用户名: 密码: 验证码:
高超声速飞行器前缘疏导式热防护结构的工作机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器工作时前缘将处于恶劣的热环境中,为保证其外形尖锐的特性,本文提出前缘疏导式热防护结构。疏导式热防护作为一种半被动热防护方式,与传统的烧蚀热防护机制不同,它采用高导热率材料、高效传热元件的传热、对流换热的物理特性将高热流区的热量快速传递到低热流区,并借助大范围的低温散热面将热量以辐射的方式释放,降低高热流区的表面温度,以达到现有耐高温材料能够承受的水平。
     本文针对高超声速飞行器前缘的疏导式热防护系统展开研究,首先建立了高超声速飞行器前缘流场的数值计算模型,通过与公开文献中壁面热流的实验结果以及采用超声速流动的高分辨率NPLS流场观测技术的流场显影实验结果进行对比,证实其计算结果与实验结果具有较好的吻合性,证明了所建立数值计算模型的可靠性。针对给定高超声速飞行器前缘进行了气动热分析,为前缘疏导式防热结构工作机理的分析提供了准确的热环境条件。
     根据热弹性力学的基本关系和传热学的研究方法,对高超声速飞行器前缘内嵌高导热率材料的疏导结构工作原理进行分析。分别对给定工况下高超声速飞行器头锥与翼前缘疏导式结构的防热效果进行了分析,对比了有无疏导结构时头锥与翼前缘的热力(温度、温度梯度与热应力)分布情况。内嵌高导热率材料的疏导结构实现了热量由高温区向低温区的转移,降低了高热流密度区的温度,提升了结构的整体辐射散热能力,实现了对前缘高温区的热防护。在高超声速飞行器头锥和翼前缘疏导式结构防热效果影响因素方面,分别讨论了高导热层厚度、高导热层弦向长度、高导热层导热系数、蒙皮表面黑度、气动加热载荷及接触热阻对防热效果的影响,为前缘疏导式结构设计和材料选取提供依据。
     为了研究前缘内嵌高温热管疏导式结构的工作原理,本文首先对常规的液态金属热管内部流动与换热情况进行建模分析。针对工质为液态金属的圆管热管的工作原理和特性,将吸液芯及其内部金属液体等效为一固体层,建立热管蒸汽腔内部流动与换热控制方程,将复杂的热管内部流动换热相变过程简化。采用所建热管工作模型对固定构型的液态金属热管进行分析,并与实验结果进行对比,验证模型具有较好的准确性。本文还根据液态金属热管的特性,分析了其传热极限,以及热管结构参数和工质种类对传热极限的影响。
     对高超声速飞行器前缘内嵌高温热管结构的最佳防热效果进行了分析,阐述了前缘结构中热管工作温度分析方法和热管蒸汽腔假定为超高导热率虚拟材料的分析方法。采用液态金属高温热管的分析方法,对弯曲前缘结构的二维防热机理进行了建模,分析单边吸液芯条件下热管的工作情况,对比了有无热管结构时前缘的温度分布情况,证明了前缘内置高温热管确实能够将头部驻点区域的热量转移至低温翼面,进而降低前缘头部温度,实现对飞行器前缘的热防护。根据前缘内嵌热管结构的二维分析方法,进一步对前缘内置高温热管结构进行三维立体建模,将热管考虑为矩形结构,并分析相应边界条件,对前缘内置热管结构进行一体化数值模拟,进一步讨论了该结构最佳防热效果的影响因素,包括高温热管的宽度与长度、蒙皮外壁面黑度以及热管与蒙皮之间的接触热阻。
     根据现有前缘内嵌高温热管结构容易出现的问题,提出一种一体化前缘热管结构,并对该结构进行详细介绍。一体化前缘热管结构的吸液芯由矩形槽道构成,其蒸汽腔中含有毛细材料制成的柱体,它能在提供毛细力的同时起到支撑蒸汽腔的作用。由于一体化前缘热管结构内部流动与换热情况十分复杂,考虑其高导热性,进而将其蒸汽腔等效为一高导热固体层,吸液芯依据固-液混合体进行导热情况分析。根据一体化前缘热管结构的特性,研究了该前缘热管结构的传热极限(声速极限、毛细极限和沸腾极限),并分别对工质为Na和Li时,不同工作温度的前缘内嵌热管结构的适用性进行了讨论。
     根据高超声速飞行器前缘两类疏导式防热结构,分别设计了内嵌铜材料的钢质前缘实验件以及一体化层板式热管前缘实验件。通过球形短弧氙灯辐射加热前缘,测量前缘采用疏导结构前后的温度分布,验证了前缘疏导式防热结构的防热效果。
The dredging thermal protection structure (DTPS) is considered as thermalprotection system to prevent hypersonic vehicle whose leading edge should remainsharp outline at work from the serious aerodynamic heating. Dredging thermalprotection which is semi-passive thermal protection is different from the traditionalablation thermal protection system mechanism. Using heat transfer and heat convectionphysical properties of high thermal conductivity materials and high-performance heattransfer elements, it transfers heat power from high heat flux region to low one. Andthen the severe aerodynamic heating is released by radiating through a large number oflow heat flux area. It reduces local stagnation temperature sufficiently to allow the useof superalloy materials.
