用户名: 密码: 验证码:
MOCVD法制备REBCO超导厚膜及多层膜夹层材料的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高超导膜的电流承载能力是目前高温超导强电应用方面亟需解决的问题,而临界电流的大小主要由超导膜的厚度(d)和临界电流密度(Jc)决定,因此,要获得较大的电流承载的能力需要从超导膜厚度的增加和钉扎中心的引入两个方面寻求突破。本论文基于光辅助MOCVD技术,围绕这两个方面问题开展了高结晶质量REBCO超导厚膜及多层膜中间夹层材料的制备与性能研究。
     本论文采用光辅助MOCVD技术制备出了具有类单晶形貌,良好晶体结构,高临界电流密度的YBCO薄膜,J_c最高达到3.75MA/cm~2,详细分析了衬底生长温度,源挥发比例对薄膜形貌、结晶质量及超导性能的影响。以优化后的工艺条件为基础制备了高质量的YBCO厚膜,并研究了由于薄膜厚度增加所引起的薄膜性质的一些变化。
     作为多层膜结构研究的前期准备工作,首次选用GdBCO作为以后研究多层膜结构的夹层材料。并首次采用光辅助MOCVD技术制备出了纯的GdBCO外延膜,研究了衬底温度、氧分压、组分等工艺条件对外延膜晶体质量、生长速率、超导性能的影响。系统的分析了不同厚度薄膜制备过程中薄膜的生长速率、微结构变化和应力释放现象,以及它们对薄膜的晶体质量和超导性质的影响。
     选用了Y_2O_3纳米薄层结构作为另一种中间夹层材料。首次利于光辅助MOCVD技术在图形化衬底上进行了应力诱导Y_2O_3纳米薄层结构的自组装生长,并研究了制备过程中的热力学和成核动力学过程。利用高温热处理衬底产生的原子级晶格台阶实现了对Y_2O_3纳米结构在空间分布上的控制。从热力学的角度出发,研究了生长温度和氧分压对Y_2O_3纳米薄层结构生长的影响,并利用两种动力学过程的竞争机制对生长机理进行了分析。从生长动力学角度,研究了生长时间和退火处理时间对于Y_2O_3纳米结构生长的影响。
To improve the current carrying capacity of the superconducting film is an increasinglyurgent need for power applications of high-temperature superconductors. The value ofcritical current depends on the film thickness (d) and the critical current density (Jc). It iswell known that the critical current density of pure YBa_2Cu_3O_(7-δ)(YBCO) films can becomevery high due to a number of growth-induced structural defects such as dislocations. Forpractical applications, however, the flux pinning still needs to be further improved toovercome the vortex motion at high magnetic fields. Therefore, to obtain a larger currentcarrying capacity needs to seek a breakthrough in the thickness of the superconducting filmand the pinning centers. In this paper, photo-assisted metal organic chemical vapordeposition (MOCVD) epitaxial system was employed to fabricate REBCO high quality thickfilms and interlayers of multilayer structure, and their structure and properties wereinvestigated.
     In this paper, high-quality YBCO epitaxial films were grown by a photo-assistedMOCVD technique, the films with single-crystal-like morphology, high crystalline andsuperconductive quality were characterized. The highest value of Jcis3.75MA cm~(-2)at77Kin self-field. The effects of substrate temperature and precursors’ proportion on morphology,crystallographic and superconductive quality were investigated. Base on the optimizedprocess conditions, high-quality YBCO thick films was fabricated by controlling thedeposition time. The reason why epitaxial YBCO thick films with high-qualitysingle-crystal-like morphology can be grown up to about2.1μm thick is illustrated from the point of view of photo activation. Meanwhile, the evaluation of film properties with variousthicknesses was systematically investigated. Therefore, the PhA-MOCVD technique mayprovide some advantages for high-rate growth of high-quality YBCO thick films over otherdeposition techniques for various important applications.
