; Gratzel, M. Visible Light Induced Generation of Hydrogen from H2S in Mixed Semiconductor Dispersions; Improved Efficiency Through Inter-particle Electron Transfer. J. Chem. Soc., Chem. Commun.1984,342-344.
    (247)Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-chlorophenol and Pentachlorophenol:Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. J. Photochem. Photobiol. A 1995,85,247-255.
    (248)Ho, W.; Yu, J. C.; Lin, J.; Yu, J.; Li, P. Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2. Langmuir 2004,20,5865-5869.
    (249)Ho, W.; Yu, J. C. Sonochemical Synthesis and Visible Light Photocatalytic Behavior of CdSe and CdSe/TiO2 Nanoparticles. J. Mol. Catal. A:Chem.2006,247,268-274.
    (250)Kim, Y. J.; Gao, B.; Han, S. Y.; Jung, M. H.; Chakraborty, A. K.; Ko, T.; Lee, C.; Lee, W. 1. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst. J. Phys. Chem. C 2009,113,19179-19184.
    (251)Zhou, M.; Yu, J.; Liu, S.; Zhai, P.; Jiang, L. Effects of Calcination Temperatures on Photocatalytic Activity of SnO2/TiO2 Composite Films Prepared by an EPD Method J. Hazard. Mater.2008,154,1141-1148.
    (252)Wu, C. Comparison of Azo Dye Degradation Efficiency Using UV/single Semiconductor and UV/coupled Semiconductor Systems. Chemosphere 2004,57,601-608.
    (253)Puddu, V; Mokaya, R.; Puma, G. L. Novel One Step Hydrothermal Synthesis of TiO2/WO3 Nanocomposites with Enhanced Photocatalytic Activity. Chem. Commun.2007, 4749-4751.
    (254)Benko, G.; Myllyperkio, P.; Pan, J.; Yartsev, A. P.; Sundstrom, V. Photoinduced Electron Injection from Ru(dcbpy)2(NCS)2 to SnO2 and TiO2 Nanocrystalline Films. J. Am. Chem. Soc. 2003,125,1118-1119.
    (255)Odobel, F.; Blart, E.; Lagree, M.; Villieras, M.; Boujtita, H.; Murr, N. E.; Caramori, S.; Bignozzi, C. A. Porphyrin Dyes for TiO2 Sensitization. J. Mater. Chem.2003,13,502-510.
    (256)Sun, Q.; Xu, Y. Sensitization of TiO2 with Aluminum Phthalocyanine:Factors Influencing the Efficiency for Chlorophenol Degradation in Water under Visible Light. J. Phys. Chem. C2009,113,12387-12394.
    (257)Sato, S. Photocatalytic Activity of NOx-doped TiO2 in the Visible Light Region. Chem. Phys. Lett.1986,123,126-128.
    (258)Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Science 2001,293,269-271.
    (259)Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Carbon-doped TiO2 Photocatalyst Synthesized without Using an External Carbon Precursor and the Visible Light Activity. Appl. Catal. B 2009,91,355-361.
    (260)Khan, S. U. M.; Al-Shahry, M.; Ingler, Jr. W. B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002,297,2243-2245.
    (261)Hirakawa, T.; Nosaka, Y. Selective Production of Superoxide Ions and Hydrogen Peroxide over Nitrogen- and Sulfur-doped TiO2 Photocatalysts with Visible Light in Aqueous Suspension Systems. J. Phys. Chem. C 2008,112,15818-15823.
    (262)Yu, J. C.; Ho, W.; Yu, J.; Yip, H.; Wong, P. K.; Zhao, J. Efficient Visible-light-induced Photocatalytic Disinfection on Sulfur-doped Nanocrystalline Titania. Environ. Sci. Technol. 2005,39,1175-1179.
    (263)Su, W.; Zhang,Y.; Li, Z.; Wu, L.; Wang, X.; Li, J.; Fu, X. Multivalency Iodine Doped TiO2:Preparation, Characterization, Theoretical Studies, and Visible-light Photocatalysis. Langmuir 2008,24,3422-3428.
    (264)Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N. Visible-light-driven Photocatalysis on Fluorine-doped TiO2 Powders by the Creation of Surface Oxygen Vacancies. Chem. Phys. Lett.2005,401,579-584.
    (265)Xu, A.; Gao, Y.; Liu, H. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. J Catal.2002,207,151-157.
    (266)Youn, N. K.; Heo, J. E.; Joo, O. S.; Lee, H.; Kim, J.; Min B. K. The Effect of Dissolved Oxygen on the 1,4-dioxane Degradation with TiO2 and Ai-TiO2 Photocatalysts. J. Hazard. Mater.2010,177,216-221.
    (1)Jenkins, R.; Snyder, R. L. Introduction to X-ray Powder Diffractometry. John Wiley & Sons: New York,1996,90.
    (2)Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc.1938,60,309-319.
    (3)Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem.1985,57, 603-619.
    (4)Orel, Z. C.; Gunde, M. K.; Orel, B. Application of the Kubelka-Munk Theory for the Determination of the Optical Properties of Solar Absorbing Paints. Prog. Org. Coat.1997,30, 59-66.
    (5)Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Optical Properties of γ-Fe2O3 Nanoparticles Dispersed on Sol-gel Silica Spheres. Physica E 2004,24,333-342.
    (6)刘恩科;朱秉升;罗晋生.半导体物理学(第七版),北京:电子工业出版社,2011.
    (7)Sakthivel, S.; Janczarek, M.; Kisch, H. Visible Light Activity and Photoelectron-chemical Properties of Nitrogen-doped TiO2. J. Phys. Chem. B 2004,108,19384-19387.
    (8)Tauc, J.; Grigorovici, R.; Vanuc, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi.1966,15,627-637.
    (9)Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal anatase TiO2 Particles:Size Quantization or Direct Transitions in this Indirect Semiconductor? J. Phys. Chem.1995,99,16646-16654.
    (10)许以明.拉曼光谱实验技术,北京:化学工业出版社,2010.
    (11)张寒琦.仪器分析,北京:高等教育出版社,2009.
    (12)苗壮;刘竞艳;常璐;田弋纬.扫面电镜粉末样品的制备方法.钛工业进展2008,25, 31-34.
    (13)王建祺;吴文辉;冯大明.电子能谱学引论,北京:国防工业出版社,1992.
    (14)Spichiger-Ulmann, M.; Augustynski, J. Aging Effects in n-type Semiconducting WO3 Films. J. Appl. Phys.1983,54,6061-6064.
    (15)杜卫平.(羟基)氧化铁光催化有机染料降解和金属银回收的研究:[博士毕业论文].杭州:浙江大学,2007.
    (16)Minero, C. Kinetic Analysis of Photoinduced Reactions at the Water Semiconductor Interface. Catal. Today 1999,54,205-216.
