用户名: 密码: 验证码:
Fe-0.77C-1.40B合金组织性能及过流冷却工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Fe-0.77C-1.40B为研究对象,考察了其在砂型铸造条件下的凝固组织和性能及热处理对其组织性能的影响。在此基础上,研究了过流冷却对其组织和性能的影响。最后考察了热处理对过流冷却后Fe-0.77C-1.40B合金的组织和性能的影响。研究结果表明:砂型铸造条件下Fe-0.77C-1.40B合金具有典型的亚共晶组织,组织由铁素体、珠光体、含硼碳化物Fe23(C,B)6、少量的Fe3C’和马氏体组成。不同正火温度对其性能几乎没有影响。
     对Fe-0.77C-1.40B合金过流冷却后的液淬组织分析结果表明:过流冷却后Fe-0.77C-1.40B合金组织由铁素体、珠光体、含硼碳化物Fe23(C,B)6、少量的Fe3C和马氏体组成。在不同的倾斜板角度下,倾斜板长度为600-800mm时,Fe-0.77C-1.40B合金初生奥氏体颗粒在一定的面积上颗粒数最多,平均横截面直径最小,形状因子最大,初生奥氏体晶粒球化、细化程度最好。在倾斜板温度,浇注温度,浇注的金属液流量大小等参数一定的条件下,倾斜板角度为30。时,初生奥氏体颗粒球化、细化程度最好。
     过流冷却对Fe-0.77C-1.40B合金组织与性能的影响研究结果表明:初生奥氏体颗粒的细化、球化没有显著提高Fe-0.77C-1.40B合金砂型凝固条件下的冲击韧性。和砂型凝固条件下相比,经过流冷却体倾斜板的激冷作用后,初生奥氏体百分含量增加,硬质相含硼碳化物Fe23(C,B)6百分含量减少,Fe-0.77C-1.40B合金试样硬度下降。
     研究同时发现,不同的热处理方式并没有改变过流冷却后Fe-0.77C-1.40B合金共晶组织的形态和分布,只改变初生奥氏体和共晶莱氏体中奥氏体的转变产物,从而改变了Fe-0.77C-1.40B合金的性能。
Fe-0.77C-1.40B alloy was investigated in this paper. Structure and property of Fe-0.77C-1.40B alloy were investigated in as-cast and heat treatment. On this basis, Structure and property of Fe-0.77C-1.40B alloy were investigated by inclined plate cooling. And influence heat treatment on structure and property of Fe-0.77C-1.40B alloy was investigated at last. The results show that the as-cast structure of the Fe-0.77C-1.40B alloy was consisted by the ferrite, pearlite, Fe23(C,B)6 and a small amo-unt of martensite and Fe3C by XRD. Property of Fe-0.77C-1.40B alloy was not influen-ced by different normalizing temperature.
     Liquid quenching structure of Fe-0.77C-1.40B alloy was investigated. The results show that that the structure of the Fe-0.77C-1.40B alloy was consisted by the ferrite, pearlite, Fe23(C,B)6 and a small amount of martensite and Fe3C by inclined plate cool-ing. Inclined plate cooling in 600mm or 800mm in length, the Fe-C-B alloy primary austenite grain size on a certain area, the average cross-sectional diameter is the small-est and shape factor is the most in different angle of inclined cooling plate.primary austenite grain size was refined best. At the same plate temperature, pouring temperature conditions, the Fe-C-B alloy primary austenite grain size was refined best at 30°angle. wherever, the refinement of Fe-C-B alloy primary austenite grain is harmful to impact toughness.
     Structure and property of Fe-0.77C-1.40B alloy was studied by inclined plate cooling. The results show that refinement of primary austenite particles is no significant increase toughness of Fe-0.77C-1.40B alloy solidification under conditions of sand. the primary austenite percentage was increased and hard phase Fe23(C,B)6 percent was decreased by inclined plate cooling, and the hardness was decreased comparing with conditions of sand.
