用户名: 密码: 验证码:
鄂西鲕状赤铁矿还原焙烧—磁选工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国鄂西鲕状赤铁矿难以利用的特点,首先对其开展了工艺矿物学的研究,着重研究了矿石中赤铁矿、褐铁矿及主要脉石矿物的矿石性质。采用还原焙烧-磁选工艺选别粗碎原矿,粒度为-3mm。在还原温度800℃,还原时间45min,还原剂配比为8%,磁选场强为0.14T的条件下,得到铁精矿品位57.28%、铁回收率为85.79%、铁精矿磷含量为0.69%的选矿指标。
     在试验过程中发现-3mm粒级原矿中的细颗粒铁矿物经焙烧能够长大,因而本文对焙烧过程中赤铁矿转变成磁铁矿的晶粒长大现象进行了系统研究。将粗粒原矿细磨(-0.074mm占92.03%)后再进行焙烧,探讨出最佳焙烧磁选条件为:焙烧温度800℃,焙烧时间60min,还原剂配比8%,粗选场强0.14T,精选场强0.08T,得到精矿品位57.32%,综合铁回收率为82.60%,铁精矿磷含量0.43%。将细磨矿以及该最佳焙烧条件下得到的焙烧产物略微研磨后分别制作光片,做显微镜矿相分析,经镜下铁矿物粒度统计,发现在大粒度级别(如-105~+37μm),还原焙烧后的铁矿物在该粒级的“个数累积产率”为12.46%,而焙烧前仅有6.12%。证明赤铁矿还原焙烧变成磁铁矿的化学反应伴随着磁铁矿颗粒的长大。通过电子探针的Fe元素面扫描图像也可以证实,磁铁矿颗粒已经显著长大。
     以铁红粉末作为赤铁矿的纯矿物进行还原焙烧试验,原本极细的铁红粉末(-0.500mm)在750℃、还原剂配比10%下焙烧45min,焙烧产物经XRD分析已经完全还原为Fe304,做粒度筛析得到+0.074mm占57.00%,显微镜矿相分析也得出Fe3O4颗粒明显长大的结论。
     本文在鲕状赤铁矿还原焙烧-磁选试验过程中,探讨了常用的选矿流程,着重研究了铁矿物的相变化,并首先提出和论证了赤铁矿磁化焙烧过程中磁铁矿颗粒的长大现象。粗粒矿石的直接磁化焙烧,受鲕状环带结构制约,反应难以充分进行,铁矿物的迁移也受到限制,因此铁矿物的嵌布特性并无明显变化;若细磨后再焙烧,则铁矿物颗粒会明显的聚集长大。赤铁矿经还原焙烧转化为磁铁矿,其晶粒长大的机理有两点解释:一是六方晶系的赤铁矿转变成立方晶系的磁铁矿,晶格变化会导致晶粒膨胀约11%;二是晶粒“二次长大”:为降低体系表面能,小的磁铁矿颗粒不断合并成大的磁铁矿颗粒。
Oolitic hematite is a typical refractory iron ore resource in western Hubei province of China. This paper carried out its mineralogy studies, especially focused on the disseminated form of hematite, limonite and the main gangue minerals. Then chose the flow of magnetic roasting-magnetic separation to process this coarse grained ores. Proper conditions were as fallows, roasting temperature of800℃, roasting time of45min, reductant to ore ratio of8%, magnetic field strength0.14T. The iron concentrate grade was57.28%, and iron recovery rate was85.79%, with P content of0.69%.
     In the magnetic roasting process of raw ores, it was been found that fine grain of iron minerals might grow up. In order to study this phenomena, ground the coarse raw ores to-0.074mm for92.03%, and then began roasting. The results showed that, under the condition of roasting at800℃for60min, reductant to ore ratio of8%, rough magnetic field strength0.14T, concentration magnetic field strength0.08T, the final concentrate grade was57.32%for iron grade,82.60%for iron recovery rate and0.43%of P content. Put the ground ores and the roasted ores to produce polished-section, and made microscope mineral analysis. By ccounting the size of iron ores, it was found that, in large particle levels, such as+37μm, the iron ores' cumulative productivity of the roasted ores was12.46%, while the ground ores's was6.12%. Thus, the magnetite particles will grow when hematite is reduction roasted to magnetite. The Fe-element area scanned images of EPMA also support this opinion.