    (17)Chiang, K.; Amal, R.; Tran, T. Photocatalytic Oxidation of Cyanide:Kinetic and Mechanistic Studies. J. Mol. Catal. A-Chem.2003,193,285-297.
    (18)Li, X.; Liu, H.; Cheng, L.; Tong, H. Photocatalytic Oxidation Using a New Catalyst TiO2 Microspherefor Water and Wastewater Treatment. Environ. Sci. Technol.2003,37, 3989-3994.
    (19)Konstantinou, I. K.; Albanis, T. A. TiO2-assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution:Kinetic and Mechanistic Investigations:A Review. Appl. Catal. B 2004,49, 1-14.
    (20)Turchi, C. S.; Ollis, D. F. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. J. Catal.1990,122,178-192.
    (21)H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron (Ⅱ) with 1,10-phenanthroline in the presence of large amounts of iron(Ⅲ). Talanta 1974, 21,314-318.
    (22)Cave, G. C. B; Hume, D. N. Colorimetric Determination of Silver with Para-dimethylaminobenzalrhodanine. Anal. Chem.1952,24,1503-1505.
    (23)Liu, D.; Xu, Y. Reaction Mechanism on the Synergistic Photodegradation of Dye X3B and Photoreduction of Dichromate in the Presence of Polyoxometalate. Acta Phys.-Chim. Sin. 2008,24,1584-1588.
    (24)Bader, H.; Sturzenegger, V; Hoigne, J. Photometric Method for the Determination of Low Concentrations of Hydrogen Peroxide by the Peroxidase Catalyzed Oxidation of N,N-diethyl-p-phenylenediamine(DPD). Water Res.1988,22,1109-1115.
    (1)Ollis, D. F.; Al-Ekabi (eds), H. Photocatalytic Purification and Treatment of Water and Air, Elsevier Science Publishes B. V., Amsterdam,1993.
    (2)Hoffmann, M. R.; Martin, S. T.; Choi, W.; D. Bahnemann, W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    (3)Faust, B. C.; Helz, G. R.; Zepp, R. G.; Crosby (eds.), D. G. Aquatic and Surface Photochemistry, Lewis Publishers, Boca Raton, FL,1994.
    (4)Leland, J. K.; Bard, A. J.; Photochemistry of Colloidal Semiconducting Iron Oxide Polymorphs. J. Phys. Chem.1987,91,5076-5083.
    (5)Pehkonen, S. O.; Slefert, R.; Erei, Y.; Webb, S.; Hoffmann, M. R. Photoreduction of Iron Oxyhydroxides in the Presence of Important Atmospheric Organic Compounds. Environ. Sci. Technol.1993,27,2056-2062.
    (6)Sulzberger, B.; Laubscher, H. Reactivity of Various Types of Iron(Ⅲ) (hydr)oxides towards Light-induced Dissolution. Mar. Chem.1995,50,103-115.
    (7)Mazellier, P.; Bolte, M. Heterogeneous Light-induced Transformation of 2,6-dimethylphenol in Aqueous Suspensions Containing Goethite. J. Photochem. Photobiol. A:Chem.2000,132, 129-135.
    (8)Bandara, J.; Mielczarski, J. A.; Lopez, A.; Kiwi, J.2. Sensitized Degradation of Chlorophenols on Iron Oxides Induced by Visible light:Comparison with Titanium Oxide. Appl. Catal. B:Environ.2001,34,321-333.
    (9)He, J.; Tao, X.; Ma, W.; Zhao, J. Heterogeneous Photo-Fenton Degradation of an Azo Dye in Aqueous H2O2/Iron Oxide Dispersions at Neutral pHs. Chem. Lett.2002,1,86-87.
    (10)Andreozzi, R.; Caprio, V.; Marotta, R. Iron(Ⅲ) (hydr)oxide-mediated Photooxidation of 2-aminophenol in Aqueous Solution:A Kinetic Study. Water Res.2003,37,3682-3688.
    (11)Feng, J.; Hu, X.; Yue, P. L. Discoloration and Mineralization of Orange Ⅱ Using Different Heterogeneous Catalysts Containing Fe:A Comparative Study. Environ. Sci. Technol.2004, 38,5773-5778.
    (12)Bandara, J.; Klehm, U.; Kiwi, J. Raschig Rings-Fe2O3 Composite Photocatalyst Activate in the Degradation of 4-chlorophenol and Orange Ⅱ under Daylight Irradiation. Appl. Catal. B: Environ.2007,76,73-81.
    (13)Du, W.; Xu, Y.; Wang, Y. Photoinduced Degradation of Orange II on Different Iron (hydr)oxides in Aqueous Suspension:Rate Enhancement on Addition of Hydrogen Peroxide, Silver Nitrate, and Sodium Fluoride. Langmuir 2008,24,175-181.
    (14)Zhou, X.; Yang, H.; Wang, C.; Mao, X.; Wang, Y.; Yang, Y.; Liu, G. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-dimensional Iron Oxide Particles. J. Phys. Chem.C 2010,114,17051-17061.
    (15)Zhang, Z.; Hossain, F.; Miyazaki, T.; Takahashi, T. Gas Phase Photocatalytic Activity of Ultrathin Pt Layer Coated on α-Fe2O3 Films under Visible Light Illumination. Environ. Sci. Tehcnol.2010,44,4741-746.
    (16)Xie, H.; Li, Y.; Jin, S.; Zhao, J. X. Facile Fabrication of 3D-ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity. J.Phys. Chem. C 2010,114,9706-9712.
    (17)Rodriguez, E. M.; Fernandez, G.; Alvarez, P. M.; Hernandez, R.; Beltran, F. J. Photocatalytic Degradation of Organics in Water in the Presence of Iron Oxides:Effects of pH and Light Source.Appl. Catal B:Environ.2011,102,572-583.
    (18)Kay, A.; Cesar, I.; Gratzel, M. New Benchmark for Water Photooxidation by Nanostructured a-Fe2O3 Films. J. Am. Chem. Soc.2006,128,15714-15721.
    (19)Jolivert, J. P.; Chaneac, C.; Tronc, E. Iron Oxide Chemistry. From Molecular Clusters to Extended Solid Networks. Chem. Commun. 2004,0,481-483.
    (20)Machala, L.; Tucek, J.; Zboril, R. Polymorphous Transformations of Nanometric Iron(Ⅲ) Oxide:A review. Chem. Mater.2011,23,3255-3272.
    (21)Jaafar, N. F.; Jalil, A. A.; Triwahyono, S.; Muhid, M. N. M.; Sapawe, N.; Satar, M. A. H.; Asaari, H. Photodecolorization of Methyl Orange over α-Fe203-supported HY Catalysts:The Effects of Catalyst Preparation and Dealumination. Chem. Eng. J.2012,191,112-122.
