用户名: 密码: 验证码:
铝灰制备镁铝尖晶石及其在Al_2O_3-MgAl_2O_4耐火材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝灰是熔炼铝过程中产生的废弃物,通过XRD、X荧光射线、化学分析和测氮分析等检测方法,确定铝灰主要组成为(wt%):Al 26.5,AlN 16.69,Al_2O_3 6.23,NaCl 4.32,MgAl_2O_4 22.17,SiO_2 5.16,CaO 2.36,TiO25.75,Fe_2O_33.49。依据铝灰化学成分,确定以铝灰、高铝钒土和电熔镁砂为原料,铁屑为沉淀剂,焦炭粉为还原剂,采用高温电熔法合成富铝镁铝尖晶石,并对铝灰合成的镁铝尖晶石进行表征。结果表明:(1)铝灰加入量为20%、40%、60%生产的镁铝尖晶石原材料的综合理化指标超过矾土基镁铝尖晶石的技术要求;(2)铝灰加入量为40%时合成的镁铝尖晶石综合性能最好,物相成分含量为(wt%):Al_2O_3 82.48,SiO2 0.35,MgO 14.10,CaO 1.12,Fe2O3 0.25;显气孔率和体积密度分别为0.9%和3.48g/cm3,耐火度大于1800℃;(3)铝灰加入量为40%、60%生产的镁铝尖晶石中含有六铝酸钙(CA6)相。
     为验证铝灰制备的镁铝尖晶石作为耐火材料原料的可行性,本文设计了熔炼铝炉用刚玉-镁铝尖晶石耐火材料,在检测铝灰制备的镁铝尖晶石性能的同时,开发一种新的熔炼铝炉用耐火材料。以白刚玉、铝灰基镁铝尖晶石、氧化铝基镁铝尖晶石、电熔镁砂和α-Al_2O_3为原料制备刚玉-镁铝尖晶石耐火材料,并检测其物理性能和抗7075铝液和高纯铝液的侵蚀性能。通过实验得出以下结论:(1)铝灰基镁铝尖晶石制备的Al_2O_3–MgAl_2O_4耐火材料的各项物理性能及抗7075铝液和高纯铝侵蚀性能较好;(2)对炼铝炉用刚玉-镁铝尖晶石耐火材料,选择1650℃保温3小时烧结,α-Al_2O_3微粉和电熔镁砂粉加入量比例在2:1左右时,两者原位合成镁铝尖晶石,使得试样可形成致密高强度的结合;(3)侵蚀温度1127℃,镁铝尖晶石加入量大于20%时,7075铝液对刚玉-镁铝尖晶石耐火材料产生侵蚀界面只有小于1mm的薄侵蚀界面,抗铝液侵蚀性能较好;(4)刚玉–镁铝尖晶石耐火材料对高纯铝污染很小;(5)当侵蚀温度超过1027℃后,高纯铝液对刚玉–镁铝尖晶石耐火材料侵蚀加剧。
The aluminum dross generated while melting aluminum has many impurities. In this article the content of aluminum dross was tested using the X-ray diffraction, X-ray Fluorescence Analysis, Chemical analysis and Nitrometer.The result showed the presence of the following components (with the indicated numbers being wt%): Al 26.5,AlN 16.69,Al_2O_3 6.23,NaCl 4.32 , MgAl_2O_4 22.17 , SiO2 5.16 , CaO 2.36 , TiO2 5.75 ,Fe2O33.49.According to the contents of aluminum dross and the high temperature smelting theory, MgAl_2O_4 was prepared using aluminum dross, bauxite and magnesia as raw material, carbon and iron as accessory. The two steps electric melting method was used in synthesizing the MgAl_2O_4. The results indicated that MgAl_2O_4 synthesized by aluminum dross gained better the properties than bauxite based MgAl_2O_4. The MgAl_2O_4 had the best comprehensive properties when the aluminum dross addition was 40%. The XRD of MgAl_2O_4 show there was Calcium hexaluminate formation when the addition of aluminum dross was 40% and 60%.
