用户名: 密码: 验证码:
采用HEBM-SPS制备430L纳米晶不锈钢材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先研究了高能球磨制备430L不锈钢纳米晶粉末,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和马尔文激光粒度分析仪(MS2000)等手段分析了高能球磨中粉末的晶粒尺寸、颗粒形貌和粒度。采用相同的球磨时间(10h)不同球料比进行了430L不锈钢的球磨实验。研究结果发现:随球料比增大,粉末平均晶粒尺寸迅速减小,球料比从5:1增加到20:1,晶粒尺寸从32nm减小到23nm左右;球料比进一步增大,晶粒尺寸缓慢减小,球料比增大到30:1,晶粒尺寸约为19nm。采用相同球料比(20:1),经过不同球磨时间制备430L不锈钢粉末的实验研究结果表明:球磨初期(0~10h),粉末的晶粒尺寸迅速减小到23nm左右,其后晶粒尺寸缓慢减小,球磨时间达到50h,晶粒尺寸减小到15nm。SEM和MS2000分析结果表明,高能球磨中存在冷焊、断裂和加工硬化现象。粉末粒度的变化可分为四个阶段:即第一阶段,快速增大阶段(0~10h),平均粒度迅速增大到330μm左右,这期间以冷焊作用为主;第二阶段,快速减小阶段(10~20h),平均粒度约为100μm,这期间以断裂作用为主;第三阶段,粒度基本保持不变(20~30h),平均粒度约为98μm,这期间冷焊和断裂作用基本保持动态平衡;第四阶段,缓慢减小(30~50h),平均粒度约为55μm,这期间又以断裂作用为主。
     本文还研究了纳米430L不锈钢粉末(球料比20:1,球磨时间30h)的SPS放电等离子快速烧结工艺。利用阿基米德排水法、维氏硬度计和MTS810材料试验机等手段分析了不同烧结工艺条件下烧结试样的相对密度、维氏硬度和抗拉强度,采用透射电子显微镜(TEM)观察了试样晶粒尺寸。将430L不锈钢粉末在800~1000℃温度范围内保温3~15min,分析结果显示,同800℃下试样相比较,烧结温度达到900℃时,试样的各项性能都有很大提高,在900℃下保温5min,试样的相对密度、维氏硬度和抗拉强度分别达到96.25%, 255HV和706MPa,而在800℃保温5min,试样的相对密度、维氏硬度和抗拉强度仅为93.83%、167HV和165MPa;温度达到1000℃时,维氏硬度和相对密度分别为501HV和98.72%,但抗拉强度却下降到522MPa;分析还发现,在900℃下保温5min和15min,试样的相对密度分别为96.25%和99.43%;保温时间对试样的抗拉强度影响显著,保温时间延长到10min时,抗拉强度达到最大值713MPa,而后减小。保温时间对试样的硬度影响较小,从3min延长到15min,维氏硬度值变化范围为238~255HV。TEM分析显示,经过SPS烧结后,试样的晶粒长大,平均晶粒尺寸约为144~345nm。
     由上述研究结果得出:高能球磨制备430L纳米晶不锈钢粉末的合理球料比和球磨时间分别为20:1和20h;采用SPS放电等离子烧结,在900℃下保温5min试样具有较好的性能。
In this thesis, the preparation of 430L nanocrystalline stainless steel powders by high energy ball milling was investigated at first. The crystalline grain size was calculated according to the test results of XRD. The average particle size of milled 430L stainless steel powders were analyzed by Mastersizer 2000. The morphology and microstructure of samples was observed by SEM. The experiments for preparation of 430L nanocrystalline stainless steel powders with different weight ratio of balls to powders and the same ball milling time were performed. The research results indicated the crystalline grain size of the powders reduced rapidly with the increasing of weight ratio of balls to powders, the average crystalline grain size reduced from 32nm to 23nm as weight ratio of balls to powders increased from 5:1 to 20:1. As the weight ratio of balls to powders increased further, the crystalline grain size reduced slowly. It was 19nm as the weight ratio of balls to powders reached to 30:1. The experiments with various ball milling time and the same weight ratio of balls to powders were also performed. The research results showed that the crystalline grain size of the powders decreased drastically at the early stage (0-10h), which rapidly reduced to 23nm, then decreased slowly. After 50h ball milling, it reached to 15nm. The observation results of SEM and MS2000 indicate that cold welding, fragmentation and work harden occurred during high energy ball milling. The changes of particles size of 430L stainless steel powders could be divided into four stages: at the initial stage (0-10h), the particle size of the powders increased quickly because of cold welding, and the average particle size of the powders reached to 330μm; in the second stage(10-20h), the particle size of the powders decreased because of fragmentation, the average particle size reduced to 100μm.; in the third stage (20-30h), the particle size of the powders has less change, the average particle size was about 98μm, the dynamical equilibrium was held between cold welding and fragmentation; in the final stage(30-50h), the particle size of the powders decreased slowly, the average particle size reduced to 55μm, the dominative role was also fragmentation at this stage .
