用户名: 密码: 验证码:
碱金属在高炉冶炼中反应行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以石钢高炉生产条件为基础,对石钢高炉中碱金属平衡进行了调查研究,并利用实验室模拟设备,研究了高炉内碱金属的反应机理与分配规律。通过研究发现:
     石钢高炉的碱金属(K2O+Na2O)负荷较高,为5.2~5.5kg/tFe。其中由烧结矿带入的碱金属占碱金属负荷的70%左右,球团矿和焦炭各占碱金属负荷的10%左右,其它炉料带入量较少。石钢高炉总排碱率为73%~79%,其中炉渣排碱率为68%~77%,炉顶煤气排碱率为5%左右。石钢高炉蓄积率保持在0.227~0.282kg/tFe·h之间,高炉处于蓄积期,且蓄积率较高。所以,建议石钢高炉的碱金属负荷临界值选取为4.0 kg/tFe。
     在高温熔炼区碱金属硅酸盐大量分解形成碱金属蒸气并附着在炉料上,吸附量高达2.1%左右,到化学储备区炉料的吸附量最高达2.8%左右,到低温预热、预还原区炉料的吸附量又下降到0.3%左右。碱金属的吸附受炉料粒度大小的影响,平均粒度从17mm降到11mm,吸附量会从0.3%提高到1.3%。附着在炉料上的碱金属化合物对焦炭的熔损反应有催化作用,K2O含量超过1.5%,焦炭反应性会提高约23%左右,焦炭反应后强度降低约40%左右。碱金属化合物还会加速铁矿石的还原反应,使低温还原粉化率提高,当K2O含量超过2.56%,烧结矿的RDI值提高约30%,K2O含量超过1.5%,球团矿的RDI值提高约15%。
     选择合适的炉渣化学成分,应兼顾排碱与脱硫。根据石钢炉渣模拟试验结果,建议石钢高炉正常生产的炉渣碱度(CaO/SiO_2)应保持在1.0左右,SiO2%应保持在37%左右,MgO%应保持在12%左右,Al_2O_3%应保持在14%左右。在石钢炉渣化学成分的基础上,将CaO/SiO_2变为1.0后,炉渣排碱率为26%,生铁硫含量小于0.027%;将SiO_2%变为37%后,炉渣排碱率为21%,生铁硫含量为0.026%;将MgO%变为12%后,炉渣排碱率为24%,生铁硫含量为0.0261%;将Al2O3%变为15%后,炉渣排碱率为24%,生铁硫含量为0.0275%。
     石钢高炉渣量降低所造成的排碱量下降是高炉碱金属危害的主要原因。
The balance of the alkali metals were investigated and studied the on the basis of ShiGang BF’production conditions and reaction mechanism and distribution law of alkali metals were studied in BF via the experimental analogue equipment. The research showed: The alkali metals loads of ShiGang BFs were high, between 5.2 kg/tFe to 5.5kg/tFe. Among it, the alkali metals amount in the sinter was about 69%, either pellet or coke was about 10%, other charges were little. The total removing alkali rate of ShiGang BFs were 73% to 79%. Among it, removing alkali metals rate of slag is 68% to 77% and top gas is 5%. The accumulation rates of the alkali metals of ShiGang BFs were 0.227kg/tFe·h to 0.282kg/tFe·h and BFs were in accumulation age. Thus it suggested that ShiGang critical alkali metals load is 4.0 kg/tFe.
     In the high temperature smelting zone the alkali metals silicate decomposed into the alkali metals evaporation and the alkali metals evaporation adhered on charges and the adsorption amount was as much as 2.1%. The amount of adsorption in chemical reservation zone was 2.8% and the low temperature prereduction zone is about 0.3%
     The size of charges can affect the amount of the alkali metals absorption. When the size decreased from 17mm to 11mm, the alkali metals absorption amount would increase from 0.3% to 1.3%. The alkali metals adhering on charges had a catalytic effect on melting reaction of coke. When K2O% was above 1.5 that CRI would be increased 23% and CSR would be decreased 40%. The alkali metals also can accelerate the reduce reaction and increase RDI of the iron ore. When K2O% was above 2.56% the RDI of sinter would be increased 30% and when K2O% was above 1.5% the RDI of pellet would be increased 15%
     To choose an appropriate chemical composition of slag, both removing alkali metals and desulphurization should be considered. According of experimental results it suggested ShiGang BF slag should be that basicity was 1.0, SiO2% was 37%, MgO% was 12% and Al2O3% was 15%. On the basis of the ShiGang BF slag chemical compositions, when basicity (CaO/SiO2) chaged to about 1.0 that the rate of removing alkali metals was 26% and the [S] was 0.027%; When SiO2% equaled to about 37% that the rate of removing alkali metals was 21% and the [S] was 0.026%; When Al2O3% equaled to about 15% that the rate of removing alkali metals was 24% and the [S] was 0.0275%. Because of technique progress, the quantity of slag decreased which resulted in the rate of removing alkali metals decreasing. It was the main reason of the alkali metals hazard to ShiGang BFs.
