用户名: 密码: 验证码:
高硼铁基系列铸造耐磨合金研制及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的耐磨材料都是以合金碳化物为抗磨骨架,本论文创新性地提出以硬度更高、稳定性更高的硼化物和硼碳化合物为抗磨骨架,以高强韧性马氏体为基体的高硼铁基系列铸造耐磨合金。高硼铁基系列铸造耐磨合金以我国富有的硼、铬、钛为主要合金元素,不含有镍、钼、钨、钒等合金元素,具有低成本、高硬度、良好耐磨性和强韧性,同时,铸态硬度低,成型工艺性好,容易切削加工,克服了高铬铸铁和高锰钢铸态难以加工的问题,适用制造尺寸精度要求高的耐磨零件。因此,高硼铁基系列耐磨合金是一种新型的耐磨材料,可以部分替代高铬铸铁和高锰钢材料。本学位论文依托于国家863计划项目,在以下方面进行了实验研究。
     在论文中,将高硼铁基系列耐磨合金分为低碳低硼系列(0.2~0.4%C、1.0%B左右)、中碳硼变化系列(0.3~0.45%C固定, 0.5~3.0%B)和高碳高硼系列(0.5~1.0%C, 2%B左右)三个系列,对其合金的熔炼方法、合金的净化精炼工艺、铸造凝固过程和组织、热处理工艺和热处理后的组织和性能、合金在二体磨损和三体动载磨损条件下的耐磨性能及工业应用进行了较为全面的研究。
     本研究采用铝、钛脱氧和定氮、冲入法稀土变质处理的熔炼工艺,并开发了钢包底部安装透气塞吹入氩气工艺,通过陶瓷透气塞向钢液中吹入氩气净化钢液。吹氩净化后钢液中的夹杂物明显减少,有利于改善高硼铸钢的强韧性能。
     借助于光学显微镜、扫描电镜SEM、透射电镜TEM、X衍射和Leica图像分析仪等手段,研究了高硼铁基系列耐磨合金的铸态组织、热处理后的组织及合金元素对组织和性能的影响。结果表明:①低碳低硼系列合金的铸态组织主要由两部分组成:珠光体和铁素体基体+鱼骨状的共晶硼化物和晶界分布的硼碳化合物。中碳、硼变系列合金铸态组织受含硼量影响很大,随着含硼量的增加,共晶硼化物和二次硼碳化合物的体积分数明显增加。当硼含量超过2%时,铸态组织中会出现(γ+Fe2B+ Fe3(B,C))三元包晶组织,而硼含量对基体组织没有影响;高碳高硼系列的合金铸态组织除了有大量的共晶组织外,还会出现(γ+Fe2B+ Fe3(B,C))三元包晶组织,随着含碳量增加,三元包晶组织有所增加。②在950~1100℃奥氏体化淬火+200℃回火后,合金的鱼骨状共晶硼化物和菊花状的包晶组织变化不大,部分网状二次硼碳化合物有断网现象,基体组织全部转变为马氏体组织。低碳低硼系列合金的基体主要由宽度约0.1~0.2μm的板条马氏体组成,当奥氏体化温度超过1050℃时,合金基体中会出现部分针状马氏体;中碳和高碳高硼系列合金的基体主要由混合马氏体组成。③含碳量和含硼量对高硼铁基合金中硼化物和硼碳化合物体积分数的影响为:在硼量一定的情况下,碳含量的增加使硼碳化合物的体积分数增加,根据实验数据,含碳量每增加0.1%,硼碳化合物的体积分数增加1%左右,说明碳量的变化对硼碳化合物的体积分数的影响比较小;在含碳量一定情况下,硼含量对硼碳化合物的体积分数有十分明显的影响,呈y = 7.078e0.822x指数曲线变化,其中y-硼碳化合物,x-含硼量。④X射线物相分析结果表明:当高硼铁基合金奥氏体化温度超过1000℃时,合金内部的二次Fe23(C,B)6相消失,有利于消除“硼脆”现象,提高合金的韧性。
     借助于洛氏硬度试验、一次摆锤冲击试验、断裂韧性试验、ML-10销盘式和MLD-10冲击磨损试验,三个系列合金热处理后的力学性能及耐磨性试验结果为:①低碳低硼系列合金的硬度低、冲击韧性和断裂韧性较高;中碳硼变化系列合金含硼量的变化对其热处理后的宏观硬度、冲击韧性和断裂韧性有明显的影响;高碳高硼系列合金随着含碳量的增加,合金的硬度明显增加,而碳量变化对合金的冲击韧性的影响较小,高碳高硼系列的冲击韧性在7.5~10 J/cm2范围。②在二体磨粒磨损的条件下,无论低载荷还是高载荷,低碳低硼系列合金的磨损性能相对于高铬铸铁要低;中碳硼变化系列合金当硼含量小于1.5%时,高硼铁基合金的耐磨性与高铬铸铁相当,当硼含量超过1.5%时,高硼铁基合金的耐磨性明显大于高铬铸铁,含硼量越高,高硼铁基合金的耐磨性越高;高碳高硼系列合金的耐磨性都明显的优于高铬铸铁,耐磨性最好的合金接近于高铬铸铁的3倍。③在三体动载磨粒磨损的条件下,低碳低硼系列合金的三体磨粒磨损的耐磨性比高铬铸铁稍好;中碳硼变化系列合金硼含量低于2.0%的高硼铁基合金的耐磨性优于高铬铸铁,而硼含量大于2.0%的高硼铁基合金的耐磨性比高铬铸铁差;高碳高硼系列合金的三体磨粒磨损的耐磨性明显低于高铬铸铁,且随着含碳量的增加,耐磨性下降。