    (22)Wang, Y.; Du, W.; Xu, Y. Effect of Sintering Temperature on the Photocatalytic Activities and Stabilities of Hematite and Silica-dispersed Hematite Particles for Organic Degradation in Aqueous Suspensions. Langmuir 2009,25,2895-2899.
    (23)Binner, J.; Zhang, Y. Characterization of Silicon Carbide and Silicon Powders by XPS and Zeta Potential Measurement. J. Mater. Sci. Lett.2001,20,123-126.
    (24)Gun'ko, V. M.; Zarko, V. I.; Leboda, R.; Voronin, E. R.; Chibowski, E. Influence of Modification of Fine Silica by Organosilicon Compounds on Particle-particle Interaction in Aqueous Suspensions. Colloid. Surface. A:Physicochem. Eng. Asp.1998,132,241-249.
    (25)Xu, G.; Zhang, J.; Song, G. Effect of Complexation on the Zeta Potential of Silica Powder. Powder Technol. 2003,134,218-222.
    (26)Franks, G. V. Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes:Isoelectric Point Shift and Additional Attraction. J. Colloid Interface Sci.2002,249,44-51.
    (27)Bandara, J.; Mielczarski, J. A.; Kiwi, J.1. Molecular Mechanism of Surface Recognition. Azo Dyes Degradation on Fe, Ti, and Al Oxides Through Metal Sulfonate Complexes. Langmuir 1999,15,7670-7679.
    (28)Requena, J.; Moreno, R.; Moya, J. S. Alumina and Alumina/zirconia Multilayer Composites Obtained by Slip Casting. J. Am. Ceram. Soc.1989,72,1511-1513.
    (29)Singh, B. P.; Menchavez, R.; Takai, G.; Fuji, M.; Takahashi, M. Stability of Dispersions of Colloidal Alumina Particles in Aqueous Suspensions. J. Colloid Interface Sci.2005,291, 181-186.
    (30)Rezwan, K.; Meier, L. P.; Rezwan, M.; Voros, J.; Textor, M.; Gauckler, L. J. Bovine Serum Albumin Adsorption onto Colloidal Al2O3 Particles:A New Model Based on Zeta Potential and UV-Vis Measurements. Langmiur 2004,20,10055-10061.
    (31)De Lint, W. B. S.; Benes, N. E.; Lyklema, J.; Bouwmeester, H. J. M.; Van der Linde, Ab J.; Wessling, M. Ion Adsorption Parameters Determined from Zeta Potential and Titration Data for a y-alumina Nanofiltration Membrane. Langmiur 2003,19,5861-5868.
    (32)Li, F.; Li, X.; Liu, C.; Liu, T. Effect of Alumina on Photocatalytic Activity of Iron Oxides for Bisphenol A Degradation. J. Hazard Mater.2007,149,199-207.
    (33)Sugimoto, T.; Wang, Y.; Itoh, H.; Muramatsu, A. Systematic Control of Size, Shape and Internal Structure of Monodisperse a-Fe2O3 Particles. Colloid. Surface. A:Physicochem. Eng. Asp.1998,134,265-279.
    (34)Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric Determination of Iron(Ⅱ) with 1,10-Phenanthroline in the Presence of Large Amounts of Iron(Ⅲ). Talanta 1974,21,314-318.
    (35)Fang, J.; Bao, H.; He, B.; Wang, F.; Si, D.; Jiang, Z.; Pan, Z.; Wei, S.; Huang, W. Interfacial and Surface Structures of CeO2-TiO2 Mixed Oxides. J. Phys. Chem. C 2007,111, 19078-19085.
    (36)Ryoo, R.; Jun, S.; Kim, J. M.; Kim, M. J. Generalised Route to the Preparation of Mesoporous Metallosilicates via Post-synthetic Metal Implantation. Chem. Commun.1997,0, 2225-2226.
    (37)Lim, H.; Lee, J.; Jin, S.; Kim, J.; Yoon, J.; Hyeon, T. Highly Active Heterogeneous Fenton Catalyst Using Iron Oxide Nanoparticles Immobilized in Alumina Coated Mesoporous Silica. Chem. Commun.2006,4,463-465.
    (38)Pham, A. L.; Lee, C.; Doyle, F. M.; Sedlak, D. L. A Silica-supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values. Environ. Sci. Technol.2009, 43,8930-8935.
    (39)Larese-Casanova, P.; Cwiertny, D. M.; Scherer, M. M. Nanogoethite Formation from Oxidation of Fe(Ⅱ) Sorbed on Aluminum Oxide:Implications for Contaminant Reduction. Environ. Sci. Tehcnol.2010,44,3765-3771.
    (40)Feng, J.; Hu, X.; Yue, P. L. Effect of Initial Solution pH on the Degradation of Orange Ⅱ Using Clay-based Fe Nanocomposites as Heterogeneous Photo-Fenton Catalyst. Water Res. 2006,40,641-646.
    (41)Feng, J.; Hu, X.; Yue, P. L. Degradation of Azo-dye Orange II by a Photoassisted Fenton Reaction Using a Novel Composite of Iron Oxide and Silicate Nanoparticles as a Catalyst. Ind Eng. Chem. Res.2003,42,2058-2066.
    (42)Fernandez, J.; Bandara, J.; Lopez, A.; Buffat, Ph.; Kiwi, J. Photoassisted Fenton Degradation of Nonbiodegradable Azo Dye (Orange Ⅱ) in Fe-free Solutions Mediated by Cation Transfer Membranes. Langmuir 1999,15,185-192.
    (43)Bandara, J.; Morrison, C.; Kiwi, J.; Pulgarin, C.; Peringer, P. Degradation/decoloration of Concentrated Solutions of Orange Ⅱ. Kinetics and Quantum Yield for Sunlight Induced Reactions via Fenton Type Reagents. J. Photochem. Photobiol. A:Chem.1996,99,57-66.
    (44)Dhananjeyan, M. R.; Kiwi, J.; Albers, P.; Enea, O. Photo-assisted Immobilized Fenton Degradation up to pH 8 of Azo Dye Orange Ⅱ Mediated by Fe3+/Nafion/glass fibers. Helv. Chim. Acta 2001,84,3433-3445.
    (45)He, Y.; Miao, Y.; Li, C.; Wang, S.; Cao, L.; Xie, S.; Yang, G.; Zou, B. Size and Structure Effect on Optical Transitions of Iiron Oxide Nanocrystals. Phys. Rev. B 2005,71, 125411-125419.