引文
[1] 邓守强.高炉炼铁技术.北京:冶金工业出版社,1988.12.305~339
    [2] J A Peart,et.Alkali In Blast Furnace.Hamilton,1973.5.1~4
    [3] 神原健二郎等.刘晓侦译.高炉解体研究.冶金工业出版社,1980.3.348~349
    [4] 毕群等.包钢高炉冶炼试验资料.包头钢铁公司.1982.7
    [5] 任允芙,王梅英.结瘤的物相分析.包钢科技,1975.(04):3~7
    [6] 赵国治.包钢碱金属分析及碱平衡计算.炼铁,1986.(03):13~17
    [7] 应盛明.高炉中的碱金属.钢铁,1980.(07):35~39
    [8] 崔光辉.国内外高炉碱害情况研究.钢铁,1981.(07):66~69
    [9] 包钢钢铁公司.包钢高炉冶炼试验资料,1982.7
    [10] 张殿友,黄晓煜等.鞍钢 7 号高炉复合炉缸的结构特点与中修调查.东北大学学报:自科版,2000.21(05):547~550
    [11] 郑修悦,杨先觉.碱金属对焦炭反应性和反应后强度的影响.武钢技术,1992.19(03):269~275
    [12] 郑修悦,肃非.武钢高炉碱金属行为及其影响.武钢技术.1989.(11):17~23
    [13] 杨杰康.昆钢炼铁焦炭的热态性能分析.包头钢铁学院学报,1999.18(S1):291~293
    [14] 秦彩霞,陈奉周.酒泉钢铁厂 1 号高炉第三代炉体破损原因调查—炉体内部矿物组成特征.矿物学报,2002.9.22(3):285~289
    [15] 杜鹤桂,虞蒸霞.酒钢高炉碱金属危害的控制.炼铁,1991.10(1):16~22
    [16] 赵民,王大宏.降低碱金属对高炉危害途径的研究和实践.包钢科技,2000.6.26(2):11~15
    [17] 杜鹤桂,马喜明.包钢高炉渣含氟和碱金属限量的实验研究.钢铁,1997.3.32(3):4~11
    [18] 刘海燕,付涛.八钢炼铁过程中碱金属的行为浅析.新疆钢铁,2000.4.(76):35~39
    [19] 杨先觉.碱金属对焦炭反应性和反应后强度的影响.武汉冶金科技大学学报.1996.19(3):269~275
    [20] 王福补,杨建中.冷钢 1#高炉结瘤浅析湖南冶金.1998.(4):19~22
    [21] 兰洪.重钢五高炉碱金属调查及提高炉渣排碱能力的探讨.重钢技术,1995.38(3):7~11
    [22] 王秋林.酒钢 1#高炉缸砖衬破损原因及钛沉积物的护炉作用.矿物岩石地球化学通报,1999.18(4):321~324
    [23] 杨孝明.碱金属对重钢高炉冶炼的影响.四川冶金,1991.(1):65~71
    [24] 郑修悦.武钢烧结矿软熔特性.武钢技术,1989.(7):1~8
    [25] 彭凤翔,王晶攀.攀钢高炉碱金属状态的调查研究.钢铁钒钛,1992.18(1):16~25
    [26] 段维民,刘思恩.碱金属对包钢高炉生产的影响.炼铁,1996 .15(3):53~54
    [27] КВА 冯雅观.锌与碱金属在高炉中的作用.湘钢译丛,1992.(2):3~7
    [28] 潘一凡.碱金属对杭钢高炉冶炼的影响.浙江冶金,1993.(2):12~21
    [29] 刘坤庭,沐继尧.碱金属对湘钢高炉生产的影响.湖南冶金,1996.(4):21~25
    [30] 卫文莉.酒钢 1 号高炉碱害的防治.炼铁,2000.19(A02):59~61
    [31] 徐国忠,陈德浩,周师庸.模拟焦炭在高炉软融带碳溶反应的研究.鞍山科技大学学报,2003.26(1):48~52
    [32] 申文琴,豆彬彬,那嵘热.煤气中碱金属蒸气的脱除,煤气与热力,2000.20(6),403~406
    [33] 传秀云.石墨层间化合物 GICs 的形成机理探讨. 新型炭材料,2000.15(1):52~56
    [34] 张桂岭,戴柏青.金属石墨层间化合物的量子化学和热力学研究.高等学校化学学报,2002.23(10):1907-1910
    [35] 李运勇,唐小平.焦炭强度影响因素研究.煤炭科学技术,2001.29(4):23~26
    [36] 马学刚.焦炭光学组织的测定与分析.山东冶金,2003.25(2):37~39
    [37] 张军,汉春利,刘坤磊,徐益谦.煤中碱金属及其在燃烧中的行为.热能动力工程,1999.14(02):83~85
    [38] 焦晓渝.碱金属氧化物对 CaO-CaF2-SiO 渣系脱硫能力的影响.钢铁研究学报,2001.14(5):53~56
    [39] 方宗旺,喷洒 CaCl2 溶液降低烧结矿 RDI 有效期的试验研究.宝钢技术,1999.(02):20~24
    [40] 杨华明,邱冠周,唐爱东.CaCl2 对烧结矿 RDI 的影响.中南工业大学学报(自然科学版), 1998.29(03):229~232
    [41] 汉春利,张军,颜峥.固体吸收剂脱除高温烟气中碱金属研究.燃烧科学与技术,2001.7(01):48~51
    [42] 申文琴,熊利红.热煤气中碱金属蒸气的形成及清除方法.煤气与热力.1998.18(6):3~5
    [43] 伍勇.碱金属在石墨表面化学吸附的 EHT 研究.复旦学报(自然科学版),2000.39(2):167~173