     As the preliminary preparation for the research of multilayer structure, GdBa_2Cu_3O_7-δ(GdBCO) was firstly used as the interlayer. Photo-assisted MOCVD was employed tofabricate pure GdBCO films for the first time. The effects of substrate temperature (Ts) andoxygen partial pressure (PO2) on microstructure, growth rate and superconducting criticalcurrent density (Jc) were investigated. The (001) preferred orientation of the GdBCO filmswas enhanced with increasing Ts. Film growth rate and degree of texture were found to beinfluenced by PO2. The highly c-axis oriented GdBCO film with Jcof2.5MA/cm~2at77K inself-field was obtained at Tsof810°C and PO_2of4Torr, and the morphology of GdBCOfilm was characterized as single-crystal-like. A growth rate of0.107μm/min is realized bythe PhA-MOCVD technique.
     High-quality GdBCO films with thicknesses of0.14-1.62μm were fabricated byPhA-MOCVD technique. Evaluation of film microstructure and strain-relaxationphenomenon in the growing films, and their effects on the crystallographic andsuperconducting properties of the GdBCO films were investigated. A dense and no grainboundary visible, single-crystal-like cross-sectional morphology was observed. For a0.31μm GdBCO film sample, the full width at half-maximum were0.08°and0.47°forout-of-plane and in-plane orientations, respectively. To our knowledge, this is the best valuereported to date for GdBCO heteroepitaxial films, which demonstrate that the films possesswell biaxial texture. The c-axis lattice parameters of the GdBCO films grown with differentthicknesses were used to determine the out-of-plane strain. The result shows that the straincould be gradually relieved as film thickness increasing. As films were getting thicker, theirJcvalues decrease gradually. This is mainly attributed to a lack of pinning centers in thethicker films.
     We choose Y_2O_3nano thin film structure as another interlayer for the study of multilayer structure in future. Self-assembling of strain-induced Y_2O_3nano thin film structure wasfabricated on pattern vicinal substrate LAO (100) by photo-assisted MOCVD. Nucleationand growth processes of Y_2O_3nanostructure self-assembled as rows along the terraces ofpattern substrate were investigated with various growth parameters. It is found that densityand size of Y_2O_3nanostructures can be tuned and well controlled by varying substratetemperature (Ts) and oxygen partial pressure. With elevating Ts, the nanostructures graduallygrow larger and sparser. This phenomenon could be illustrated by two competitive kineticprocesses, i.e. surface diffusion of adatoms and yttrium desorption. Morphologies anddensity of these nanostructures were also influenced by variation of oxygen partial pressure.To further discuss the growth kinetics, a more clearly quasi-linear distribution was obtainedand the coarsening effect is modified by varying growth time. Solid cone shaped Y_2O_3nanostructures with relatively uniform size and density were prepared.
引文
[1] Onnes H K. The resistance of pure mercury at helium temperatures[J].Communications from the Physical Laboratory of the University of Leiden,1911,12:120.
    [2] Shen Z Y. High-temperature Superconducting Microwave Circuits [M].ArtechHouse,1994.
    [3] Dagotto E. The race to beat the cuprates [J].Science,2001,293:2410-2411.
    [4] Bednorz J G, Miiller K A. Possible high Tcsuperconductivity in the Ba-La-Cu-Osystem[J].Zeitschrift für Physik B Condensed Matter,1986,64(2):189-193.
    [5] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang YQ, Chu C W. Superconductivity at93K in a new mixed-phase Y-Ba-Cu-Ocompound system at ambient pressure[J].Physical ReviewLetters,1987,58(9):908-910.
    [6] Hor P H, Gao L, Meng R L, Huang Z J, Wang Y Q, Forster K, Vassilious J, Chu CW, et al. High-pressure study of the new Y-Ba-Cu-O superconducting compoundsystem[J].Physical Review Letters,1987,58(9):911-912.
    [7]赵忠贤,陈立泉,杨乾声,黄玉珍,陈赓华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清. Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报,1987,6:412-414.
    [8] Endo U, Koyama S, Kawai T. Preparation of the high-Tcphase of Bi-Sr-Ca-Cu-Osuperconductor[J].Jpn. J. Appl. Phys.,1988,27:L1476-L1479.
    [9] Sheng Z Z, Hermann A M. Bulk superconductivity at120K in theTl–Ca/Ba–Cu–O system[J].Nature,1988,332(6160):138-139.
    [10] Schilling A, Cantoni M, Guo J D, Ott H R. Superconductivity above130K in theHg-Ba-Ca-Cu-O system[J].Nature,1993,363(6424):56-58.