     In order to test the properties of MgAl_2O_4 made by aluminum dross using as raw refractory material, the Al_2O_3- MgAl_2O_4 refractory was prepared and developed for refining aluminum furnace. The physical properties at room temperature and microstructures of the different components of the Al_2O_3-MgAl_2O_4 composite material were investigated using national testing standards. The effect of the Al_2O_3-MgAl_2O_4 composite material on high purity aluminum was also studied through the static crucible method. The results indicate that the specimens form a dense structure when treated at 1650℃for three hours, and synthetic MgAl_2O_4 is found in the matrix. Better cold physical properties can be obtained when the ratio ofα-Al_2O_3 and fused magnesite in the matrix is 2:1, and this ratio results in limited contamination the molten aluminum. The aluminum corrosion resistance was studied by 7075 melted alloy and melted high pure aluminum at different temperature. The specimen made by MgAl_2O_4 synthesized by aluminum dross gained good aluminum corrosion resistance.
引文
[1] 钟华萍, 李坊平. 从热铝灰中回收铝. 铝加工. 2001,24(1):54-55
    [2] Mikito Ueda, Shiro Tsukamoto, Shoichi Konda etc. Recovery of aluminum from oxide particles in aluminum dross using AlF3–NaF–BaCl2 molten salt. Journal of Applied Electrochemistry.2005, 35: 925–930
    [3] 戴栋, 戴新猷, 宋春婴. 电弧炉炼钢应用铝灰升温的试验研究. 工业加热. 1994, 1: 13-16
    [4] B.R. Das, B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das. Production of η-alumina from waste aluminum dross. Minerals Engineering. 2007, 20:252–258
    [5] Norihiro Murayama, Nobuaki Okajima, Shoichi Yamaoka, etc.. Hydrothermal synthesis of AlPO4-5 type zeolitic materials by using aluminum dross as a raw material. J. Euro. Ceram. Soc..2006, 26: 459–462
    [6] Takeshi Hashishin, Yasuhiro Kodera, Takeshi Yamamoto, and Manshi Ohyanagi,Zuhair A. Munir. Synthesis of (Mg,Si)Al2O4 Spinel from Aluminum Dross. J. Am. Ceram. Soc., 2004, 87 (3): 496–499
    [7] 陈海,王俊,孙宝德.利用铝灰生产棕刚玉的方法.中国,专利号:CN100999329A
    [8] H.N. Yoshimura , A.P. Abreu, A.L. Molisani, etc. Evaluation of aluminum dross waste as raw material for refractories. Ceram Intern. 2006,12:21-32
    [9] 张桂珍,用铝灰制备聚合氯化铝工艺研究.天津化工.1998,2:22-25
    [10] 袁向红.炼铝废渣的综合利用试验.环境污染与防治.2000,22(1):37-39
    [11] H. S Tripathi, B Mukerjee, S Das, etc. Synthesis and densification of magnesium aluminate spinel: effect of MgO reactivity. Ceram Intern, 2003, 29: 915-918
    [12] Ganesh I, Bhattacharjee S, Saha B P. An Efficient MgAl2O4 Spinel Additive for Improved Slag Erosion and Penetration Resistance of High-Al2O3 and MgO-CRefractories. Ceram Intern, 2002, 28:245-253
    [13] 姜茂发,孙丽枫,于景坤.镁铝尖晶石质耐火材料的开发与应用.工业加热.2005,34(2):56-59
    [14] 张平宣.镁铝尖晶石原料的性能及生产.武汉钢铁学院学报.1994,17(2):170-175
    [15] Flavia N. Cunha-Duncan , Richard C. Bradt. Synthesis of Magnesium Aluminate Spinels fromBauxites and Magnesias. J. Am. Ceram. Soc., 2002, 85 (12): 2995–3003
    [16] D. J. Bray. Toxicity of Chromium Compounds Formed in Refractories, Am. Ceram. Soc. Bull., 1985, 64(7):1012–1016
    [17] C. G. Marvin, Chrome-Bearing Hazardous Waste. Am. Ceram. Soc. Bull..1993, 72(6)66–68
    [18] Min Chen, Nan Wang , Wei Liu. Preparation and properties of alumina–magnesia precast block for ladle lining. Materials Letters, 2007, 61:3388–3390