    (46)Wang, C. C.; Lee, C. K.; Lyu, M. D.; Juang, L. C. Photocatalytic Degradation of C.I. Basic Violet 10 Using TiO2 Catalysts Supported by Y Zeolite:An Investigation of the Effects of Operational Parameters. Dye. Pigment.2008,76,817-824.
    (47)Sapawe, N.; Jalil, A. A.; Triwahyono, S.; Adam, S. H.; Jaafar, N. F.; Satar, M. A. H. Isomorphous Substitution of Zr in the Framework of Aluminosilicate HY by an Electrochemical Method:Evaluation by Methylene Blue Decolorization. Appl. Catal. B: Environ.2012,125,311-323.
    (48)Chen, A.; Wang, H.; Zhao, B.; Li, X. The Preparation of Polypyrrole-Fe3O4 Nanocomposites by the Use of Common Ion Effect. Synth. Met.2003,139,411-415.
    (49)Chiappe, C.; Malvaldi, M.; Melai, B.; Fantini, S.; Bardi, U.; Caporali, S. An Unusual Common Ion Effect Promotes Dissolution of Metal Salts in Room-temperature Ionic Liquids: a Strategy to Obtain Ionic Liquids Having Organic-inorganic Mixed Cations. Green Chem. 2010,12,77-80.
    (1)Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic Reactions:Design of New Photocatalysts. J. Phys. Chem. C 2007,111,5259-5275.
    (2)Thompson, T. L.; Yates, J. T. Jr. Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes. Chem. Rev.2006,106,4428-4453.
    (3)Adan, C.; Carbajo, J.; Bahamonde, A.; Martinez-Arias, A. Phenol Photodegradation with Oxygen and Hydrogen Peroxide over TiO2 and Fe-doped TiO2. Catal. Today 2009,143, 247-252.
    (4)Sclafani, A.; Herrmann, J. M. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. J. Phys. Chem.1996,100,13655-13661.
    (5)Tachikawa, T.; Majima, T. Single-Molecule Fluorescence Imaging of TiO2 Photocatalytic Reactions. Langmuir 2009,25,7791-7802.
    (6)Schwarz, P. F.; Turro, N. J.; Bossmann, S. H.; Braun, A. M.;Wahab, A.; Durr, H. A New Method to Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions. J. Phys. Chem. B 1997,101,7127-7134.
    (7)Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Application of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    (8)Carp,O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem.2004,32,33-177.
    (9)Emeline, A. V; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. Application of a "Black Body" Like Reactor for Measurements of Quantum Yields of Photochemical Reactions in Heterogeneous Systems. J. Phys. Chem. B 2006,110,7409-7413.
    (10)Agrios, A. G.; Pichat, P. Recombination Rate of Photogenerated Charges versus Surface Area: Opposing Effects of TiO2 Sintering Temperature on Photocatalytic Removal of Phenol, Anisole, and Pyridine in Water. J. Photochem. Photobiol, A 2006,180,130-135.
    (11)Kominami, H.; Kohno, M.; Kera, Y. Synthesis of Brookite-type Titanium Oxide Nano-crystals in Organic Media. J. Mater. Chem.2000,10,1151-1156.
    (12)Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powders by Dissolving the Anatase Component in HF Solution. J. Phys. Chem. B 2001,105,2417-2420.
    (13)Ryu, J.; Choi, W. Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application. Environ. Sci. Technol.2008,42,294-300.
    (14)Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal Faces of Rutile and Anatase TiO2 Particles and Their Roles in Photocatalytic Reactions. New J. Chem.2002,26,1167-1170.
    (15)Ohtani, B.; Ogawa, Y.; Nishimoto, S. Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997,101,3746-3752.
    (16)Kominami, H.; Murakami, S.; Kato, J.; Kera, Y.; Ohtani, B. Correlation between Some Physical Properties of Titanium Dioxide Particles and their Photocatalytic Activity for Some Probe Reactions in Aqueous Systems. J. Phys. Chem.B 2002,106,10501-10507.
    (17)Ohtani, B.; Okugawa, Y.; Nishimoto, S.; Kagiya, T. Photocatalytic Activity of TiO2 Powders Suspended in Aqueous Silver Nitrate Solution. Correlation with pH-dependent Surface Structures. J. Phys. Chem.1987,91,3550-3555.
    (18)Sun, Q.; Xu, Y. Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water. J. Phys. Chem. C 2010,114,18911-18918.
    (19)Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2:A Combined Effect of O2 and Crystallinity. J. Phys. Chem. C 2011,115,21161-21168.
    (20)Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc.2011,133,16414-16417.
    (21)Gerischer, H. Photocatalysis in Aqueous Solution with Small TiO2 Particles and the Dependence of the Quantum Yield on Particle Size and Light Intensity. Electrochim. Acta 1995,40,1277-1281.
    (22)Grela, M. A.; Colussi, A. J. Kinetcis of Stochastic Charge Transfer and Recombination Events in Semiconductor Colloids. Relevant to Photocatalysis Efficiency. J. Phys. Chem. 1996,100,18214-18221.
    (23)Zhang, Z.; Wang, C.; Zakaria, R.; Ying, J. Y. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 1998,102,10871-10878.
    (24)Lee, S.; Cho, I.; Noh, J.; Hong, K. S.; Han, G. S.; Jung, H. S.; Jeong, S.; Lee, C.; Shin, H. Correlation of Anatase Particle Size with Photocatalytic Activities. Phys. Status Solidi A 2010, 207,2288-2291.
    (25)Toyoda, M.; Nanbu, Y.; Nakazawa, Y.; Hirano, M.; Inagaki, M. Effect of Crystallinity of Anatase on Photoactivity for Methyleneblue Decomposition in Water. Appl. Catal. B 2004,49, 227-232.
    (26)Augugliaro, V.; Loddo, V.; Palmisano, L; Schiavello, M. Performance of Heterogeneous Photocatalytic Systems:Influence of Operational Variables on Photoactivity of Aqueous Suspension of TiO2.J. Catal.1995,153,32-40.
    (27)Sirisuk, A.; Klansorn, E.; Praserthdam, P. Effects of Reaction Medium and Crystallite Size on Ti3+ Surface Defects in Titanium Dioxide Nanoparticles Prepared by Solvothermal Method. Catal. Commun.2008,9,1810-1814.
    (28)Almquist, C. B.; Biswas, P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J. Catal.2002,212,145-156.
    (29)Elser, M. J.; Diwald, O. Facilitated Lattice Oxygen Depeletion in Consolidated TiO2 Nanocrystal Ensembles:A Quantitative Spectroscopic O2 Adsorption Study. J. Phys. Chem. C 2012,116,2896-2903.
    (30)Kolen'ko, Yu, V.; Churagulov, B. R.; Kunst, M.; Mazerolles, L.; Colbeau-Justin, C. Photocatalytic Properties of Titania Powders Prepared by Hydrothermal Method. Appl. Catal. B 2004,54,51-58.