     The work in this thesis is about the mechanism of hypersonic vehicle’s DTPS. Thenumerical calculation model of hypersonic vehicle leading edge’s flow field isestablished. And the numerical calculation result is contrast with the wall heat flow ofopen experiment and the flow field distribution which is got by high-definition NPLSthat is observation techniques of hypersonic flow. The comparison results can approvethe numerical calculation model has good accuracy. The aerodynamic heating ofhypersonic vehicle’s leading edge can provide correct thermal environment conditionfor the research of mechanism of DTPS.
     According to the thermal elastic mechanics and classic heat transfer, thefundamental of hypersonic vehicle’s leading edge embedded high thermal conductivitymaterials is studied. Both nose cone and wing leading edge of hypersonic vehicle’sDTPS are researched under given condition. The distributions of thermal forceconditions which include temperature, temperature gradient and thermal stress arecontrasted when the leading edge structure has DTPS or not. Achieving the transfer ofheat from high temperature region to low one, the temperature of high heat flux area isreduced and the radiation cooling ability of integral DTPS is strengthened. The thermalprotection for the leading edge’s high temperature region is obtained. The influencingfactors which contain the thickness, length and thermal conductivity of highconductivity material layer, the black level of coating surface, the thermal load and thecontact thermal resistance of hypersonic vehicle leading edge’s DTPS to thermalprotection effect are discussed. These factors can provide a frame of reference for thedesign of structure and the selection of materials.
     For researching the mechanism of DTPS which has been embedded hightemperature heat pipe, the flow and heat transfer model of conventional liquid metalheat pipe has been built. Against the working principle and characteristics ofconventional liquid metal heat pipe, the wick and internal liquid metal are considered as a solid layer during the studying model. The complex flow and heat transfer processduring the heat pipe have been simplified. And its result is contrasted with experimentdata which can approve it has good accuracy when the working fluid is liquid metal.The heat transfer limits of conventional liquid metal heat pipe and their influencingfactors have been studied.
     Using the analytical methods of working temperature of heat pipe and consideringvapor chamber as high thermal conductivity virtual material, the best thermal protectioneffect of hypersonic vehicle leading edge’s DTPS which has been embedded hightemperature heat pipe has been researched. The two-dimension thermal protectionmechanics of curving leading edge’s DTPS is studied by using the analytical procedureof high temperature liquid metal heat pipe. The temperature distribution re contrastedwhen the leading edge structure has DTPS or not. Achieving the transfer of heat fromhead to after-body, the front head of the thermal load is weakened and the ability ofleading edge thermal protection is strengthened. The three-dimension integral model ofleading edge’s DTPS has been established when the cross section of heat pipe isconsidered as rectangle. Then the best thermal protection effect’s influencing factorswhich contain the width and length of heat pipe, the black level of coating surface andthe contact thermal resistance between heat pipe and coating are discussed.
     The integral heat-pipe-cooled leading edge structure (IHPCLE) is considered asthermal protection system to solve the questions which present leading edge’s DTPSalways have. The wick of IHPCLE composes by rectangle channel. The vapor chambercontains cylinder which is made up by capillary material to support structure and toprovide capillary force. As the complex flow and heat transfer process during theIHPCLE, the vapor chamber of IHPCLE is considered as a high thermal conductivitysolid layer and the wick and internal liquid metal is considered as compound body. Theheat transfer limits of IHPCLE are studied. When the working fluid is Na and Li, theapplicability of IHPCLE is researched under different working temperature.
     According to the DTPS of leading edge, both the structure of embedded coppersteel leading edge and IHPCLE system are designed. Using the xenon lamp as heatsource, the dredging thermal protection effect are proved though measuring thetemperature of leading edge which has DTPS or not.
引文
[1] Shang J. S. Plasma injection for hypersonic blunt-body drag reduction[J]. AIAAJournal,2002,40(6):1178-1186.
    [2]乐嘉陵等编.再入物理[M].北京:国防工业出版社,2005.
    [3] Fujino T., Ishikawa M. Numerical Simulation of Control of Plasma Flow WithMagnetic Field for Thermal Protection in Earth Reentry Flight[J]. IEEETransactions on Plasma Science,2006,34(2):409-420.