     Took red iron oxide powder as pure hematite to reduction roast under the condition of roasting temperature750℃for45min, reductant ratio of10%. With XRD analysis, it was confirmed that the product had been completely reduced to Fe3O4. By screening the product, got about+0.074mm account for57.00%. The microscope mineralogical analysis also confirmed the Fe3O4particles grew significantly.
     This paper, on thee basis of reduction roasting-magnetic separation, studied the phase-trasiton of iron ores, and innovatively put forward and proved the magnetite's grain-growth in the process of hematite's reduction roasting. For the-3mm raw iron ore's reduction roasting, magnetite grain's growth is not so obvious, as the completed oolitic structure stops its growth. Besides, oolitic band structure also prevents the reduction reaction from fully reaction. By pre-grinding to destroy the oolitic structure, the iron minerals and reducing gas can fully touch and react, Thus, the magnetite grain's growth is more obvious in this condition. Concerning the reaction of reduction roasting from hematite to magnetite, the mechanism of magnetite grain's growth can be explained as follow: First, the lattice changes will lead to grain expansion of about11%from the hexagonal system of hematite to the cubic system of magnetite; Second, secondary grain growth (secondary recrystallization), which means, after primary recrystallization, in order to reduce the system surface energy, small magnetite particles continue to combine nearby small magnetite particles.
引文
[1]童雄,黎应书,周庆华等.难选鲕状赤铁矿石的选矿新技术试验研究[J].中国工程科学,2005(7):321.
    [2]任觉世.工业矿产资源开发利用手册[M].武汉:武汉工业大学出版社,1993:28-59.
    [3]许时.矿石可选性研究[M].北京:冶金工业出版社,1985:34-42.
    [4]施维.大冶铁矿尾矿库Fe、Cu、S资源综合回收选矿工艺研究[D].武汉:武汉理工大学,2010.
    [5]张洪愚.红铁矿选矿[M].冶金工业出版社,1983:21-87.
    [6]William A Preston. Exploitation of Iron Ore in WesternAustralia. ASIA,1999, (40):12-15.
    [7]Chauhan S B S. Status of Indian Ores and Mines for Steel Industry. Iron&Steel Review, 2000, (4):9-11.
    [8]邱俊,吕宪俊,陈平,等.铁矿选矿技术[M].北京:化学工业出版社,2008.
    [9]王运敏,田嘉印,王化军,等.中国黑色金属矿选矿实践[M].北京:科学出版社,2008.
    [10]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):13-18.
    [11]叶卉,孙锡丽.进口铁矿石现状分析及策略研究[J].金属矿山,2008(9):7-10.
    [12]余永富.我国铁矿山发展动向、选矿技术发展现状及存在的问题[J].矿冶工程,2006,(1):21-25.
    [13]徐叶兵,邓军.我国铁矿资源保障对策探讨[J].国土资源情报,2006,(6):37-40.
    [14]赵海燕.我国铁矿资源节约利用剖析[J].矿产保护与利用,2007,(3):6-9.
    [15]王兢.鲕状赤铁矿浮选试验初步研究[J].矿冶工程,2004,24(3):38-41.
    [16]毛益平,黄礼富,赵福刚.我国铁矿山选矿技术成就与发展展望[J].金属矿山,2005(2):1-5.
    [17]余永富,张汉泉.我国钢铁发展对铁矿石选矿科技发展的影响[J].武汉理工大学学报,2007,29(1):1-7
    [18]赵一鸣,毕承思.宁乡式沉积铁矿床的时空分布和演化[J].矿床地质,2000,4(19):350-362.
    [19]彭会清,王代军.高效环保节约和谐开发鄂两高磷铁矿综述[J].矿业快报,2007,3:7-9
    [20]Smter D, Highley D E. The iron ore deposits in the United Kingdom ofGreat Britain and Northern Ireland[M[. In: Z Zitzmann(Ed.), The iron Ore deposits ofEurope and adjacent areas, Section B: Applied EarthSciences,1977,1:393-409.