    (31)Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Optical Properties of Gamma-Fe2O3 Nanoparticles Dispersed on Sol-Gel Silica Spheres. Physica E,2004,24,333-342.
    (32)Cave, G. C. B; Hume, D. N. Colorimetric Determination of Silver with Para-dimethylaminobenzalrhodanine. Anal. Chem.1952,24,1503-1505.
    (33)Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman Spectroscopy:A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets. J. Phys. Chem. C 2012,116,7515- 7519.
    (34)Li, G.; Li, L.; Boerio-Goates, J.; Woodfield, B. F. High Purity Anatase TiO2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry. J. Am. Chem. Soc.2005,127,8659-8666.
    (35)Li, Y.; White, T. J.; Lim, S. H. Low-temperature Synthesis and Microstructural Control of Titania Nano-particles.J. Solid State Chem.2004,177,1372-1381.
    (36)Md.Imteyaz, A.; Bhattacharya, S. S. Size Effect on the Lattice Parameters of Nanocrystalline Anatase. Appl. Phys. Lett.2009,95,191906.
    (37)Swamy, V.; Menzies, D.; Muddle, B. C.; Kuznetsov, A.; Dubrovinsky, L. S.; Dai, Q.; Dmitriev, V. Nonlinear Size Dependence of Anatase TiO2 Lattice Parameters. Appl. Phys. Lett. 2006,88,243103.
    (38)Luca, V. Comparison of Size-Dependent Structural and Electronic Properties of Anatase and Rutile Nanoparticles. J. Phys. Chem. C.2009,113,6367-6380.
    (39)Morales, B. A.; Novaro, O.; Lopez, T.; Sanchez, E.; Gomez, R. Effect of Hydrolysis Catalyst on the Ti Deficiency and Crystallite Size of Sol-gel-TiO2 Crystalline Phases. J. Mater. Res. 1995,10,2788-2796.
    (40)Xue, X.; Ji, W.; Mao, Z.; Mao, H.; Wang, Y.; Wang, Xu.; Ruan, W.; Zhao, B.; Lombardi, J. R. Raman Investigation of Nanosized TiO2:Effect of Crystallite Size and Quantum Confinement. J. Phys. Chem. C 2012,116,8792-8797.
    (41)Alhomoudi, I. A.; Newaz, G. Residual Stresses and Raman Shift Relation in Anatase TiO2 Thin Film. Thin Solid Films 2009,517,4372-378.
    (42)Swamy, V.; Kuznetsov, A.; Dubrovinsky, L. S.; Caruso, R. A.; Shchukin, D. G.; Muddle, B. C. Finite-size and Pressure Effects on the Raman Spectrum of Nanocrystalline Anatase TiO2. Physical Review B 2005,71,184302.
    (43)Bersani, D.; Lottici, P. P.; Ding, X. Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals. Appl. Phys. Lett.1998,72,73.
    (44)Gu, G.; Li, Y; Tao, Y.; He, Z.; Li, J.; Yin, H.; Li, W.; Zhao, Y Investigation on the Structure of TiO2 Films Sputtered on Alloy Substrates. Vacuum 2003,71,487-490.
    (45)Lagarec, K.; Desgreniers, S. Raman Study of Single Crystal Anatase TiO2 up to 70 GPa. Solid State Commun.1995,94,519-524.
    (46)Balaji, S.; Djaoued, Y.; Robichaud, J. Phonon Confinement Studies in Nanocrystalline Anatase-TiO2 Thin Films by Micro Raman Spectroscopy. J. Raman Spectrosc.2006,37, 1416-1422.
    (47)Doss, C. J.; Zallen, R. Raman Studies of Sol-gel Alumina:Finite-size Effects in Nanocrystalline AlO(OH). Physical Review B 1993,48,15626.
    (48)Zhu, K.; Zhang, M.; Chen, Q.; Yin, Z. Size and Phonon-confinement Effects on Low-frequency Raman Mode of Anatase TiO2 Nanocrystal. Phy. Lett. A 2005,340,220.
    (49)Zacharaki, I.; Kontoyannis, C.; Lycourghiotis, A.; Kordulis, C. The Influence of Calcination on the Size of Nanocrystals, Porous Structure and Acid-Base Properties of Mesoporous Anatase Used as Catalytic Support. Colloids Surf. A 2008,324,208-216.
    (50)Yu, J. C.; Lin, J.; Lo, D.; Lam, S. K. Influence of Thermal Treatment on the Adsorption of Oxygen and Photocatalytic Activity of TiO2. Langmuir 2000,16,7304-7308.
    (51)Smith, W. R.; Ford, D. G. Adsorption Studies on Heterogeneous Titania and Homogeneous Carbon Surfaces. J. Phys. Chem.1965,69,3587-3592.
    (52)Sawyer, D. T.; Valentine, J. S. How Super is Superoxide? Acc. Chem. Res.1981,14,93-400.
    (53)Conte, P.; Loddo, V.; Pasquale, C. D.; Marsala, V.; Alonzo, G.; Palmisano, L. Nature of Interactions at the Interface of Two Water-Saturated Commercial TiO2 Polymorphs. J. Phys. Chem. C2013,117,5269-5273.
    (54)Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A. Mul. G. Toward a Physically Sound Structure-Activity Relationship of TiO2-Based Photocatalysts. J. Phys. Chem. C 2010,114,327-332.
    (55)Jensen, H.; Joensen, K. D.; Jorgensen, J.; Pedersen, J. S.; Sogaard, E. G. Characterization of Nanosized Partially Crystallized Photocatalysts. J. Nanoparticle Res.2004,6,519-526.
    (56)Murakami, N.; Katayama, S.; Nakamura, M.; Tsubota, T.; Ohno, T. Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium(Ⅳ) Oxide Nanorods. J. Phys. Chem. C 2011,115,419-424.
    (57)Wu, Q.; Liu, M.; Wu, Z.; Li, Y.; Piao, L. Is Photooxidation Activity of{001} Facets Truly Lower Than That of{101} Facets for Anatase TiO2 Crystals? J. Phys. Chem. C 2012,116, 26800-26804.
    (58)D'Arienzo, M.; Carbajo, J.; Bahamonde, A.; Crippa, M.; Polizzi, S.; Scotti, R.; Wahba, L.; Morazzoni, F. Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals:A Probe to Evaluate the Role of Crystal Facets in Photocatalytic Processes. J. Am. Chem. Soc. 2011,133,17652-17661.
    (59)Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. J. Am. Chem. Soc.2012,134,6751-6761.
    (60)Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal Anatase Particles:Size Quantization or Direct Transitions in This Indirect Semiconductor?J. Phys. Chem.1995,99,16646-16654.