    [4] Sulliven L. J. The Early History of Reentry Physics Research at LincolnLaboratory[J]. AD-A245595,1991.
    [5] Anderson J. D. Hypersonic and High Temperature Gas Dynamics[M]. New York:McGraw-Hill,1989.
    [6]张蒙正,邹宇.美国典型高超飞行器项目研发及启示[J].火箭推进,2012,38(2):33-35.
    [7] Bertin J. J., Cummings R M. Fifty years of hypersonics: where we’ve been andwhere we’re going[J]. Progress in Aerospace Sciences,2003,39:511-536.
    [8]于江飞,刘卫东.双燃烧室冲压发动机为动力的高超声速飞行器[J].导弹与航天运载技术,2008,(5):26-30.
    [9]温杰.美国海军的HyFly计划[J].飞航导弹.2008,(12):12-15.
    [10] Steven H. Walker, Col Jeffrey Sherk, et al. The DARPA/AF Falcon program: Thehypersonic technology vehicle(HTV-2) flight demonstration phase[C]. AIAA2008-2539.
    [11]刘桐林.俄罗斯高超声速技术试飞试验计划(一)[J].武器系统,2000,(4):23-25.
    [12]李大光.世界各国高超声速武器发展现状[J].国防技术基础,2007,(5):46-47.
    [13]沈剑,王伟.国外高超声速飞行器研制计划[J].飞航导弹,2006,(8):5-7.
    [14] Hempsell M, Longstaff R. Skylon User Manual[M]. Reaction Engines Limited,2009.
    [15] Lin T. C, Sproul L K, Hall D W, et al. Reentry Plasma on Electromagnetic WavePropagation[A].26th AIAA Plasmadynamics and Lasers Conference[C], SanDiego, CA,1995.
    [16]潘沙.高超声速气动热数值模拟方法及大规模并行计算研究[D].国防科技大学博士学位论文,2010.
    [17] Glass D. E. Ceramic matrix composite (CMC) thermal protection systems (TPS)and hot structures for hypersonic vehicles[A].15th AIAA Space Planes andHypersonic Systems and Technologies Conference[C].2008. AIAA-2008-2682.
    [18] Dotts R L, Maraia J, Smith J A, Strouhal G. Thermal insulation protectionmeans[P]. US Patent No.:4151800,1979.
    [19]马忠辉,孙秦,王小军,杨勇.热防护方法多层隔热结构传热分析及性能研究[J].宇航学报,2003,5:543-546.
    [20]闫长海,孟松鹤,陈贵清,杜善义.金属热防护方法隔热材料的发展与现状[J].导弹与航天运载技术,2006,4:48-52.
    [21]吴宗汉,许人伍.航天飞机机身上的隔热系统与材料[J].物理通报,2007,11:3-6.
    [22]戴赫,汪礼敏,张佳萍,王璐,杨中元,张景怀,林锋.新型高温隔热可磨耗封严涂层研究及展望[J].材料导报,2008,7:18-21.
    [23] Hudrisier S, Ory D, Salmon T, Baiocco P. PRE-X in-flight experimentation andmeasurement plan on TPS[A].5th European Workshop on Thermal ProtectionSystems and Hot Structures[C]. Noordwijk, Netherlands,2006.
    [24] Olsen M A. Thermal protection systems for hypersonic vehicles[J]. Journal ofUNSW@ADFA Undergraduate Hypersonics,2007,1(1).
    [25]黄伟,罗世彬,王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报,2010,31(5):1259-1265.
    [26] Fields R. A, Vano A. Evaluation of an infrared heating simulation of a Mach4.63flight on an X-15horizontal stabilizer[R]. NASA TN D-5403,1969.
    [27] Amundsen R M, Leonard C P, Bruce W E III. Hyper-X hot structures comparisonof thermal analysis and flight data[A].15th Annual Thermal and Fluids AnalysisWorkshop[C]. Pasadena, California, US.2004.
    [28]徐向华,任建勋,梁新刚.近地倾斜轨道航天器在轨热辐射分析[J].太阳能学报,2004,5:717-721.
    [29]任德鹏,贾阳,刘强.肋片参数对辐射器散热性能的影响研究[J].中国空间科学技术,2007,27(04):21-27.
    [30] Trabandt U, Schmid T, Werth E. CMC and metallic hot structure hybridcomponents for RLV[A].54th International Astronautical Congress[C]. Breman,Germany,2003.
    [31] Rivers H K, Glass D E. Advances in hot structures development[A].5thEuropean Workshop on Thermal Protection Systems and Hot Structures[C].Noordwijk, Netherlands,2006.
    [32] Silverstein C C. A feasibility study of heat-pipe-cooled leading edges forhypersonic cruise aircraft[R]. NASA CR1857,1971.