    [44] Gladkov N A,Nikolaev S A,Budnik L G.Behavior of alkalis in the shaft and hearth of a blast furnace (Inst of Ferrous Metallurgy) .Metallurgist (English Translation of Metallurg),1988.(31):329~331
    [45] Chernov N N,Marder B F,Demidenko T V,Riznitskii I G.Monitoring the condition of the slag crust in blast furnaces.Metallurgist (English Translation of Metallurg),1988.(31):279~281
    [46] Peter Van Herck.Zinc and Lead Removal from Blast Furnace Sludge with a Hydrometallurgical Process.Environmental science & technology,1995.(56):26~29
    [47] Altland Rainer,Beckmann Bernd,Stricker, Kurt Peter.Blast furnace process optimization by alkali and slag condition control.Stahl und Eisen,1999.(11):53~58
    [48] A H 拉姆.现代高炉过程的计算分析.冶金工业出版社,1987.11
    [49] Gudenau Heinrich Wilhelm,Johann Hubert Peter,Meimeth Stefan.Removal of alkalies from blast furnaces.Stahl und Eisen,1996.(9):89~96
    [50] Formoso A (The Centro Nacional de Investigaciones Metalurgicas CSIC),Lopez F A.,Fierro J L G,Larrea M T.Potassium retention by basic mineral (dunite) in blast furnace process,Ironmaking and Steelmaking,1997.(4):288~292
    [51] Alam M,DebRoy T.Behavior Of Alkali Metal Cyanides In The Blast Furnace - Vaporization Of Nacn(L) And KCN(L).Transactions of the Iron & Steel Society of Aime,1985.(6):15~22
    [52] Effect Of Alkalies On The Performance Of Blast Furnace.,El-Geassy A A ,Shehata K A,Nasr M I,Fakhoury S S.Transactions of the Iron and Steel Institute of Japan,1986.(26): 865~874
    [53] Braun N V,Glushchenko I M,Makhovskii V A.Evaluation of coke quality and its behavior in a blast furnace.Coke & Chemistry (USSR) (English translation of Koks i Khimiya),1988.(15):45~51
    [54] Zhou Quding ,Bi Xuegong.Circulation Of Alkalis And Fluorine In The Blast Furnace And Their Detrimental Effects On The Reduction Degradation Of Sinter And Pellets.Scandinavian Journal of Metallurgy,1987.(16):57~66
    [55] Shkoller M B,Dinel't V M,Korchuganova G S,Petrov V B.Influence Of Thermal Charge Preparation On Coke Comminution Under Blast-Furnace Operating Conditions.Coke & Chemistry (USSR) (English translation of Koks i Khimiya),1983.(9):40~46
    [56] Steiler J M,Nicolle R,Metz B, Wanin M.Investigation On Potassium Build-Up In The Blast Furnace.Proceedings - Ironmaking Conference,1984.(15):427~437