     低碳高硼铁基合金在磨球机磨球上的工业应用效果表明:低碳高硼铁基合金磨球比高铬铸铁磨球的耐磨性稍好,但低碳高硼铁基合金中合金元素加入量少,不含有镍、钼、钴等合金元素,生产成本比高铬铸铁降低30%以上,具有很好的经济效益。高碳高硼铁基合金在泥浆泵上的应用效果正在实际试验过程。
Traditional wear resistant material is based on carbide as strong support of matrix. The dissertation innovatively presents high boron iron-based wear-resistant alloy which matrix is martensite. The material is based on boride and boron carbide compound which have high hardness and high stability as strong support of matrix. High boron iron-based wear-resistant cast alloy has no noble elements such as nickel, molybdenum ,wolframium, wanadium. The main alloy element of the material are boron, titanium and chromium, its has not only low cost , high hardness, good wear resistance and good strength and toughness used as but also low as-cast hardness good processe and excellent machining properties. So, high boron iron-based wear-resistant alloy (HBIA) is a kind of new wear-resistant material and its can substitute for high-chromium cast-iron and high-manganese steel material. The dissertation has been supposted by the high-tech planing project(863) of Chinses government.
     The high boron wear resistant alloy include low carbon-low boron alloy(0.2~0.4%C、1.0%B), medium carbon- alterable boron alloy(0.3 - 0.45%,0.5~3.0%B) and high carbon-high boron alloy(0.3-0.45%,0.5~3.0%B). The methods of alloy melting process , solidification process for casting, heat treatment process, the structures and properties after heat-treatment, wear-resistance and industry application of two-body abrasion and three-body wear have been investigated on the system.
     Our principal research methods are aluminium-titanium deoxidizing technology kjeldahl,pour-over melting process. It also develope ladle bottom-blowing argon process. The inclusion in steel decreased significantly and Improve strength and toughness and life time of high boron cast steel, after the blowing argon process.