     Nanocrystalline 430L stainless steel cermets produced using spark plasma sintering was also investigated. Bulk densities of the samples were determined by Archimedes method in distilled water, the hardness and the tensile strength were measured using Vickers hardness tester and MTS810 materials testing machine, the crystalline grain size was observed by TEM. Nanocrystalline 430L stainless steel powders prepared by high-energy ball milling(weight ratio of balls to powders 20:1 for ball milling time of 30h) were sintered by spark plasma sintering at 800-1000℃for holding time of 3 to 15min. Comparison with sample sintered at 800℃, the properties of samples sintered at 900℃has improved much. After having sintered at 900℃for
引文
[1]宋洪伟.微米、亚微米与纳米超细晶粒钢的研究进展[J]. 世界科技研究与发展. 2002,24(6):31-35.
    [2] 殷瑞钰.关于钢铁工业的动向[J].中国冶金,1999,(2):17-22.
    [3] 杨建川.不锈钢的历史、现状和未来[J].南方钢铁,1998,(8):17-24.
    [4] 丁长安.钛消音器推动新的汽车应用[J].稀有金属快报,2001,(2):10-11.
    [5] 翁宇庆.国内外钢铁材料发展的新动向(摘录)[J].中国冶金,2001,(10):1-6.
    [6] 约翰 J.伯克,沃克.威斯(编),王燕文,张永昌(译).超细晶粒金属[M].北京:国防工业出版社,1982.
    [7] 张毅.纳米复合钢.上海钢研[J],2000,(2):58.
    [8] 翁宇庆.钢铁结构材料的组织细化[J].钢铁, 2003,38(5):1-11.
    [9] Japanese Ministry of Technology. Journal of Iron & Steel,1996,(12):2-10.
    [10] S.H.Park, O.J.Kwon, W.Y.Choo. Bulletin of the Korea Institute of Metals and Materials[J], 1997,(10):448-455.
    [11] 王向成.新一代钢铁材料研究进展[J].武钢技术,2004,(2):38-42.
    [12] 贾建军,谷臣清.板条马氏体纳米结构化与超级钢研究[J].热加工工艺,2003,(3):14-15,59.
    [13] Miura H, Ogawa H. Preparation of nanocrystalline high-nitrogen stainless steel powders by mechanical alloying and their hot compaction [J]. Materials Transactions, 2001, 42(11):2368-2373.
    [14] 耀星.日本开发出用粉末冶金法提高不锈钢强度的新技术[J].粉末冶金工业,2001,(6):22.
    [15] 李芳.日本开发出纳米结晶结构不锈钢[J].山东冶金,2002,(2):31.
    [16] H.W.Zhang, Z.K.Hei. Formation of nanostructured surface layer on AISI304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003, 51(7):1871-1881.
    [17] 卢柯,张洪旺,刘刚等.表面机械研磨诱导 AISI304 不锈钢表层纳米化Ⅰ:组织与性能[J].金属学报, 2003,39(4):342-346.
    [18] 卢柯,张洪旺,刘刚等.表面机械研磨诱导 AISI304 不锈钢表层纳米化Ⅱ:晶粒细化机理[J].金属学报, 2003,39(4):347-350.
    [19] 卑多慧,吕坚,卢柯等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报, 2002,23(1):19-24.
    [20] J.Ding, H.Huang. Magnetic properties of martensite-austenite mixtures in mechanically milled 304 stainless steel [J]. Journal of Magnetism and Magnetic Materials 1995, 139:109-114.