    [11] Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M,Redwing J M, Xu S Y, Li Q, Lettieri J. In situ epitaxial MgB2thin films forsuperconducting electronics [J].Nature Materials,2002,1(1):35-38.
    [12] Cruz Clarina de la, Huang Q, Lynn J W, Li J Y, Ratcliff W, Zarestky J L, MookH A, Chen G F, Luo J L, Wang N L. Magnetic order close to superconductivityin the iron-based layered LaO1-xFxFeAs systems[J].Nature,2008,453(7197):899-902.
    [13] Meissner W, Ochsenfeld R. Ein neuer Effekt bei Eintritt derSupraleitf higkeit[J].Naturwissenschaften,1933,21(44):787-788.
    [14] Josephson B D. Possible new effects in superconductive tunnelling[J].PhysicsLetters,1962,1(3):251-253.
    [15] C.基泰尔(CHARLES KITTEL)(著).项金钟,吴兴惠(译).固体物理导论[M],北京:化学工业出版社,2005.
    [16] Ishiyama A, Iwata T, Ueda H, Mukoyama S, Shiohara Y. Transient stabilitycharacteristics of parallel-connected YBCO coated conductors for powertransmission cables[J].IEEE Trans. Appl. Supercond.,2007,17(2):1672-1675.
    [17] Noe M, Steurer M. High-temperature superconductor faultcurrent limiters:concepts, applications, and development status[J].Superconductor Science andTechnology,2007,20(3):R15-R29.
    [18] Yuan W J, Xian W, Ainslie M, Hong Z, Yan Y, Pei R, Jiang Y, Coombs T.Design and test of a superconducting magnetic energy storage (SMES)coil[J].IEEE Trans. Appl. Supercond.,2010,20(3):1379-1382.
    [19] Li X S, Chen Q F, Sun J B, Zhang Y, Long G Z. Analysis of magnetic field andcirculating current for HTS transformer winding[J].IEEE Trans. Appl.Supercond.,2005,15(3):3808-3813.
    [20] Ohki Y. Recent progress in applications of high Tcsuperconducting materials inJapan[J].IEEE electrical insulation Magazine,2006,22(2):45-46.
    [21] Wang J S, Wang S Y, Zeng Y W, Huang H Y, Luo F, Xu Z P, Tang Q X, Lin GB, Zhang C F, Ren Z Y. The first man-loading high temperature superconductingmaglev test vehicle in the world[J].Physica C,2002,378(381):809-814.
    [22] Chen S D, Yu Y T, Huang Z W, Jan J C, Hwang C S, Chen I G, Du C H, Uen TM, Huang D J, Chang C Y. Design of a HTS Magnet for Application to ResonantX-Ray Scattering[J].IEEE Trans. Appl. Supercond.,2011,21(3):1661-1664.
    [23] Xu M F, Laskaris E T, Budesheim E, Conte G, Huang X R, Stautner W,Thompson P S, Amm K. Experimental layer-wound mock-up coil for HTS MRImagnet using BSCCO Tape [J].IEEE Trans. Appl.Supercond.,2009,19(3):2309-2312.
    [24] Penn S J, Bracanovic D, Esmail A A, Scott V, Button T W. Thick film YBCOreceive coils for very low field MRI[J].IEEE Trans. Appl.Supercond.,1999,9(2):3070-3073.
    [25] Nurgaliev T, Tsaneva V N, Donchev T I, Barber Z H, Tarte E J, Blamire M G,Hogg M, Evetts J E, Taslakov M, Miteva S. Characterization of YBCO thin filmsfor microwave applications[J].Physica C,2002,372-376:546-549.
    [26] Wu C H, Hsu M H, Chen K L, Chen J C, Jeng J T, Lai T S, Horng H E, Yang HC. A highly sensitive YBCO serial SQUID magnetometer with a flux focuser[J].Superconductor Science and Technology,2006,19(5):S246-S250.
    [27] Klushin A M, Amatuni L E, Sodtke E, Prusseit W, Borovitskii S I, Gelikonova VD, Ai K A. Development and investigation of shunted YBCO bicrystal Josephsonjunction arrays for voltage standard,1996[C].Braunschweig: PrecisionElectromagnetic Measurements Digest,1996.