     The influence on microstructure, mechanical properties of the as-cast, heat treatment structures and alloying agent on wear resistant of high-boron casting steel have been investigated by means of optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscope(TEM), X-ray diffraction(XRD) and Leica image analyzer. The results show that:①the as-cast of low carbon-low boron alloy consists of the pearlite and ferrite matrix and fishbone eutectic boride and carbon-boride distributing along grain boundary. The as-cast structure of medium carbon- alterable boron alloy is greatly affected by the boron content and interdendritic eutectic boride and two boron carbide compound volume fraction increase obviously with increaseing boron content. When the boron content is more than 2% ,(γ+Fe2B+ Fe3(B,C) peritectic structure appears in the as-cast structure, but the boron content had no effect on matrix. The as-cast of high carbon-high boron alloy appeared(γ+Fe2B+ Fe3(B,C))peritectic structure besides a large amount of eutectic structure and peritectic structure increases with increasing carbon content.②There has a little change fishbone eutectic boride and chrysanthemum-shaped peritectic structure of alloy after quenched at 950~1100℃and tempered at 200℃.some two boron carbide compound show fracture phenomenon and all matrix structure transformed into martensitic structure. Matrix of low carbon-low boron alloy mainly consists of lath martensite which width is about 0.1~0.2μm and matrix of medium carbon and high carbon-high boron alloy is mainly composed of multi-martensite.③Influence of carbon content and boron content on boride and boron carbide compound of high boron iron-based alloy is: under the certain boron content , boron carbide compound volume fraction increases with increasing carbon content and boron carbide compound volume fraction increases about 1% when carbon content increase 0.1% every time in terms of experimental data. So ,changes in carbon content has less effect on boron carbide compound volume fraction .Under the certain carbon content ,boron content showed the strong effect of boron carbide compound volume fraction and shows a rule of exponential curve y= 7.078e0.822x;④When the quenching temperature of the high boron wear-resistant alloy is over 1000℃, the fracture toughness of it can be improved by the disappear of grain boundary Fe23(C,B)6.
     By means of rockwell hardness test, pendulum impact test ,fracture toughness test, ML-100 model pin-disk and MLD-10 impact abrasion test, the result of mechanics property and wear-ability of three types alloy after heat-treatment is:①L ow carbon-low boron alloy has low hardness, high impact toughness and high fracture toughness. Changes in boron contents during medium carbon alterable boron alloy has an obvious effect on macro-hardness after heat-treatment, impact toughness and fracture toughness. The hardness of high carbon-high boron alloy obviously increased with increasing of carbon content but changes in carbon content has less effect on impact toughness. the impact toughness (ak.) was 7.5—10 J/cm2.②U nder two-body abrasion ,wear characteristics of low carbon-low boron alloy is lower than high chromium casting iron regardless of low load or high load. When boron content of medium carbon-alterable boron alloy is less than 1.5%,wear resistance of high boron iron-based alloy is equal to that of high chromium casting. When boron content of alloy is more than 1.5%, wear resistance of high boron iron-based alloy is significantly higher than that of high chromium casting. The higher the boron content ,the higher wear resistance of high boron iron-based alloy. Wear resistance of high carbon-high boron alloy is better than that of high chromium cast and wear resistance of the best alloy is close to that of high chromium cast three times.③U nder two body abrasion, wear resistance of high carbon-high boron alloy is a little better than that of high chromium cast. When boron content of medium carbon-alterable boron alloy is less than 1.5%, wear resistance of high boron iron-based alloy is better than that of high chromium cast. When boron content is more than 2.0%, wear resistance of high boron iron-based alloy is worse than that of high chromium cast and wear resistance is almost decreased with increasing carbon content.
     The application of iron-based alloy on ball crusher grinding ball indicates that grinding ball of Low carbon-high boron iron-based alloy has no noble elements such as nickel, molybdenum ,cobalt. Comparing with high chromium cast, production costs is reduced by more than 30%.Using grinding ball of high boron iron-based alloy can reduce the material, reduce frequency of shutdown and grinding ball times, increas productivity of ball crusher and have very good economic benefits. The application effect of high boron iron-based alloy on mud pump is being tested in the laboratory.