    [21] 钢研总院纳米级组织的钢铁材料取得阶段性进展[J].钢铁研究,2003,(5):12.
    [22] 王景唐,沈同德,机械合金化研究进展[J],物理,1993,(8):456-460.
    [23] 吴煜明,雷永泉.机械合金Mg-Ni基非晶态贮氢合金的电化学特性[J].稀有金属材料与工程, 1997,26(3):26~29.
    [24] 张志琨,崔作林.纳米技术与纳米材料[M].北京,国防工业出版社,2000.
    [25] Fecht H J,Hellstern E,Fu Z ,etal. Nanocrystalline Metals Prepared by High-Energy Ball-Milling [J]. Metall. Trans. A. 1990,21A(9):2333-2337.
    [26] 新宫秀夫.メカニカルフィニダの热力学[J].日本金属学会会报,1988,27(10):805-811.
    [27] 王世敏,许祖勋,傅 晶.纳米材料制备技术[M].北京:化学工业出版社,2001.
    [28] T. H.Courtney, D.R.Maurice. Process Molding of the Mechanics of Mechanical Alloying [J]. Scripta Mater, 1996,34(1):5-11.
    [29] I.F. Vasconcelos, R.S. de Figueiredo. Driving Mechanisms on Mechanical Alloying: Experimental andMolecular Dynamics Discussions [J]. NanoStructured Materials, 1999,11(7): 935-946.
    [30] 陈津文,吴年强.描述机械合金化过程的理论模型[J], 材料科学与工程, 1998,16(1):19~23.
    [31] D. R. Maurice, T. H. Courtney, Modeling of mechanical alloying: part I. deformation coalescence, and fragmentation mechanisms [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994,25A(1): 147-158.
    [32] Maurice D, Courtney T H. Milling dynamics: Part Ⅱ.Dynamics of a SPEX mill and a one-dimensional [J] .Metall Mater Trans. 27A, 1996:1973-1979..
    [33] 余立新,李晨辉,机械合金化过程理论模型研究进展[J].材料导报,2002,16(8):11-14.
    [34] 杨君友,吴建生.机械合金化过程中粉末的变形及其能量转化[J].金属学报,1998,34(10):1061-1067.
    [35] M.Magini, A.Iasonna. Energy Transfer in Mechanical Alloying (Overview) [J]. Materials Transactions, JIM,199536(2):123-133.
    [36] A.Iasonna. M.Magini. Powder Measurements during Mechanical Milling: An Experimental Way to Investigate the Energy Transfer Phenomena [J]. Acta Mater. 1996,44(3):1109-1117.
    [37] Magini M, Iasonna A. Energy transfer in mechanical alloying[J]. Mater Trans JIM, 1995, 36:219-226.
    [38] Magini M, Colella C, Iasonna A., etal. Power measurements during mechanical milling: Ⅱ. The case of “single path cumulative” solid state reaction [J]. Acta Materialia, 1998, 46:2841-2850.
    [39] A.K. Bhattacharya, Scripta Metall, 1992; 27:749-755.
    [40] Le Burn, P., Froyen L. Modeling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-situ observations [J]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993 ,A161(1):75-82
    [41] Le Brun P, Gaffet E. Structure and properties of Cu, Ni and Fe powders milled in a planetary ball mill [J]. Scripta metallurgica mater. 1992,26(11):1743-1746.
    [42] Minoru Umemoto. Nanocrystallization of steels by severe plastic deformation [J]. Materials Transactions, 2003,44(10):1900-1911.
    [43] 王尔德,胡连喜.机械合金化纳米晶材料研究进展[J].粉末冶金技术, 2002,20(3):135-139.
    [44] 贾德昌,周玉,雷廷权.机械合金化 Al-12Ti-6Nb 的组织结构与力学性能[J].稀有金属材料与工程, 1997,26(2):36-39
    [45] 董生智.机械合金化制备 Nd(Fe,Mo)<,12>N<,x>永磁材料:[博士后论文][D],北京:北京科技大学,1996.
    [46] 张健,沈保根.球磨 SmCo5纳米晶的结构与磁性[J].金属功能材料, 2001,8(3):10~12.
    [47] 朱文辉,朱敏.高岩,机械合金化 Mg/MmNi5-X(CoAlMn)X 复合储氢合金的组织结构与吸氢特性[J].中国稀土学报,1999,17(4):313-317.