    [21]Wopfner H, Schwarzbach M. Ore deposits in the light of palaeoclimatology [M[. In: Wolf,K H Ed. Handbook of Strata-bound and stratifonil ore deposits. Elasevier Scientific Publishing,1976,361(3):43-92.
    [22]祁超英.高磷鲕状赤铁矿分选性能及方法研究[D].武汉:武汉理工大学,2011.
    [23]李桂玲,邹本利.“宁乡式”铁矿的选矿与利用研究[J].应用技术,2007,4:191-193.
    [24]姚敬劬,张华成.宁乡式铁矿工艺矿物学特征及选矿效果预期[J].资源环境与工程,2008,10:481-487.
    [25]周乐光.工艺矿物学[M].2版.北京:冶金工业出版社,2002.
    [26]韦东.鄂西高磷鲕状赤铁矿提铁降杂技术研究[J].现代矿业,2011,5(5):28-31.
    [27]刘万峰,王立刚,孙志健,等.难选含磷鲕状赤铁矿浮选工艺研究[J].矿冶,2010,19(1):13-18.
    [28]庞玉荣,郭秀平,李朝晖,等.某鲕状赤铁矿矿石反浮选试验研究[J].国外金属矿选矿,2008(7):22-25.
    [29]王秋林,陈雯,余永富,等.复杂难选高磷鲕状赤铁矿提铁降磷试验研究[J].矿产保护与利用,2011(3):10-13.
    [30]王旭艳.矿石分选新技术新工艺与选矿过程控制检测标准及工艺设备选择计算实用手册[M].西安:中国知识出版社,2005.
    [31]降林华,朱书全.阳离子高分子絮凝剂在细粒煤泥水中的应用[J].煤炭科学技术,2008,36(5):97-100.
    [32]纪守峰,李桂春.超细粉体团聚机理研究进展[J].中国矿业,2006(15):54-56.
    [33]于洋,牛福生,李凤久,等.微细粒鲕状赤铁矿颗粒分散特征研究[J].金属矿山,2009(1):62-65.
    [34]张芹,张一敏.湖北巴东鲕状赤铁矿选矿试验研究[J].金属矿石,2006(8):186-188.
    [35]Yongfu YU, Chaoying QI, Yahui ZHANG. Magnetizing Roasting Mechanism and Effective Ore Dressing Process for Oolitic Hematite Ore[J] Journal of Wuhan University of Technology (Materials Science Edition),2011(2):48-54.
    [36]牛福生,吴根,自丽梅,等.河北某地难选鲕状赤铁矿选矿试验研究[J].中国矿业,2008,17(3):57-60.
    [37]王成行,童雄,孙吉鹏.某鲕状赤铁矿磁化焙烧一磁选试验研究[J].金属矿山,2009(5):57-59.
    [38]龚文琪,李育彪,辛桢凯.鄂西某高磷鲕状赤铁矿磁化焙烧及浸出除磷试验[J].金属矿山,2010(5):64-67.
    [39]Youssef M. A., Morsi M. B, Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed, Canadian Metallurgical Quarterly,1998, 37(5):419-428.
    [40]宋海霞.悬浮态磁化焙烧菱铁矿的试验研究[D].西安建筑科技大学硕士论文,2007.
    [41]周波.难选鲕状赤铁矿焙烧-磁选和直接还原的研究[D].南宁:广西大学,2008.
    [42]HALDER S, FRUEHA RJ. Reduction of Iron-Oxide-Carbon Composites: Part Ⅱ. Metallurgical And Materials Transactions B,2008,39:796-808.
    [43]P.M.Guo, D.W.Zhang, P.Zhao. study On catalytic mechanism of reducing hematite by carbon at low temperature[J]. Iron Steel Vanadiμm Titaniμm,2006(27):1-6.
    [44]孙志勇.鄂西鲕状赤铁矿磁化焙烧-金属化焙烧工艺选矿试验研究[D].武汉:武汉科技大学,2010.
    [45]孙永升,韩跃新,包士雷,等.鲕状赤铁矿深度还原矿组成特性及磁选试验研究[J].现代矿业,2010(7):26-29.