引文
[1]郝石坚.高铬耐磨铸铁[M].煤炭工业出版社. 1992.12
    [2] T.S.Eyre. Wear Characteristics of Metals[J]. Tribology Int. 1976,9(5): 203-212
    [3]桑可正.材料的摩擦与磨损[M].陕西人民出版社. 2003.06
    [4]邵荷生.摩擦与磨损[M].北京:煤炭工业出版社. 1985.6
    [5]温诗铸,黄平著《摩擦学原理》[M].清华大学出版社.2002.11
    [6]戴雄杰等编《摩擦学基础》[M].上海:上海科技出版社.1984.1
    [7]孙家枢编著《金属的磨损》[M].北京:冶金工业出版社.1992.6
    [8]张长军.现代高锰钢[M].陕西科学技术出版社. 1998.8
    [9]赵四勇等.关于高锰钢的若干问题[J].铸造技术,1999(4):34-36
    [10]赵四勇等.冲击磨损条件下残余奥氏体的作用[J].铸造技术,2000(3):42-45
    [11]杜健,汪永江.奥氏体锰钢耐磨性的几点评述[J].现代机械,2004(4):96-98
    [12]何奖爱,王闯等.水韧处理对含硼高锰钢组织和性能的影响[J].铸造,2005(12):1210-1212
    [13]叶岳松,王瑞金.一种提高高锰钢性能的新措施[J].新技术新工艺,2006(5):54-56
    [14]陈祥,李言祥等.等温淬火高硅钢的韧性[J].金属学报2005,41(10): 1061-1065
    [15]贾树盛,周宏等.高铬铸铁在磨粒磨损工况的磨屑形貌分析[J].金属科学与工艺,1990,9(4): 60-65
    [16]张茂勋,大城桂作.铬系白口铸铁二体磨粒磨损的试验研究[J].福州大学学报(科学自然版)1991,19(1):83-90
    [17]马幼平,李泽宇等.复合变质对过共晶高铬铸铁凝固组织的影响[J].兵器材料科学与工程,2007,30(6):35-37
    [18]张羊换,王贵.稀土对高铬白口铸铁组织转变的影响[J].材料热处理学报,2000,20(3):54-59
    [19] JF Archard. Contact and rubbing offlat surfaces[J]. J. Appl. Phys, 1953, 24:981-988
    [20] Nam P. Suh. The delamination theory of wear[J]. Wear ,1973,25(1):111-124
    [21] R.C.D Richardson. The Wear of Metals by Relatively Soft Abrasives[J]. Wear,1968, 31(4):245-275
    [22] R.C.D Richardson. The Wear of Metals by Hard Abrasives[J]. Wear Usuer Verschleiss,1967,17(7):291-309
    [23] Larsen-Basse J, Premaratne B. Effect of Relative Hardness on Transitions in Abrasive Wear Mechanisms [J]. Wear of Materials, 1983, 11:161-166.
    [24] Swanson P A, Klann R W. Abrasive wear studies using the wet sand and dry sand rubber wheel tests[C]. Protection of International Conference on Wear of Materials (ASME), San Francisco, Ca. 1981:379-389.
    [25] Swanson P A, Vetter A F. The measurement of particles shape and its effect on wear [J].ASLE Trans., 1985, 28(2): 225-230.
    [26] Huard G, Masounava J, Fiset Metal. The effects of size and shape of abrasive particles on the measurement of wear rate using a dry sand rubber wheel test[C]. Protection of International Conference on Wear of Materials (ASME),Houston Texas, 1987: 689-699.
    [27]本溪钢铁公司第一炼钢厂.硼钢[M].北京:冶金工业出版社,1977.1
    [28]许斌,宋月鹏,冯承明.降低渗硼层本质脆性对其磨粒磨损特性的影响[J].中国机械工程,2001,12(10):1194-1197
    [29] Lorinczi J, Kralik G, Kovacs M and Horvath A. Investigation of the relationships between material properties and processing parameters of boron micro-alloyed quenched and tempered steels[J]. Materials Science Forum, 2003, Vol.414-415, 267-274.
    [30] Bernasovsky P. Weldability aspects of austenitic stainless steel with high boron content[J]. Metal Science and Heat Treatment (English translation), 1994, 43(6): 145-149.
    [31]葛长路,叶荣昌,刘兆勇. Fe-C-B堆焊合金的组织及性能的研究[J].焊接技术, 1997(5):2-3.
    [32]胡金锁,郝敬敏,万华等.激光处理共晶型硼化物显微组织与相变过程分析[J].应用激光,2002,22(5):461-464
    [33] Goldshtein Ya E and Mizin V G. Some peculiarities of the structure of high boron steels[J] Metal Science and Heat Treatment, 1989, 30(7): 479-484
    [34] Egorov M D, Sapozhnikov Yu L and Shakhnazarov Yu V. Effect of carbon content on the structure,hardness, and thermal stability of boron-chromium cast steels.[J] Metal Science and Heat Treatment, 1989, 30(5): 387-391
    [35] Baarman M H. Effect of boron additions on continuous cast low-carbon steel wire[J]. Scandinavian Journal of Metallurgy, 1998, 27(4):148-158.
    [36] Kocsis B M. Boron hardenability effect in case-hardening ZF-steels [J]. Materials Science Forum, 1994, 163-166(1):99-106
    [37] Wang X M and He X L. Effect of boron addition on structure and properties of low carbon bainitic steels[J]. ISIJ International, 2002,42(Suppl.):S38-S46.