    [57] Chernov N N, Demidenko T V, Marder B F,Pochekailo I E.Distribution Of Alkali Compounds In A large Blast Furnace.Metallurgist (English Translation of Metallurg),1983.(27):153~156
    [58] Gorelev P N,Kurbatov V P,Zonova T S,Korkina T B.Determining The Content Of Alkali Metal Oxides In Coal And Coke And The Possibility Of Decreasing It.Coke & Chemistry (USSR) (English translation of Koks i Khimiya),1986.(9):46~50`
    [59] Yusfin Yu S,Valavin V S,Yatsenko-Zhuk A D,Podgorodetskii G S,Nevzorov V E.Behaviour Of Alkali Metal Compounds In Sintering.Steel in the USSR,1987.(17):491~492
    [60] Y D Yang,I D Sommerville.The Correlation of Alkali Capacity With Optical Basicity of Blast Furnace Slags.Iron & Steelmaker,2000.(10):260~264
    [61] 傅永宁.炼铁学术年会论文集.钢铁编辑部.1988.11,1~3
    [62] 王颖生,仝锋.首钢高炉炉身上部损坏因素及对炉况的影响.钢铁,1999.34(12):6~8
    [63] 王瑞军,段维民.包钢 2#高炉 1998 年中修炉体破损调查报告.包钢科技,2000.26(1):1~5
    [64] 何新泽,李文一.包钢 4 号高炉长寿实践浅析.包钢科技,2001.27(3):21~23
    [65] J Bak.降低瑞典鲁基公司高炉铁矿石碱金属合量.国外金属矿选矿,1989.26(10): 1~8
    [66] 郑安忠.钢铁工业用耐火材料技术发展现状和趋势.耐火材料,1990.24(3): 1~7
    [67] 许美兰,赵忠仁.武钢 1 号高炉炉底与炉缸长寿新技术.钢铁,2002.37(2):4~6
    [68] 田村新一等.高炉耐火材料的侵蚀.国外耐火材料,1987.(3):8~11
    [69] 孙永方,王再义.鞍钢 9 号高炉破损调查.鞍钢技术,1999.(7):1~3
    [70] 李小钢,韩淑霞等.提高包钢烧结矿还原透气性的研究.包钢科技,2000.26(2):15~19
    [71] 吴荆卉.烧结矿成分对烧结利用系数和烧结矿质量的影响.鞍钢技术.1999.(2):46~51
    [72] 神原健二郎等.刘晓侦译.高炉解体研究.冶金工业出版社,1980.2
    [73] 许国忠,陈德浩等.模拟焦炭在高炉软融带碳溶反应的研究.鞍山科技大学学报,2003.2.26(1):48~51
    [74] 贾丽晖.改善武钢焦炭质量评述.钢铁研究,2000,(2):51~55
    [75] 张怡伟.韶钢 4 号高炉顺行状况的操作技术.南方金属,2002.(5)23~25
    [76] 张群,吴信慈,冯安祖,史美仁.宝钢焦炭质量预测模型Ⅰ.影响焦炭热性质的因素.燃料化学学报,2002.30(02):113~119
    [77] 张群,吴信慈,冯安祖,史美仁.宝钢焦炭质量预测模型Ⅱ.焦炭质量预测模型的建立和应用.燃料化学学报,2002.30(4):300~305
    [78] J.W. Currier,张文珑.关于高炉碱金属行为的新观点,首钢科技,1990.(5):40~46
    [79] 沫继尧.高炉冶炼中的碱金属.北京:冶金工业出版社,1992
    [80] 周世倬,魏肃.高炉内碱金属盐类的富积顺序与循环特点.炼铁.1989.(5):54~59
    [81] 李维浩,王宁,王宗,乐虎.八钢 1#350m3 高炉结瘤分析及处理.新疆钢铁,1999.(69):36~39
    [82] 王立刚,张振丰,邢树国,陈树军.承钢高炉结瘤处理技术的进步及分析.河北冶金,2000.(03):29~33
    [83] 贺明山.谈小高炉结瘤的处理.河北理工学院学报,2000.22(S1):89~95
    [84] 王永贵,刘孝华,吴明全.重钢四号高炉炉墙结厚、结瘤的预防和处理.重庆工业高等专科学校学报,2002.17(1):1~3
    [85] 梁世标.韶钢 1#高炉的长寿实践.南方钢铁,1998.(1):19~22
    [86] 李小钢,韩淑霞,康文革.提高宝钢烧结矿还原透气性的研究.包钢科技,2000.6.(2),16~19
    [87] 文光远.铁冶金学.重庆:重庆大学出版社,1991.238
    [88] 东北工学院炼铁教研室.高炉炼铁(中册).北京:冶金工业出版社,1978.2
    [89] 邓守强.高炉炼铁技术.北京:冶金工业出版社,1988.12.305~339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700