    [46]姚敬劬,张华成.宁乡式铁矿工艺矿物学特征及选矿效果预期[J].资源环境与工程,2008(10):481-487.
    [47]Kawahara.Masayasu, Mitsuo.Toshiharu, Shirane.Yoshinori. Dilute sulphuric-acid leaehing of gamierite ore after magnetie-roasting the ore mixed with iron powder[J].Internation Journal of Mineral Processing,985(7):285-296.
    [48]Uwadiale,G.O. Magnetizing reduction of iron ores[J].Mineral Processing and Extractive Metallurgy Review,1992,11(1):1-19.
    [49]邱俊,吕宪俊,陈平,等.铁矿选矿技术[M].北京:化学工业出版社,2008.
    [50]陈斌.磁电选矿技术[M].北京:化学工业出版社,2008.
    [51]朱国才,李赋屏,肖明贵,等.采用硫酸铵焙烧方法从低品位碳酸锰矿中富集回收锰[J].桂林工学院学报,2005,25(4):534-537.
    [52]符芳铭,胡启阳,李新海,等.氯化铵-氯化焙烧红土镍矿工艺及其热力学计算[J].中南大学学报(自然科学版),2010,41(6):2096-2102.
    [53]张小云,覃文庆,田学,等.石煤微波空白焙烧-酸浸提钒工艺[J].中国有色金属学报,2011,21(4):908-912.
    [54]吕国志,张延安,鲍丽,等.高硫铝土矿的焙烧预处理及焙烧矿的溶出性能[J].中国有色金属学报,2009,19(9):1684-1689.
    [55]葛鹏,王化军,赵晶,等.加碱焙烧浸出法制备高纯石墨[J].新型炭材料,2010,25(1):22-28.
    [56]黄希祜.钢铁冶金原理[M].3版.北京:冶金工业出版社,2007.
    [57]祁超英,余永富,张亚辉.鄂西鲕状赤铁矿还原焙烧机理及分选有效途径探析[J].金属矿山,2010(10):57-60.
    [58]任亚峰.细粒红铁矿闪速磁化焙烧研究[D].武汉:武汉理工大学,2006.
    [59]Chao Li, Henghu Suna, Jing Baic, Longtu Li. Innovative methodology for comprehensive utilization of iron ore tailings Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials 174 (2010) 71-77.
    [60]王成果.材料分析测试方法[M].上海:上海交通大学出版社,2009.
    [61]黄新民,解挺.材料分析测试方法[M].北京:国防工业出版社,2006.
    [62]曾毅.扫描电镜和电子探针的基础及应用[M].上海:上海科学技术出版社,2009.
    [63]王德兹,谢磊.光性矿物学[M].北京:科学出版社,2008.
    [64]赵珊茸.结晶学及矿物学[M].北京:高等教育出版社,2004.
    [65]郭汉杰.冶金物理化学[M].北京:冶金工业出版社,2004:184-186.
    [66]余永宁.材料科学基础[M].北京:高等教育出版社,2005:746-755.
    [67]张联盟,黄学辉,宋晓岚.材料科学基础[M].北京:2008:517-524.
    [68]潘洪涛.溶胶-凝胶法制备ITO薄膜及其性质研究[D].呼和浩特:内蒙古师范大学,2008.
    [69]梅贤恭,袁明亮,左文亮,等.高铁赤泥煤基直接还原中铁晶粒成核及晶核长大动力学[J].中南工业大学学报,1996,27(2):159-163.
    [70]梅贤恭,袁明亮,左文亮,等.高铁赤泥煤基直接还原中铁晶粒成核及晶核长大特性[J].中南工业大学学报,1994,25(6):696-700.
    [71]贾岩,倪文,郑裴,等.鲕状赤铁矿深度还原过程中铁粒生长特征研究[J].金属矿山,2010(10):52-56.
    [72]徐承焱,孙体昌,祁超英,等.还原剂对高磷鲕状赤铁矿直接还原过程铁还原的影响[J].北京科技大学学报,2011,33(8):905-910.
    [73]傅菊英,朱德庆.铁矿氧化球团基本原理、工艺及设备[M].长沙:中南大学出版社,2005:227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700