    [28] De Matos C J, Beck C. Possible Measurable Effects of Dark Energy in RotatingSuperconductors[J].Advances in Astronomy,2009,2009:1-10.
    [29] Chen Y M, Selvamanickam V, Zhang Y F, Zuev Y, Cantoni C, Specht E,Paranthaman M P, Aytug T, Goyal A, Lee D. Enhanced flux pinning by BaZrO3and (Gd,Y)2O3nanostructures in metal organic chemical vapor depositedGdYBCO high temperature superconductor tapes[J].Applied PhysicsLetters,2009,94(6):062513.
    [30] Kim B J, Lim S W, Kim H J, Hong G W, Lee H G. New MOD solution for thepreparation of high JcREBCO superconducting films[J].Physica C,2006,445-448:582-586.
    [31] Iguchi T, Araki T, Yamada Y, Hirabayashi I, Ikuta H. Fabrication ofGd-Ba-Cu-O films by the metal-organic deposition method usingtrifluoroacetates[J].Superconductor Science and Technology,2002,15(10):1415.
    [32] Rosenzweig St, Hanisch J, Iida K, Kauffmann A, Mickel Ch, Thersleff T,Freudenberger J, Huhne R, Holzapfel B, Schultz L. Irreversibility field up to42Tof GdBa2Cu3O7-δthin films grown by PLD and its dependence on depositionparameters[J].Superconductor Science and Technology,2010,23(10):105017.
    [33] Kim G, Jeong A R, Jo W, Park D Y, Cheong H, Shin G M, Yoo S I. Optimalgrowth conditions for GdBa2Cu3O7thin-film coated conductors characterized bypolarized Raman scattering spectroscopy[J].Physica C,2010,470(20):1021-1024.
    [34] Kinder H, Berberich P, Utz B, Prusseit W. Double sided YBCO films on4"substrates by thermal reactive evaporation[J].IEEE Trans. Appl. Supercond.,1995,5(2):1575-1580.
    [35] Dijkkamp D, Venkatesan T, Wu X D, Shaheen S A, Jisrawi N, Min-Lee Y H,McLean W L, Croft M. Preparation of YBaCu oxide superconductor thin filmsusing pulsed laser evaporation from high Tcbulk material[J].Applied PhysicsLetters,1987,51(8):619-621.
    [36] Huhtinen H, Irjala M, Paturi P, Falter M. The effect of BZO doping concentrationand thickness dependent properties of YBCO films grown by PLD on bufferedNiW substrates[J].Physica C,2012,472(1):66-74.
    [37] Singh R K, Narayan J. Pulsed-laser evaporation technique for deposition of thinfilms: Physics and theoretical model[J].Physical Review B,1990,41(13):8843.
    [38] Eom C B, Sun J Z, Lairson B M, Streiffer S K, Marshall A F, Yamamoto K,Anlage S M, Bravman J C, Geballe T H. Synthesis and properties of YBa2Cu3O7thin films grown in situ by90°off-axis single magnetron sputtering[J].PhysicaC,1990,171(3-4):354-383.
    [39] Jia Q X, Anderson W A. Sputter deposition of Yba2Cu3O7-xfilms on Si at500°Cwith conducting metallic oxide as a buffer layer[J].Applied Physics Letters,1990,57(3):304-306.
    [40] Adachi S, Wakana H, Kamitani Ai, Tanabe K. Stable preparation process ofsuperconductor-insulator multilayer films for HTS devices by off-axis magnetronsputtering[J].Physica C,2006,445-448:895-899.
    [41] Aytug T, Maroni V A, Miller D J, Chen Z J, Kropf A J, Zaluzec N J, Zuev Y,Specht E D, Paranthaman M P. Novel tri-modal defect structure in Nb-dopedMOCVD YBa2Cu3O7: a paradigm for pinning landscapecontrol[J].Superconductor Science and Technology,2012,25(9):095013.
    [42] Zhang Y F, Hazelton D W, Knoll A R, Duval J M, Brownsey P, Repnoy S,Soloveichik S, Sundaram A, McClure R B, Majkic G. Adhesion strength study ofIBAD-MOCVD-based2G HTS wire using a peel test[J].PhysicaC,2012,473:41-47.