    [38] Horiuchi T, Igarash M and Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W[J]. ISIJ International, 2002, 42(Suppl.): S67-S71.
    [39]王琦环,郭长庆, Kelly P. M.Fe-Cr-B合金的显微组织[J].金属热处理, 2004, 29(5):30-32.
    [40] Llewellyn D T. Boron in steels[J]. Ironmaking and Steelmaking, 1993,20(5): 338-343
    [41]秦紫瑞,朱雪梅,徐久军. RE-B对低合金白口铸铁的变质效果研究[J].中国铸造装备与技术, 1998,(1):14-17.
    [42]彭晓春,晁建兵,徐仁健.加硼高铬铸铁[J].现代机械,2004(1):72-74.
    [43]潘学荣等,屏蔽用高硼钢和高硼铸铁研制[R].中国核科学报道,1997/00
    [44] Ma N, Rao Q and Zhou Q. Effect of boron on structures and properties of 28% Cr white cast iron[A]. AFS Transactions, 1990, Vol.98, 775-780.
    [45] Zawisky M, Basturk M, Rehacek J and Hradil Z. Neutron tomographic investigations of boron alloyed steels[J]. Journal of Nuclear Materials, 2004, 327(2-3):188-193.
    [46] Liu C S, Chen S Y, Wang Z T, Yu B and Cai Q K. Microstructure and properties of high boron bearing steel[J]. Acta Metallurgica Sinica (English Letters), 2002, 15(2):248-252.
    [47] Aso S, Hachisuka M and Goto S. Phase transformation of iron matrix of Fe-15 mass% Cr-C-B alloys[J] Journal of the Japan Institute of Metals, 1998, 61(7):567-573.
    [48] Nevar N F and Belskii E I. High-boron alloy steel for casting[P]. SU 1,581,771, 30 Jul 1990.
    [49] Lakeland K D, Graham E and Heron A. Mechanical properties and mircostructures of a series of Fe-Cr-B alloys[R]. The University of Oueensland: Brisbane, Australia, 1992, 1-13.
    [50] Christodoulou P and Calos N. A step towards designing Fe–Cr–B–C cast alloys[J]. Materials Science and Engineering A, 2001, A301(2):103-117.
    [51] Calos N J, Graham E, Cousens D R, Christodoulou P, Kennard C H L, Bekessy L K and Parker S F. Mode of boron solubility in ferrous alloys[J]. Materials Transactions, 2001,42(3):496-501.
    [52] Guo Changqing and Kelly P M. Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons[J]. Journal of Materials Science, 2004, 39(3):1109-1111.
    [53] Guo Changqing and Kelly P M. Boron solubility in Fe-Cr-B cast irons[J]. Materials Science and Engineering A, 2003, 352A(1-2):40-45.
    [54]郭长庆,高守忠.新型铁基耐磨材料FCB合金[J].铸造,2004,53(10):761-764
    [55]王琦环,郭长庆. Fe-Cr-B合金的显微组织[J].金属热处理,2004,299(5):30-32
    [56] Guo Changqing and Kelly P M. The non-equilibrium segregation of boron in matrix grains in Fe-Cr-B alloys [J].包头钢铁学院学报,2004,23(2)134-140
    [57]胡金锁等.激光处理共晶型硼化物显微组织与相变过程分析[J].应用激光,2002,22(5):461-464
    [58]汤光平,黄文荣,周文凤等.渗硼层脆性及其控制措施[J].材料保护2003. 03:5-8
    [59]赵振波.硼基材料在表面工程上的应用[J].材料工程,1998,9:35-38
    [60]杜晓东,丁厚福等. CrB价电子结构对其性能的影响[J].中国有色金属学报2005,12:1980-1985
    [61]陈岁元,刘常升等.高硼钢中B与Fe作用的超精细结构研究[J].物理学报2002, (8)51:1711-1175
    [62] J.Abenojar,F.Velasco,M.A.Martinez.Influence of carbon and aluminium additions onthe Fe-10%B(Wt.) system[J]. Journal of Materials Processing Technology,2003,143:28-33