    (61)Porter, J. F; Li, Y.; Chan, C. K. The Effect of Calcination on the Microstructual Characteristics and Photoreactivity of Degussa P-25 TiO2. J. Mater. Sci.1999,34,1523-1531.
    (62)Zhang, W. F.; Zhang, M. S.; Yin, Z.; Chen, Q. Photoluminescence in Anatase Titanium Dioxide Nanocrystals. Appl. Phys. B 2000,70,261-265.
    (63)Knorr, F. J.; Mercado, C. C.; McHale, J. L. Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase TiO2:Influence of Contacting Solvent and Interphasial Electron Transfer. J. Phys. Chem. C 2008,112,12786-12794.
    (64)Jing, L.; Qu, Y.; Wang, B.; Li, S.; Jiang, B.; Yang, L.; Fu, W.; Fu, H.; Sun, J. Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and Its Relationships with Photocatalytic Activity. Solar Energ. Mater. Solar Cells 2006,90,1773-1787.
    (65)Toyoda, T.; Hayakawa, T.; Shen, Q. Photoacoustic, Photoelectrochemical Current, and Photoluminescence Spectra of Highly Porous, Polycrystalline TiO2 Electrodes Fabricated by Chemical Synthesis. Mater. Sci. Eng. B 2000,78,84-89.
    (66)Ohtani, B.; Bowman, R. M.; Colombo, D. P.; Kominami, H.; Noguchi, H.; Uosaki, K. Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium(Ⅳ) Oxide Suspension: Correlation of Electron-Hole Recombination Kinetics with Photocatalytic Activity. Chem. Lett. 1998,579-580.
    (1)Park, S.; Jang, J.; Cheon, J.; Lee, H.; Lee, D. R.; Lee, Y. Shape-Dependent Compressibility of TiO2 Anatase Nanoparticles. J. Phys. Chem. C 2008,112,9627-9631.
    (2)Paola, A.; Bellardita, M.; Palmisano, L. Brookite, the Least Known TiO2 Photocatalyst. Catalysts 2013,3,36-73.
    (3)Dachille, F.; Simons, P. Y.; Roy, R. Pressure-temperature Studies of Anatase, Brookite, Rutile and TiO2-II. Am. Mineral.1968,53,1929-1937.
    (4)Kominami, H.; Kohno, M.; Kera, Y. Synthesis of Brookite-type Titanium Oxide Nano-crystals in Organic Media. J. Mater. Chem.2000,10,1151-1156.
    (5)Li, W.; Gong, X.; Lu, G.; Selloni, A. Different Reactivities of TiO2 Polymorphs:Comparative DFT Calculations of Water and Formic Acid Adsorption at Anatase and Brookite TiO2 Surfaces. J. Phys. Chem. C 2008,112,6594-6596.
    (6)Ohtani, B.; Handa, J.; Nishimoto, S. I.; Kagiya, T. Highly Active Semiconductor Photocatalyst: Extra-fine Crystallite of Brookite TiO2 for Redox Reaction in Aqueous Propan-2-ol and/or Silver Sulfate Solution. Chem. Phys. Lett.1985,120,292-294.
    (7)Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W. Tailored Titanium Dioxide Nanomaterials:Anatase Nanoparticles and Brookite Nonorods as Highly Active Photocatalysts. Chem. Matter.2010,22,2050-2060.
    (8)Ismail, A.A.; Kandiel, T.A.; Bahnemann, D.W. Novel (and better?) Titania-based Photocatalysts:Brookite Nanorods and Mesoporous Structures. J. Photochem. Photobiol. A 2010,216,183-193.
    (9)Kominami, H.; Ishii, Y.; Kohno, M.; Konishi, S.; Kera, Y.; Ohtani, B. Nanocrystalline Brookite-type Titanium(Ⅳ) Oxide Photocatalysts Prepared by a Solvothermal Method: Correlation between Their Physical Properties and Photocatalytic Activities. Catal. Lett.2003, 91,41-47.
    (10)Kominami, H.; Kato, J.; Murakami, S.; Ishii, Y; Kohno, M.; Yabutani, K.; Yamamoto, T.; Kera, Y.; Inoue, M.; Inui, T.; Ohtani, B. Solvothermal Syntheses of Semiconductor Photocatalysts of Ultra-high Activities. Catal. Today 2003,84,181-189.
    (11)Li, J.; Tang, C.; Li, D.; Haneda, H.; Ishigaki, T. Monodispersed Spherical Particles of Brookite-type TiO2:Synthesis, Characterization, and Photocatalytic property. J. Am. Ceram. Soc.2004,87,1358-1361.
    (12)Bakardjieva, S.; engl, V; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Niznansky, D.; Cizek, K.; Jirkovskyc, J.; Petrova, N. Transformation of Brookite-type TiO2 Nanocrystals to Rutile:Correlation between Microstructure and Photoactivity. J. Mater. Chem.2006,16, 1709-1716.
    (13)Xie, J.; Lu, X.; Liu, J.; Shu, H. Brookite Titania Photocatalytic Nanomaterials:Synthesis, Properties, and Applications. Pure Appl. Chem.2009,81,2407-2415.
    (14)Shen, X.; Zhang, J.; Tian, B.; Anpo, M. Tartaric Acid-assisted Preparation and Photocatalytic Performance of Titania Nanoparticles with Controllable Phases of Anatase and Brookite. J. Mater. Sci.2012,47,5743-5751.
    (15)Li, J. -G.; Ishigaki, T.; Sun, X. Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions Conditions:Phase-selective Synthesis and Physicochemical Properties. J. Phys. Chem. C2007,111,4969-4976.
    (16)Stengl, V.; Kralova, D. Photoactivity of Brookite-Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Hydrothermally Prepared Brookite. Mater. Chem. Phys.2011, 129,794-801.
    (17)Mattsson, A.; Osterlund, L. Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on Anatase, Brookite, and Rutile TiO2 Nanoparticles. J. Phys. Chem. C 2010,114, 14121-14132.
    (18)Stengl, V.; Bakardjieva, S.; Murafa, N.; Subrt, J.; Mestankova, H.; Jirkovsky, J. Preparation, Characterization and Photocatalytic Activity of Optically Transparent Titanium Dioxide Particles. Mater. Chem. Phys.2007,105,38-46.
    (19)Boppella, R.; Basak, P.; Manorama, S.V. Viable Method for the Synthesis of Biphasic TiO2 Nanocrystals with Tunable Phase Composition and Enabled Visible-light Photocatalytic Performance. ACS Appl. Mater. Interfaces 2012,4,1239-1246.
    (20)Yu, Y; Xu, D. Single-crystalline TiO2 Nanorods:Highly Active and Easily Recycled Photocatalysts. Appl. Catal.B 2007,73,166-171.