     Besides, The results also show that the morphology of eutectic structure and distribution did not changed at different methods of heat treatment, but the primary austenite and eutectic austenite transformation product was changed only, so property of Fe-0.77C-1.40B alloy was changed.
引文
[1]符寒光,胡开华.高硼铸造耐磨合金研究的进展.现代铸铁,2005,(3):32-36
    [2]李建明.耐磨与减磨材料.北京:机械工业出版社,1987
    [3]劭荷生,张清.金属的磨料磨损与耐磨材料.北京:机械工业出版社,1988
    [4]劭荷生.摩擦与磨损.北京:煤炭工业出版社,1992
    [5]符寒光.铸造Fe-B-C合金组织和性能的基础研究.铸造,2005,54(9):859-863
    [6]Lorinczi J, Kralik G, Kovacs M, etal. Investigation of the relationships between material properties and processing parameters of boron micro-alloyed quenched and tempered steels. Materials Science Forum,2003,414-415:267-274
    [7]皇志富,黄卫东,张安峰,等.半固态过共晶高铬铸铁的冲击及磨损性能研究.西安交通大学学报,2005,39(7):775-778
    [8]皇志富,张安峰,邢建东,等.倾斜冷却体-离心法制备半固态高铬铸铁梯度组织.特种铸造及有色合金,2005,25(8):449-450
    [9]皇志富,张安峰,邢建东,等.半固态高铬铸铁初生相的形貌及其定量分析.铸造技术,2005,26(6):453-455
    [10]张蜀红,刘炳.渗硼工艺研究与应用现状及发展.材料热处理.2006,36(12):69-71
    [11]叶荣昌,葛长路.硼对堆焊合金组织与性能的影响.热加工工艺.1998,(3):19-20
    [12]葛长路,叶荣昌,刘兆勇.F-C-B堆焊合金的组织及性能的研究.焊接技术,1997,(5):2-3
    [13]Christodoulou P, Calos N. A step towards designing Fe-Cr-B-C cast alloys. Materials Science and Engineering A,2001,A301(2):103-117
    [14]Baarman M H.Effect of boron additions on continuous cast low-carbon steel wire. Scandinavian Journal of Metallurgy,1998,27(4):148-158
    [15]Kocsis B M. Boron hardenability effect in case-hardening ZF-steels. Materials Science Forum,1994,163-166(1):99-106
    [16]Wang X M, He X L. Effect of boron addition on structure and properties of low carbon bainitic steels. ISIJ International,2002,42(Suppl.):S38-S46
    [17]Horiuchi T, Igarash M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W. ISIJ International,2002,42(Suppl.):S67-S71
    [18]Bernasovsky P. Weldability aspects of austenitic stainless steel with high boron content. Metal Science and Heat Treatment,1994,43(6):145-149
    [19]任元和.冶金因素对硼钢中B回收率的影响.特殊钢,1992,13(5):56-58
    [20]郭长庆,高守忠.新型铁基耐磨材料FCB合金.铸造,2004,53(10):761-764
    [21]Changqing Guo, Kelly P M. Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons. Journal of Materials Science,2004,39(3):1109-1111
    [22]Changqing Guo, Kelly P M. Boron solubility in Fe-Cr-B cast irons. Materials Science and Engineering A,2003, A352(1-2):40-45
    [23]王琦环,郭长庆.Fe-Cr-B合金的显微组织.金属热处理,2004,29(5):30-32
    [24]Changqing Guo, Kelly P M. The non-equilibrium segregation of boron in matrix grains in Fe-Cr-B alloys.包头钢铁学院学报,2004,23(2):134-140
    [25]符寒光.铸造Fe-B-C合金组织和性能的基础研究.铸造,2005,54(9):859-863
    [26]符寒光,蒋志强.耐磨铸造Fe-B-C合金的研究.金属学报,2006,42(5):545-548