    [43] Ghalsasi S, Zhou Y X, Chen J, Lv B, Salama K. MOD multi-layer YBCO filmson single-crystal substrate[J].Superconductor Science and Technology,2008,21(4):045015.
    [44] Develos-Bagarinao K, Wimbush S C, Matsui H, Yamaguchi I,MacManus-Driscoll J L. Enhanced flux pinning in MOD YBa2Cu3O7-δfilms byion milling through anodic alumina templates[J].Superconductor Science andTechnology,2012,25(6):065005.
    [45] Qiao Y F, Chen Y M, Xiong X M, Kim S J, Matias V, Sheehan C, Zhang Y,Selvamanickam V. Scale up of coated conductor substrate process by reel-to-reelplanarization of amorphous oxide layers[J].IEEE Trans. Appl. Supercond.,2011,21(3):3055-3058.
    [46] Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F. Relationshipbetween film thickness and the critical current of YBa2Cu3O7-δcoated conductors[J].Applied Physics Letters,1999,75(23):3692-3694.
    [47] Awaji S, Namba M, Watanabe K, Miura M, Yoshida Y, Ichino Y, Takai Y,Matsumoto K. c-axis correlated pinning behavior near the irreversibility fields[J].Applied Physics Letters,2007,90(12):122501-3.
    [48] Civale L. Vortex pinning and creep in high-temperature superconductors withcolumnar defects[J].Superconductor Science and Technology,1999,10(7A):A11-A28.
    [49] Manasevit H M. Single-crystal gallium arsenide on insulating substrates[J].Applied Physics Letters,1968,12(4):156-159.
    [50] Fujieda S, Mizuta M, Matsumoto Y. Growth characterization of low temperatureMOCVD GaN comparison between N2H4and NH3[J].Japanese journal of appliedphysics,1987,26:2067.
    [51]陆大成,段树坤.金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009.
    [52]李香萍. ZnO薄膜的MOCVD制备及ZnO/Si发光器件研究[D].长春:吉林大学.2009.
    [53] Singh R, Radpour F, Chou P. Comparative study of dielectric formation byfurnace and rapid isothermal processing[J].Journal of Vacuum Science andTechnology A,1989,7(3):1456-1460.
    [54] Singh R, Chou P, Radpour F, Nelson A J, Ullal H S. Oxidation of tin on siliconsubstrate by rapid isothermal processing[J].Journal of Applied Physics,1989,66(6):2381-2387.
    [55] Li W, Li S W, Li G X, Zhang B L, Chou P C. Thickness dependence of structuraland superconducting properties of single-crystal-like GdBCO films prepared byphoto-assisted MOCVD[J].IEEE Transactions on Applied Superconductivity,2013,23(2):7200606.
    [56]李国兴,以光辅助MOCVD法制备大面积YBa2Cu3O7-x高质量高温超导外延膜的初步研究[D],长春:吉林大学,2008.
    [57] Li W, Li S W, Li G X, Zhang B L, Chou P C. Self-assembling of strain-inducedY2O3nanostructures grown on LaAlO3by photo-assisted MOCVD[J].AppliedSurface Science,2013,264(1):748-755.
    [58] Young K H, Robinson McD, Cardona A, Yamashita T, Hirai T, Suzuki H,Kurosawa H. Correlations among structural, transport, and microwave propertiesof YBCO thin film on LaAlO3substrate by chemical vapor deposition[J].PhysicaC,1992,203(1):37-44.
    [59] Zhang H, Yu L P, Wang Y Z, Zhang L, Cheng L L. Interaction of YBCO thinfilm and substrates and its effects on the quality of the film[J].Physica C,2000,337(1):20-23.
    [60] Demirel A I. An investigation of superconducting YBCO thin films grown ondifferent substrates[J].Superconductor Science and Technology,2002,15(6):923-926.
    [61] Ockenfuss G, Baudenbacher F, Prusseit-Elffroth W, Hirata K, Berberich P, KinderH. Preparation and growth of YSZ buffer layers and YBa2Cu3O7films on silicon(100)[J].Physica C,1991,180(1-4):30-33.