    (21)Xu, H.; Zhang, L. Controllable One-pot Synthesis and Enhanced Photocatalytic Activity of Mixed-phase TiO2 Nanocrystals with Tunable Brookite/Rutile Ratios. J. Phys. Chem. C 2009, 113,1785-1790.
    (22)Sun, Q.; Xu, Y. Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water. J. Phys. Chem. C 2010,114,18911-18918.
    (23)Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2:A Combined Effect of O2 and Crystallinity. J. Phys. Chem. C 2011,115,21161-21168.
    (24)Fu, H.; Pan, C.; Yao, W.; Zhu, Y. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6.J. Phys. Chem. B 2005,109,22432-22439.
    (25)Sun, B.; Reddy, E. P.; Smirniotis, P. G. Visible Light Cr(Ⅳ) Reduction and Organic Chemical Oxidation by TiO2 Photocatalysis. Environ. Sci. Technol.2005,39,6251-6259.
    (26)Testa, J. J.; Grela, M. A.; Litter, M. I. Heterogeneous Photocatalytic Reduction of Chromium(Ⅵ) over TiO2 Particles in the Presence of Oxalate:Involvement of Cr(Ⅴ) Species. Environ. Sci. Technol.2004,38,1589-1594.
    (27)Munoz, J.; Domenech, X. TiO2 Catalysed Reduction of Cr(Ⅵ) in Aqueous Solutions under Ultraviolet Illumination. J. Appl. Electrochem.1990,20,518-521.
    (28)Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y. Photocatalytic Hydrogenation of Propyne with Water on Small-Particle Titania:Size Quantization Effects and Reaction Intermediates. J. Phys. Chem.1987,91,4305-4310.
    (29)Zachriah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G. K. Synergistic Effect in Photocatalysis As Observed for Mixed-Phase Nanocrystalline Titania Processed via Sol-Gel Solvent Mixing and Calcination. J. Phys. Chem. C 2008,112,11345-11356.
    (30)Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Optical Properties of Gamma-Fe2O3 Nanoparticles Dispersed on Sol-Gel Silica Spheres. Physica E 2004,24,333-342.
    (31)Cave, G. C. B; Hume, D. N. Colorimetric Determination of Silver with Para-dimethylaminobenzalrhodanine. Anal. Chem.1952,24,1503-1505.
    (32)Liu, D.; Xu, Y. Reaction Mechanism on the Synergistic Photodegradation of Dye X3B and Photoreduction of Dichromate in the Presence of Polyoxometalate. Acta Phys.-Chim. Sin. 2008,24,1584-1588.
    (33)Li, G.; Ishigaki, T. Brookite →rutile Phase Transformation of TiO2 Studied with Monodispersed Particles. Acta Mater.2004,52,5143-5150.
    (34)Hu, W.; Li, L.; Li, G.; Tang, G.; Sun, L. High-Quality Brookite TiO2 Flowers:Synthesis, Characterization, and Dielectric Performance. Cryst. Growth Des.2009,9,3676-3682.
    (35)Hu, Y.; Tsai, H.; Huang, C. Effect of Brookite Phase on the Anatase-Rutile Transition in Titania Nanoparticles. J. Eur. Ceram. Soc.2003,23,691-696.
    (36)Pan, H.; Qiu, X.; Ivanov, I.; Meyer, H. M.; Wang, W.; Zhu, W.; Paranthaman, M. P.; Zhang, Z.; Eres, G.; Gu, B. Fabrication and Characterization of Brookite-rich, Visible Light-Active TiO2 Films for Water Splitting. Appl. Catal. B 2009,93,90-95.
    (37)Tompsett, G. A.; Bowmaker, G. A.; Cooney, R. P.; Metson, J. B.; Rodgers, K. A.; Seakins, J. M. The Raman Spectrum of Brookite, TiO2 (Pbca, Z=8). J. Raman Spectro.1995,26,57-62.
    (38)Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Kipp, T.; Cingolani, R.; Cozzoli, P. D. Nonhydrolytic Synthesis of High-Quality Anisotropically Shaped Brookite TiO2 Nanocrystals. J. Am. Chem. Soc.2008,130,11223-11233.
    (39)Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman Spectrum of Anatase, TiO2. J. Raman Spectro.1978, 7,321-324.
    (40)Koelsch, M.; Cassaignon, S.; Guillemoles, J.F.; Jolivet, J.-P. Comparison of Optical and Electrochemical Properties of Anatase and Brookite TiO2 Synthesized by the Sol-gel Method. Thin Solid Films 2002,403-404,312-319.
    (41)Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic Reactions:Design of New Photocatalysts. J. Phys. Chem. C 2007,111,5259-5275.
    (42)Xu, Y; Lv, K.; Xiong, Z.; Leng, W.; Du, W.; Liu, D.; Xue, X. Rate Enhancement and Rate Inhibition of Phenol Degradation over Irradiated Anatase and Rutile TiO2 on the Addition of NaF:New Insight into the Mechanism. J. Phys. Chem. C 2007,111,19024-19032.
    (43)Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A.; Mul, G. Toward a Physically Sound Structure-Activity Relationship of TiO2-Based Photocatalysts. J. Phys. Chem. C 2010,114, 327-332.
    (44)Ohtani, B.; Okugawa, Y; Nishimoto, S.; Kagiya, T. Photocatalytic Activity of TiO2 Powders Suspended in Aqueous Silver Nitrate Solution. Correlation with pH-dependent Surface Structures. J. Phys. Chem.1987,91,3550-3555.
    (1)Ohtani, B.; Ogawa, Y.; Nishimoto, S. Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997,101, 3746-3752.
    (2)Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals leads to High Photocatalytic Efficiency. J. Am. Chem. Soc.2011,133,16414-16417.
    (3)Li, Z.; Xu, Y. Larger Effect of Sintering Temperature Than Particle Size on the Photocatalytic Activity of Anatase TiO2. J. Phys. Chem. C 2013,117,24360-24367.
    (4)Peiro, A. M.; Colombo, C.; Doyle, G.; Nelson, J.; Mills, A.; Durrant, J. R. Photochemical Reduction of Oxygen Adsorbed to Nanocrsyalline TiO2 Films:A Transient Absorption and Oxygen Scavenging Study of Different TiO2 Preparations. J. Phys. Chem. B 2006,110, 23255-23263.
    (5)Lv, K.; Xu, Y. Effects of Polyoxometalate and Fluoride on Adsorption and Photocatalytic Degradation of Organic Dye X3B on TiO2:The Difference in the Production of Reactive Species. J. Phys. Chem. B 2006,110,6204-6212.