    [19] A.H. De Aza, P. Pena, M.A. Rodriguez, R. Torrecillas, S. De Aza. New spinel-containing refractory cements. J. Euro. Ceram. Soc.. 2003, 23: 737–744
    [20] 陈肇友.炼铝工业用耐火材料及其发展方向.耐火材料.1996,30(1):46-49
    [21] 钱之荣,范广学.耐火材料实用手册.北京: 冶金工业出版社.1992:555-556
    [22] 杜金梅,铝和耐火材料.中国物资再生.1995, 3:14-15
    [23] K.J.Brondyke. Effect of Molten Aluminum on Alumina-Silica Refractories. J.Am.Ceram.Soc.1953, 26(5): 171-174
    [24] Michael H.O’Brien. Reduction in Aluminum Alloy Attack on Aluminosilicate Refractories by Addition of Rare-Earth Oxides. J.Am.Ceram.Soc. 1990, 73(3): 491-495
    [25] D.F. Stock, J.L. Dolph, Refractories for Aluminum Melting Furnaces. Am. Ceram. Soc. Bull., 1959, 38(7):356-360 [ 26] Domínguez C, Chevalier J, Torrecillas R, et al. Microstructure development in calci- um hexaluminate. J. Euro. Ceram. Soc., 2001, 21: 381 - 387
    [27] Beelen CM, Bol L C GM. Observations on the wear of refractory linings in alumini-um remelting furnaces. Proc 38 International Colloqium on Refractories, Aachen, Germany, 1995: 113 - 117
    [28] Hogenboom M, Frank M, Boosma D. Op timisation of the refractory lining of aluminium melting furnaces. Proc 45 International Colloquium on Refractories, Aachen, Germany, 2002: 113 - 116
    [29] 裴春秋, 石干, 徐建峰.六铝酸钙新型隔热耐火材料的性能及应用.工业炉. 2007.29(1):45-49
    [30] Cristina Domínguez, JèromeChevalier,RamonTorrecillas,GilbertFantozzi. Microstru- cture development in calcium hexaluminate. J. Euro. Ceram. Soc, 2001, 21: 381-387
    [31] 刘新彧,Andreas Buhr,Gunter Büchel等.博耐特(Bonite) —一种新型的合成致密CA6耐火原料.耐火材料.2006, 40 (1 ) 60-64
    [32] 顾华志,汪厚植,张文杰.镁铝尖晶石原料及其产品的优化设计与应用.耐火材料,1994,28(4):206-208
    [33] Flavia N. Cunha-Duncan, Richard C. Bradt. Synthesis of Magnesium Aluminate Spinels fromBauxites and Magnesias. J. Am. Ceram. Soc.,2002, 85 (12): 2995–3003
    [34] W. McCracken. Bauxite: A Refractory Workhorse. Am. Ceram. Soc. Bull..1998 77(11) 57–61
    [35] 邹明.镁铝钛耐火材料性能和抗炉外精炼渣侵蚀研究.西安建筑科技大学,学位论文.2004.6
    [36] 王维邦.耐火材料工艺学.冶金工业出版社.1994, 5:9-10
    [37] 荆桂花,肖国庆.镁铝尖晶石基耐火材料的最新研究进展.耐火材料.2004, 38(5):347-349
    [38] D′IAZ L A, Torrecillas R, Deaza H, etc. Alumina-rich refractory concretes with added spinel, periclase and dolomite: A comparative study of their microstructural evolution with temperature. J. Euro. Ceram. Soc., 2005, 25: 1499–1 506
    [39] KO Yun-Chao. Influence of the characteristics of spinels on the slag resistance of Al2O3-MgO and Al2O3-spinel castables. J. Am. Ceram. Soc., 2000, 83(9): 2333–2335
    [40] Mohapatra D, Sarkar D. Preparation of MgO-MgAl2O4 composite for refractory application. J Mater Pro Tech, 2007, 189: 279-283
    [41] Waldir de Sousa Resende, Cláudio Zirpoli, Galileu Lopes Da Silva, etc. New Refractories For Aluminum Melting Furnaces. Refractories Applications and News, 2002, 7(1):20-24
    [42] 沈建萍译.不定形耐火材料使用于炼铝工业的新方向.国外耐火材料. 2004. 29(1):1-6
    [43] 赵士明,董红芹,蒋明学等.铝熔炼炉用特种高铝砖的抗侵蚀性研究.耐火材料.2006(5):392-394
    [44] Ole-J.Siljan, Norsk Hydro. Refractories for Molten Aluminum Contact Part Ⅰ: Thermodynamics and Kinetics. Refractories Application and news.2002,7(6):17-25
    [45] Ole-J.Siljan. Refractories for Molten Aluminum Contact Part II: Influence of Pore Size on Aluminum Penetration. Refractories Application and news.2003,8(1):21-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700