    [62] Kusunoki M, Suto T, Okai D, Tanako Y, Mukaida M, Ohshima S. Microwavesurface resistance of YBCO thin films on cerium oxide buffer[J].IEEETransactions on Applied Superconductivity,9(2):1932-1935.
    [63] Chiba K, Makino S, Mukaida M, Kusunoki M, Ohshima S. The effect of latticematching between Buffer layer and YBa2Cu3O7-δthin film on in-plane alignmentof c-axis oriented thin films[J].IEEE Transactions on Applied Superconductivity,2001,11(1):2734-2737.
    [64]张有纲,张有祥,许恒生.电子材料现代分析概论[M].北京:国防工业出版社,1993.
    [65]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [66] Hammond R H, Bormann R. Correlation between the in situ growth conditions ofYBCO thin films and the thermodynamic stability criteria[J].Physica C,1989,162-164:703-704.
    [67] Zhong Q, Chou P C, Li Q L, Taraldsen G S, Ignatiev A. High rate growth ofpurely a-axis oriented YBCO high Tcthin films by photo-assistedMOCVD[J].Physica C,1995,246(3):288-296.
    [68] Hammond R H, Bormann R. Correlation between the in situ growth conditions ofYBCO thin films and the thermodynamic stability criteria[J].PhysicaC,1989,162:703-704.
    [69] Murphy D W, Johnson Jr D W, Jin S, Howard R E. Processing techniques for the93K superconductor Ba2YCu3O7[J].Science,1988,241(4868):922-930.
    [70] Li S W, Li W, Li G X, Li W C, Zhang B L, Chou P C. Morphology andsuperconducting properties of photo-assisted MOCVD processed YBCO film byvariation of sublimation temperature of the Cu-based precursor[J].PhysicaC,2012,478:60-66.
    [71] Kim Y, Kim C J, Jun B H, Sung T H, Han Y H, Han S C, No K. Formationidentification of Y2BaCuO5and BaCeO3in MOCVD-processed YBCO films withCe doping[J].Superconductor Science and Technology,2009,22(6):065010.
    [72] Zeng J M, Lian J, Wang L, Chou P C, Ignatiev A. HRTEM characterization ofYBa2Cu3O7δthick films on LaAlO3substrates[J].PhysicaC,2004,405(2):127-132.
    [73] Liu L F, Zhao Z C, Liu H R, Li Y J. Effect of deposition temperature on theepitaxial growth of YBCO thin films on RABiTS substrates by pulsed laserdeposition method[J].IEEE Transactions on Applied Superconductivity,2010,20(3):1553-1556.
    [74] Barnes P N, Haugan T J, Varanasi C V, Campbell T A. Flux pinning behavior ofincomplete multilayered lattice structures in YBa2Cu3O7-δ[J].Applied PhysicsLetters,85(18):4088-4090.
    [75] Foltyn S R, Wang H, Civale L, Jia Q X, Arendt P N, Maiorov B, Li Y, Maley MP, MacManus-Driscoll J L. Overcoming the barrier to1000A/cm widthsuperconducting coatings[J]. Applied Physics Letters,2005,87:162505-162507.
    [76] Ghalsasi S V, Zhou Y X, Chen J, Rusakova I, Lv B, Salama K. Fabrication,characterization and study of MOD multiLayer YBCO films[J].IEEE Transionson Applied Superconductivity,2009,19(3):3379-3382.
    [77] Mikheenko P, Dang V S, Kechik M M A, Sarkar A, Paturi P, Huhtinen H, Abell JS, Crisan A. Synergetic pinning centers in YBa2CuO3films through acombination of Ag nano-dot substrate decoration, Ag/YBCO quasi-multilayers,and the use of BaZrO3-doped target[J].IEEE Transions on AppliedSuperconductivity,2011,21(3):3184-3188.
    [78] Develos-Bagarinao K, Yamasaki H, Ohki K. Flux pinning properties of YBCO/DyBCO multilayers[J].Journal of Applied Physics,2008,104(6):063907-1~9
    [79] Takamura M, Mukaida M, Horii S, Ichinose A, Kita R, Matsumoto K, Yoshida Y,Namba M, Awaji S, Watanabe K. Matching field effects in c-axis in-plane aligneda-axis-oriented YBa2Cu3Oyfilms with two-dimensional artificial pinning centersinduced by multilayered nano-structures[J].Superconductor Science andTechnology,2010,23(4):045023.