    (6)Zhang, Y.; Andersson, S.; Muhammed. Nanophase Catalytic Oxides:I. Synthesis of Doped Cerium Oxides as Oxygen Storage Promoters. Appl. Catal. B 1995,6,325-337.
    (7)Pushkarev, V. V.; Kovalchuk, V. I.; d'Itri, J. L. Probing Defect Sites on the CeO2 Surface with Dioxygen. J. Phys. Chem. B 2004,108,5341-5348.
    (8)Dutta, P.; Pal, S.; Seehra, M. S.; Shi, Y.; Eyring, E. M.; Ernst, R. D. Concentration of Ce3+ and Oxygen Vacancies in Cerium Oxide Particles. Chem. Mater.2006,18,5144-5146.
    (9)Wu, L.; Li, M.; Howe, J.; Meyer, H. M.; Overbury, S. H. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir 2010,26,16595-16606.
    (10)Choudhury, B.; Chetri, P.; Choudhury, A. Oxygen Defects and Formation of Ce3+ Affecting the Photocatalytic Performance of CeO2 Nanoparticles. RSC Adv.2014,4,4663-4671.
    (11)Sifontes, A. B.; Rosales, M.; Mendez, F. J.; Oviedo, O.; Zltan, T. Effect of Calcination Temperature on Structural Properties and Photocatalytic Activity of Ceria Nanoparticles Synthesized Employing Chitosan as Template. J. Nanomater.2013,265797.
    (12)Muftoz-Batista, M. J.; Gomez-Cerezo, M. N.; Kubacka, A.; Tudela, D.; Fernandez-Garcia, M. Role of Interface Contact in CeO2-TiO2 Photocatalytic Composite. ACS Catal.2014,4, 63-72.
    (13)Ghasemi, S.; Rahman Setayesh, S.; Habibi-Yangjeh, A.; Hormozi-Nezhad, M. R.; Gholami, M. R. Assembly of CeO2-TiO2 Nanoparticles Prepared in Room Temperature Ionic Liquid on Graphene Nanosheets for Photocatalytic Degradation of Pollutants. J. Hazard. Mater.2012, 199-200,170-178.
    (14)Tong, T.; Zhang, J.; Tian, B.; Chen, F.; He, D.; Anpo, M. Preparation of Ce-TiO2 Catalysts by Controlled Hydrolysis of Titanium Alkoxide Based on Esterification Reaction and Study on Its Photocatalytic Activity. J. Colloid Interface Sci.2007,315,382-388.
    (15)Xue, W.; Zhang, G.; Xu, X.; Yang, X.; Liu, C. Preparation of Titania Nanotubes Doped With Cerium and Their Photocatalytic Activity for Glyphosate. Chem. Eng. J.2011,167,397-402.
    (16)Zhang, Y; Yuwono, A. H.; Wang, J.; Li, J. Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films. J. Phys. Chem. C 2009,113,21406-21412.
    (17)Galindo, F.; Gomez, R.; Aguilar, M. Photodegradation of the Herbicide 2,4-diuchlorophenoxyacetic Acid on Nanocrystalline TiO2-CeO2 Sol-Gel Catalysts. J. Mol. Catal. A 2008,282,119-125.
    (18)Xiao, J.; Peng, T.; Li, R.; Peng, Z.; Yan, C. Preparation, Phase transformation and Photocatalytic Activities of Cerium Doped Mesoporous Titania Nanoparticles. J. Solid State Chem.2006,179,1161-1170.
    (19)Li, G.; Liu, C.; Liu, Y. Different Effects of Cerium Ions Doping on Properties of Anatase and Rutile TiO2. Appl. Surf. Sci.2006,253,2481-2486.
    (20)Aman, N.; Satapathy, P. K.; Mishra, T.; Mahato, M.; Das, N. N. Synthesis and Photocatalytic Activity of Mesoporous Cerium Doped TiO2 as Visible Light Sensitive Photocatalyst. Mater. Res. Bull.2012,47,179-183.
    (21)Sidheswaran, M.; Tavlarides, L. L. Characterization and Visible Light Photocatalytic Activity of Cerium- and Iron-Doped Titanium Doxide Sol-Gel Materials. Ind. Eng. Chem. Res. 2009,48,10292-10306.
    (22)Choudhury, B.; Borah, B.; Choudhury, A. Extending Photocatalytic Activity of TiO2 Nanoparticles to Visible Light Region of Illumination by Doping of Cerium. Photochem. Photobiol.2012,88,257-264.
    (23)Li, G.; Zhang, D.; Yu, J. C. Thermally Stable Ordered Mesoporous CeO2/TiO2 Visible-light Photocatalysts. Phys. Chem. Chem. Phys.2009,11,3775-3782.
    (24)Zhang, Y.; Xu, H.; Xu, H.; Zhang, H.; Wang, Y. The Effect of Lanthanide on the Degradation of RB in Nanocrystalline Ln/TiO2 Aqueous Solution. J. Photochem. Photobiol. A 2005,170, 279-285.
    (25)Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Application of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    (26)Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem.2004,32,33-177.
    (27)Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic Reactions:Design of New Photocatalysts. J. Phys. Chem. C 2007,111,5259-5275.
    (28)Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y. Photocatalytic Hydrogenation of Propyne with Water on Small-particle Titania:Size Quantization Effects and Reaction Intermediates. J. Phys. Chem.1987,91,4305-4310.
    (29)Zachriah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G. K. Synergistic Effect in Photocatalysis As Observed for Mixed-Phase Nanocrystalline Titania Processed via Sol-Gel Solvent Mixing and Calcination. J. Phys. Chem. C 2008,112,11345-11356.
    (30)Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Optical Properties of Gamma-Fe2O3 Nanoparticles Dispersed on Sol-Gel Silica Spheres. Physica E 2004,24,333-342.
    (31)Cave, G. C. B; Hume, D. N. Colorimetric Determination of Silver with Para-dimethylaminobenzalrhodanine. Anal. Chem.1952,24,1503-1505.
    (32)Bader, H.; Sturzenegger, V.; Hoigne, J. Photometric Method for the Determination of Low Concentrations of Hydrogen Peroxide by the Peroxidase Catalyzed Oxidation of N,N-diethyl-p-phenylenediamine(DPD). Water Res.1988,22,1109-1115.
    (33)Sun, Q.; Xu, Y. Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water. J. Phys. Chem. C 2010,114,18911-18918.
    (34)Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2:A Combined Effect of O2 and Crystallinity. J. Phys. Chem. C 2011,115,21161-21168.
    (35)Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. P. Cerium Oxide Nanoparticles:Size-Selective Formation and Structure Analysis. Appl. Phys. Lett.2002,80,127-129.
    (36)Deshpande, S.; Patil, S.; KUchibhatla, S.; Seal, S. Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide. Appl. Phys. Lett.2005,87, 133113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700