    [48] WANG Er-de, YU Zhen-xing. Hydrogen storage properties of nanocomposite Mg-Ni-MnO2 made by mechanical milling [J]. Transactions of Nonferrous Metals Society of China. 2002,12(2):22-232.
    [49] 李汶霞,鲁燕萍.离子烧结与等离子活化烧结[J].真空电子技术,1998(1):17-23.
    [50] Joanna R., Groza, Subhash H. Risbud, etal. Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes [J]. J. Mater. Res., 1992,7(10): 2643-2645.
    [51] Tokita M. Mechanism of spark plasma sintering [J]. Proceeding of NEDO International Symposium on Functionally Graded Materials, 1999:23-33.
    [52] Kim Y D, Chung J Y. Formation of nanocrystalline Fe-Co powders produced by mechanical alloying [J]. Materials Science and Engineering, 2000,A291 (10):17-21.
    [53] Tokita M. Mechanism of spark plasma sintering [J]. Soc. Powder Technol Japan, 1993, 30(11): 790-804.
    [54] A. Kojima, A. Makino, A. Inoue. Structural and magnetic properties of nanocrystalline Fe-richFe–Nb–Nd–B sintered magnets produced by consolidating amorphous powders [J]. IEEE Trans. Magn., 1997, 33(9):3817-6819.
    [55] Chien-Hua Shan. Rapid consolidation of Bi-Sr-Ca-Cu-O powders by a plasma activated sintering process [J]. Mater. Sci. Eng. 1994,B26:55-60.
    [56] 司鹏程.大块非晶合金形成的控制因素与制备技术[J],材料工程,1998,(11):3-7.
    [57] Ozaki, Kimihiro. Spark plasma consolidation of Al-based amorphous powder prepared by mechanical alloying [J]. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997,44(12):1126-1130.
    [58] Kimihiro Ozaki, Keizo Kobayashi, Akira Sugiyama, et al. Preparation of amorphous Mg-Ni-Y alloy by mechanical alloying and pulsed current sintering [J]. the Japan Society of Powder and Powder Metallurgy,2000,(47):423-426.
    [59] Tamari N, Tanaka T. Effect of spark plasma sintering on densification and mechanical properties of silicon carbide [J].J Ceram. Soc. Japan, 1995, (103):740-742.
    [60] Nishimura T, Mitomo M, Hirotsuru H, etal. Fabrica-tion of silicon nitride nano-ceramics by spark plasma sintering [J]. J Mater Sci. Lett, 1995,(14):1046-1047.
    [61] M.Magini, A.Iasonna. Ball Milling: An Experimental Support to the Energy Transfer Evaluated by the Collision Model [J]. Scripta Materialia, 1996,34(1):13~19.
    [62] 张立德.纳米材料和纳米结构[M],北京:科学出版社,2001.
    [63] Benjamin J S, Volin T E. The mechanism of mechanical alloying [J]. Metall Trans,1974,,(5):1929-1934.
    [64] 张立德,牟季美.纳米材料科学[M],沈阳:辽宁科学技术出版社,1994.
    [65] Maurice D, Caourtney T H. Milling dynamics: Part Ⅲ. Integration of local and global modeling of mechanical alloying devices [J]. Metall Mater Trans, 1996, 27A:1981-1986.
    [66] 李静,吕曼.MS2000 激光粒度分析仪在黄河调水调沙试验中的应用[J].中国水利,2002,(9):78-79.
    [67] 人民教育出版社 课程教材研究所主编. 化学[M]. 北京:人民教育出版社,2004.
    [68] 黄培云.粉末冶金原理[M]. 北京:冶金工业出版社,2004。
    [69] J.弗里埃德尔.位错[M],北京:科学出版社,1984.
    [70] 高濂,宫本大树.放电等离子烧结技术[J].无机材料学报, 1997,12(2):129-133.
    [71] 李蔚,高濂.快速烧结制备纳米 γ-TZP 材料[J].无机材料学报, 2000,15(2):269-274.
    [72] Dwivedi S N, and Upadhyay K. Plasma Aided Manufacturing of Ceramics and Composite Materials [J]. International Journal of Production Research, 1993,31(4):901-912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700