    [80]陈昌兆,蔡传兵,刘志勇,应利良,高波,刘金磊. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究[J].物理学报,2008,57(7):4371-4378.
    [81] Takahashi K, Yamada Y, Konishi M, Watanabe T, Ibi A, Muroga T, Miyata S,Shiohara Y, Kato T, Hirayama T. Magnetic field dependence of Jcfor Gd-123coated conductor on PLD-CeO2capped IBAD-GZO substrate tapes[J].Superconductor Science and Technology,2005,18(8):1118–1122.
    [82] Song S H, Ko K P, Ko R K, Song K J, Moon S H, Yoo S I. High-JcGdBa2Cu3O7thin films on SrTiO3substrates by pulsed laser deposition[J].PhysicaC,2007,463-465:497-500.
    [83]Selvamanickam V, Chen Y M, Xiong X M, Xie Y Y Y, Martchevski M, Rar A,Qiao Y F, Schmidt R M, Knoll A, Lenseth K P. High performance2G wires:From R&D to pilot-scale manufacturing [J].IEEE Transactions on AppliedSuperconductivity,2009,19(3):3225-3230.
    [84] Ko K P, Moon S H, Park C, Yoo S I. High Jc GdBa2Cu3O7δcoated conductorson CeO2-buffered IBAD MgO template fabricated by pulsed laser deposition [J].IEEE Transactions on Applied Superconductivity,2011,21(3):2965-2968.
    [85] Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F. Relationshipbetween film thickness and the critical current of YBa2Cu3O7-δ-coated conductors[J].Applied Physics Letters,1999,75(23):3692-3694.
    [86] Sakashita Y, Segawa H, Tominaga K, Okada M. Dependence of electricalproperties on film thickness in Pb(ZrxTi1x)O3thin films produced bymetalorganic chemical vapor deposition[J].Journal of AppliedPhysics,1993,73(11):7857-7863.
    [87] Wen J G, Mahajan S, Morishita T, Koshizuka N. Full coverage of ultra-thinSrTiO3layer in a-YBa2Cu307-x/SrTiO3/a-YBa2Cu307-xsandwiched thin film[J].Physica C,1996,266(3):320-328.
    [88] Jin L H, Lu Y F, Yan W W, Yu Z M, Wang Y, Li C S. Fabrication ofGdBa2Cu3O7-xfilms by TFA-MOD process[J]. Journal of Alloys and Compounds,2011,509(7):3353-3356.
    [89] Wang Y G, Lau S P, Lee H W, Yu S F, Tay B K, Zhang X H, Tse K Y, Hng H H.Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc atroom temperature[J].Journal of Applied Physics,2003,94(3):1597-1604.
    [90] Kim Y H, Kim S I, Effect of oxygen partial pressure on the surface morphologyof sputtered YBCO thin films[J].Journal of the korean physical society.2004,45(6):1584-1587.
    [91] Kim Y H, Kim C J, Jun B H, Sung T H, Han Y H, Han S C, Paik H J, Youn J S,No K. Effect of oxygen partial pressure on the morphology and properties of Ce-doped YBCO films fabricated by MOCVD process[J].Physica C,2009,469(15):1410-1413.
    [92] Auge J, Jansen M, Roskos H G, Kurz H. Optimization of the surface morphologyof magnetronsputtered Y1Ba2Cu3O7-xfilms[J].Applied Physics Letters,1994,64(23):3166-3168.
    [93] Sutoh Y, Miura M, Yoshizumi M, Izumi T, Miyata S, Yamada Y, Shiohara Y.Fabrication of high Icfilm for GdBCO coated conductor by continuous in-plumePLD[J].Physica C,2009,469(15):1307-1310.
    [94] Lee J W, Shin G M, Moon S H, Yoo S I. High-JcGdBa2Cu3O7-δfilms fabricatedby the metal-organic deposition process[J].Physica C,2010,470(20):1253-1256.
    [95] Miyachi K, Sudoh K, Ichino Y, Yoshida Y, Takai Y. The effect of thesubstitution of Gd for Ba site on Gd1+xBa2-xCu3O7-δthin films[J].Physica C,2003,392-396:1261-1264.