    [63]王笑天.金属材料学[M].北京:机械工业出版社,1987.5
    [64]王皓,闵新民等.二硼化钛电子结构的量子化学计算[J].中国有色金属学报,2002,12(6):1229-1233
    [65]王宝龙,赵俊国,王文武等. TiB2材料的特性及其在铝工业中的应用[J].轻金属2004.5:23-25
    [66] Herring, D.H. Boron in steel Industrial Heating [J]. 2007,74(5) : 20-25
    [67] Ardeshir Golpayegani; Andren, H.-O.Mechanism for beneficial effect of boron addition on creep resistance of 9-12% chromium steels[J]. Proceedings of an International Conference on Solid Solid Phase Transformations in Organic Materials 2005 Phoenix, AZ, USA, 29 May-3 June 2005
    [68] Golpayegani, A.,Andren, H.-O.Composition of precipitates in high boron chromium steel[J] . 2006 19th International Vacuum Nanoelectronics Conference and 50th International Field Emission Symposium Guilin, China, 17-20 July 2006
    [69]符寒光,胡开华.高硼铸造耐磨合金研究的进展[J].现代铸铁,2005,3:32-36
    [70]沈剑锋.浅谈提高中频感应电炉坩埚寿命的方法[J].中国铸造装备与技术2001.2:41-42
    [71]肖黎明,张励忠,张密兰等. B级钢中频感应熔炼用镁砂坩埚的失效与防护[J].铸造技术2006.03:201-204
    [72]张仲秋,纪忠民,李中朝等.纯净铸钢及其精炼[J].铸造,1998,(1):49-52
    [73]宋绪丁,蒋志强等.高硼钢的制备与应用[J].铸造技术,2006,27(8):805-808
    [74]陈家祥.钢铁冶金学[M].北京:冶金工业出版社,1989
    [75]李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982
    [76]王斌,张凤武等.光电光谱法测定钢中酸溶硼[J].光谱实验室,2006,23(1):99-100
    [77]李西忠,张桂华等.原子吸收石墨炉光谱法分析钢中硼[J].山东冶金,2001,23(1):56-59
    [78]魏吉祥,李文卿等.高氮18CrMnB钢中硼分布的径迹照相法研究[J].钢铁1992,27(12):52-56
    [79]编委会.《钢铁及合金分析手册》第八章[M].冶金科学技术出版社,2006.10
    [80]尹立新,郭雁行等.图像分析仪在金相检验中的应用[J],物理测试,2004,4:38-42
    [81]李新.图象分析在金相检验中的应用[J],冶金标准化与质量,2004,42(5):6-8
    [82]阮中葱.图像分析仪定量分析中测量参数的选择[J],材料工程,1995,6:38-40
    [83]邹贵生主编.材料加工系列实验[M].北京:清华大学出版社,2005.3
    [84]潘金生,田民波.材料科学基础[M].北京:清华大学出版社,1998.6
    [85] GB2038—80,金属材料断裂韧度KIC试验方法[S],中华人民共和国标准1980.
    [86]宋学孟.金属物理性能分析[M],第2版,北京;机械工业出版社,1990
    [87]马冰、李德荣等.二元铝铁合金凝固过程的差热分析研究[J],铸造,1999,3:5-8
    [88]黄兆铭.制订“热重—差热分析仪”行业标准的情况介绍[J],北光通讯,1994,3:24-28
    [89]周婷嫣,周尚祥等.铸造热分析的新发展[J],铸造技术,2003,24(6):482-484
    [90]张明奇,热分析技术在金属材料研究中的应用[J]材料开发与应用,1994,9(6)36-40
    [91]龚磊清.现代热分析技术在ZL 104合金铸件质量控制方面的应用[J],特种铸造及其有色金属,1996,1:16-19
    [92]崔东涣.热分析技术在铸造材料分析中的应用[J],铸造1989,9:1-4
    [93]张红梅,刘相华等.低碳贝氏体钢形变奥氏体的连续冷却转变研究[J],材料热处理学报,2000,21(4):35-39
    [94]胡赓祥、钱苗根.金属学[M],上海:上海科学技术出版社,1980:371
    [95]刘云旭.金属热处理原理[M],北京:机械工业出版社,1981:179
    [96]万小军.硼向晶界扩散机理的研究[J],长沙电力学院学报(自然科学版),2006,21(2):86-89
    [97]杨建筑、刘静斌等.60Si2MnA钢板弹簧用硝盐水溶液作淬火介质的研究[J],弹簧工程,1989,4:38-40
    [98]宋绪丁,符寒光,杨军.热处理对耐磨铸造Fe-C-B合金组织及性能的影响[J],材料热处理学报,2008,29(1):38-41
    [99] K.H.Zum Gahr, William G.Scolz. Modelling of two-body abrasive wear[J],Wear, vol124(1),1988 :87-103
    [100] Richardson R C D. Maximum hardness of strained surfaces and abrasive wear of metals and alloys[J]. Wear-Usure-Verschleiss, 1967, 10(5): 353-382.