    [27]符寒光.高硼铸钢锤头的研究和应用.铸造,2006,55(3):292-295
    [28]吴占文,符寒光,周强.高硼铸造合金在搅拌机衬板上的应用.工程机械,2006,37(9):61-65
    [29]刘仲礼,李言祥,陈祥,等.高硼铁基合金在不同铸型中的凝固组织与性能.金属学报,2007,43(5):477-481
    [30]葛长路,叶荣昌,刘兆勇.F-C-B堆焊合金的组织及性能的研究.焊接技术,1997,97(5):2-3
    [31]赵国荣,黎振华,蒋业华,等.铸造Fe-0.77C-1.40B合金组织与性能研究.铸造,2008,57(5):451-454
    [32]本溪钢铁公司第一炼钢厂.硼钢.北京:冶金工业出版社,1977
    [33]Lakeland K D, Graham E, Heron A. Mechanical Properties and Microstructures of A Series of FCB AlloyslD. Brisbane(Australia):The University of Queensland, 1992, (6):1-13
    [34]Atsumi Ohno. The solidification of Metals. CHIJIN SHOKAN Co. Ltd.,1976
    [35]Alex Muumbo, Hiroyuki Nomura, Mitsuharu Takita. Mechanical properties and microstructure of semi-solid processed cast iron. International Journal of Cast Metals Research,2003(16):359-364
    [37]Hayatt N, Toda H, Kobayashi T, etal. Fatigue characteristics of AC4CH aluminium cast alloys fabricated by inclined cooling plate technique. Int.J.Cast Metals Res.2002(14):293-301
    [38]Motegi T, Ogawa N, Kondo K, et al. Proceedings of 6th International Conference on Aluminum Alloys(ICAA-6)1(1998):297
    [39]管仁国,李俊鹏,温景林.倾斜式冷却剪切流变对Al-Mg合金组织的影响.轻合金加工技术,2004,32(11):5-19
    [40]陈璟琚,许光奎,卿上胜,等.合金高铬铸铁及其应用.北京:冶金工业出版社,1999
    [41]Flemings M C. Behavior of metal alloys in the semi-solid state. Metallurgical Transactions,1991,22B:269-293
    [42]KirKwood D H. Semisolid metal metal processing. International Materials Review,1994,39:173-189
    [43]Vogel A, Doherty D, Cantor B. Solidification and casting of metals 1979, London, the Metal Society,518-525
    [44]管仁国,马伟民.金属半固态成形理论与技术.北京:冶金工业出版社,2005
    [45]罗守靖,姜巨福,杜之明.半固态金属成形研究的新进展、工业应用及其思考.机械工程学报,2003,39(11):52-60
    [46]李绍雄.铁碳硼合金中硬相的形成方式、相对量和晶格常数研究.吉林工业大学学报,1987(4):82-92
    [47]皇志富,邢建东,吴义名.半固态过共晶高铬铸铁的制备及组织定量分析.铸造技术,2004,25(10):531-533
    [48]崔忠圻.金属学与热处理.北京:机械工业出版社,2000
    [49]Hattestrand M, Andren H O. Boron distribution in 9-12% chromium steels. Materials Science and Engineering.1999,270(1):33-37
    [50]沈鹏.40MnB钢中碳硼化物的鉴定.金属学报,1975,11(2):33-43
    [51]刘赛业,陈跃Fe-B-C耐磨合金的研究进展及展望.铸造技术,2007,28(11):1526-1529
    [52]Periklis Christodoulou, Nicholas Calos. A step towards designing Fe-Cr-B-C cast alloys. Materials Science and Engineering.2001,A301:103-117
    [53]Changlin Yang, Feng Liu. Non-equilibrium transformation in hypercooled Fe83B17 alloy. Materials Science and Engineering.2007,A458:1-6
    [54]Acosta P, Jimenez J A. Microstructural characterization of an ultrahigh carbon and boron tool steel processed by different routes. Materials Science and Engineering. 1996,A206:194-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700