    [96] Tao B W, Zhang N, Zhang F, Xia Y D, Feng X, Xue Y, Zhao X H, Xiong J, Li YR. Thickness effect on the structural and electrical properties of sputtered YBCOcoated conductors[J].IEEE Transactions on Applied Superconductivity,2011,21(3):2945-2948.
    [97] Didier N, Dubourdieu C, Rosova A, Chenevier B, Galindo V, Thomas O.Twinning behaviour in YBCO and PBCO thin films and in PBCO-YBCOsuperlattices[J].Journal of Alloys and Compounds,1997,251(1):322-327.
    [98] Dubourdieu C, Senateur J P, Thomas O, Weiss F, Hensen S, Muller G. YBCOfilms deposited on YAlO3substrates:microstructure and transport properties[J].IEEE Transactions on Applied Superconductivity,1997,7(2):1268-1271.
    [99] Horide T, Matsumoto K, Ichinose A, Mukaida M, Yoshida Y, Horii S. Vortexpinning by gold nanorods in GdBa2Cu3O7-δthin films[J].IEEE Transactions onApplied Superconductivity,2007,17(2):3729-3732,.
    [100] Foltyn S R, Civale L, MacManus-Driscoll J L, Jia Q X, Maiorov B, Wang H,Maley M. Materials science challenges for high-temperature superconductingwire[J].Nature materials,2007,6(9):631-642.
    [101] Qiu Y M, Uhl D. Self-assembled InAsSb quantum dots on (001) InP substrates[J].Applied Physics Letters,2004,84(9):1510-1512.
    [102] Aierken A, Hakkarainen T, Sopanen M, Riikonen J, Sormunen J, Mattila M,Lipsanen H. Self-assembled InAs island formation on GaAs (110) bymetalorganic vapor phase epitaxy [J].Applied SurfaceScience,2008,254(7):2072-2076.
    [103] Gibert M, Puig T, Obradors X. Growth of strain-induced self-assembled BaZrO3nanodots from chemical solutions [J].Surface science,2007,601(13):2680-2683.
    [104] Gibert M, Puig T, Obradors X, Benedetti A, Sandiumenge F, Hühne R.Self-Organization of Heteroepitaxial CeO2Nanodots Grownfrom ChemicalSolutions [J].Advanced Materials,2007,19(22):3937-3942.
    [105] Kim D W, Kim D H, Kang B S, Noh T W, Lee D R, Lee K B. Roles of the firstatomic layers in growth of SrTiO3films on LaAlO3substrates [J]. AppliedPhysics Letters,1999,74:2176.
    [106] Liang S, Zhu H L, Pan J Q, Ye X L, Wang W. Growth of InAs quantum dots onvicinal GaAs (100) substrates by metalorganic chemical vapor deposition andtheir optical properties[J].Journal of crystal growth,2006,289(2):477-484.
    [107] Wang H, Jiang D S, Zhu J J, Zhao D G, Liu Z S, Wang Y T, Zhang S M, YangH. Kinetically controlled InN nucleation on GaN templates by metalorganicchemical vapour deposition[J].Journal of Physics D: Applied Physics,2009,42(14):145410-145415.
    [108] Zhu Z H, Gao D Q, Yang G J, Zhang J, Zhang J L, Shi Z H, Xu F, Gao H, XueD. Room temperature ferromagnetism in pure Y2O3nanoparticles[J].EurophysicsLetters,2012,97(1):17005.
    [109] Natile M M, Glisenti A. Study of surface reactivity of cobalt oxides: Interactionwith methanol[J].Chemistry of materials,2002,14(7):3090-3099.
    [110] Grace P J, Venkatesan M, Alaria J, Coey J M D, Kopnov G, Naaman R. Theorigin of the magnetism of etched silicon[J].AdvancedMaterials,2009,21(1):71-74.
    [111] Gao D Q, Zhang J, Yang G J, Zhang J L, Shi Z H, Qi J, Zhang Z H, Xue D.Ferromagnetism in ZnO Nanoparticles Induced by Doping of a NonmagneticElement: Al[J].The Journal of Physical Chemistry C,2010,114(32):13477-13481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700