    [101] Richardson R C D. Wear of metals by relatively soft abrasives[J]. Wear, 1968, 11(4): 245-275.
    [102] Liu Y J, Chen N P, Zhang Z R and Yang C O. Wear behavior of two parts subjected to gouging abrasion[A]. Wear of Materials: International Conference on Wear of Materials, Vancouvor, DE, ASME, N.Y., 1985, 410-415.
    [103] Tong J M, Zhou Y Z, Shen T Y and Deng H J.The Influence of retained austenite in high chromium cast iron on impact-abrasive wear[J]. Wear, 1990, 135(2): 217-226.
    [104] Qian Ma and Chaochang Wang. Impact-abrasion behavior of low alloy white cast irons[J]. Wear, 1997, 209(1-2): 308-315.
    [105] B.R.Lawn, M.V.Swain. Micro-fracture beneath point indentations in brittle solids[J]. Journal of Materials Science, 1975, 10(1): 113-122
    [106]甘宅平.高铬铸铁断裂韧性的影响因素[J],制造技术,2002,23(2):118-120
    [107]吕泉,黄沙.中强钢断裂韧性和冲击功关系的研究[J],贵州教育学院学报(自然科学),2007,18(4):13-15
    [108] R.W.Derman.Fractography of High Chromium Alloys[J], Foundryman vol74(3),, 1981:45-55,
    [109] Richardson R C D. Wear of metals by relatively soft abrasives[J]. Wear, 1968, 11(4): 245-275.
    [110]黄黎明.高硼铸造铁基合金的组织及耐磨性能研究[D]西安:西安交通大学,2006
    [111]刘常升等.高硼钢的组织与性能[J].东北大学学报(自然科学版), 2004, 25(3):247-249
    [112]刘峰璧.磨损动态过程理论及实验研究[D].西安:西安交通大学,1994
    [113] Lakeland K.D, Powell L.F, and Nylen T. Rolls for metal shaping[P]. EP0646052, 15 Jun 1993
    [114] Christodoulou P and Lakeland K.D. Iron–chromium-boron alloy for glass manufacturing tools[P]. EP0763142, 29 May 1995
    [115] Shchepochkina YU A. Iron based high boron cast alloy used for components subject to wear and friction[P]. RU2068020-C1, 10 Aug 1992
    [116]张振宇,梁补女等.铁镍稀土合金在泥浆泵缸套上的应用[J].兰州工业高等专科学校学报,2005,12(1):2-5
    [117]曾新民.耐磨材料在金属选矿中的应用[J].选矿机械,1990(1):57-59.
    [118]何俊.近年耐磨材料的发展[J].国外金属矿选矿,1996 (4):21-24.
    [119]李茂林.易损件磨损失效分析与耐磨材料的选择[J].水泥科技,2002(2):35-38.
    [120]周平安.磨损失效分析及耐磨材料的现状和展望[J].水利电力机械1999(10)1:3-5.
    [121]苏义祥,门志慧,王维东.稀土对高Ni-Cr合金组织的影响[J].铸造, 2003, 52(7): 519-520
    [122]苏义祥,门志慧.钒对碳钢组织及耐磨性能的影响[J].机械工程材料,2005,29(2):42-44
    [123]赵爱民,毛卫民等.硼对耐磨球墨铸铁组织和力学性能的硬性[J].钢铁研究学报, 2001, (13): 1-4.
    [124]周庆德.铬系抗磨铸铁[M].西安:西安交通大学出版社, 1987. 167-211
    [125]张立波,陈迪林.铸造抗磨材料的发展概况和趋势[J].现代铸铁,1999(3):12-15.
    [126]向道平.多种抗磨材料抗磨性能综合评价研究[D].四川大学,2004,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700