    [33] Norwood L B. Low-cost fabrication and installation of ablative heat shields forthe space shuttle orbiter[A].18th National Symposium and Exhibition[C]. LosAngeles, Calif, US,1973.
    [34] Strauss E L. Ablative thermal protection for space tug multipass, aerobrakingentry[J]. Journal of Spacecraft and Rockets,1974,12:346.
    [35] Ruperti N, Cotta R, Falkenber C, Su J. Engineering analysis of ablative thermalprotection for atmospheric reentry: improved lumped formulations and symbolicnumerical computation[J]. Heat Transfer Engineering,2004,25(6):101-111.
    [36] Dec J A, Braun R D. An approximate ablative thermal protection system sizingtool for entry system design[A]. AIAA Aerospace Sciences Conference[C]. Reno,NV, US,2006. AIAA-2006-0780.
    [37] Laub B, White S. Arcjet screening of candidate ablative thermal protectionmaterials for Mars Science Laboratory[J]. Journal of Spacecraft and Rockets2006,43(2):367-373.
    [38] Bouilly J M, Bonnefond F, Dariol L, Jullien P, Leleu F. Ablative thermalprotection systems for entry in Mars atmosphere. A presentation of materialssolutions and testing capabilities[A].4th International Planetary ProbeWorkshop[C]. Pasadena, California, US,2006.
    [39] Mazzaracchio A, Marchetti M. A probabilistic sizing tool and Monte Carloanalysis for entry vehicle ablative thermal protection systems[J] ActaAstronautica,2009,66(5-6):821-835.
    [40] Cozmuta I, Wright M J, Laub B, Willcockson W H. Defining ablative thermalprotection system margins for planetary entry vehicles[J] Earth, June2011:1-27.
    [41] Kanda T, Masuya G, Wakamatsu Y. Propellant feed system of a regenerativelycooled scramjet[J]. Journal of Propulsion and Power,1991,7:299-301.
    [42] Yamada T, Shimizu Y, Toki K, Kuriki K. Thrust performance of a regenerativelycooled low-power arcjet thruster[J]. Journal of Propulsion and Power,1992,8(3):650-654.
    [43] Naraghi M H, Dunn S, Coats D. A model for design and analysis ofregeneratively cooled rocket engines[A]. Joint Propulsion Conference[C]. FortLauderdale, Florida, US,2004. AIAA-2004-3852.
    [44] Locke J M, Landrum D B. Study of heat transfer correlations for supercriticalhydrogen in regenerative cooling channels[J]. Journal of Propulsion and Power,2008,24(1):94-103.
    [45]吴峰,王秋旺,罗来勤.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,(04).
    [46]吴峰,王秋旺,罗来勤.液体火箭发动机推力室冷却通道流动与传热数值研究[J].推进技术,2005,26(05).
    [47]吴峰,王秋旺,罗来勤,曾敏,孙纪国.液体火箭发动机推力室冷却通道传热优化计算[J].推进技术,2006,27(3).
    [48]汪小卫,金平,孙冰.全流量补燃循环发动机推力室再生冷却技术研究[J].航空动力学报,2008,23(5):909-915.
    [49] Goldstein R J. Film cooling[J]. Advances in Heat Transfer,1971,7:321-379.
    [50] Ito S, Goldstein R J, Eckert E R G. Film cooling of a gas turbine blade[A]. TokyoJoint Gas Turbine Congress[C]. Tokyo, Japan,1977.
    [51] Sinha A K, Bogard D G, Crawford M. E. Film-cooling effectiveness downstreamof a single row of holes with variable density ratio[J]. Journal of Turbomachinery,1991,113(3):442-449.
    [52] Sen B, Schmidt D L, Bogard D G. Film cooling with compound angle holes: heattransfer[J]. Journal of Turbomachinery,1996,118(4):800-806.
    [53] Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes:adiabatic effectiveness[J]. Journal of Turbomachinery,1996,118(4):807-813.
    [54]王建,孙冰,魏玉坤.超声速气膜冷却数值模拟[J].航空动力学报,200823(5):865-870.
    [55] Aupoix B., Mignosi A., Viala S. Experiment al and numerical study of supersonicfilm cooling[J]. AIAA J.,1998,36(6):916-923.
    [56]韩启祥,何小明,谈浩元,等.超声速射流气膜冷却效果的试验研究[J].南京航空航天大学学报,1998,30(5):491-495.
    [57] YANG Xiaobo, Badcockt K J, Richards B E, et al. A numerical study ofhypersonic turbulent film cooling [C].43rd AIAA Aerospace Sciences Meetingand Exhibit. Reno, Nevada:2005, AIAA2005-386.
    [58]朱惠人,许都纯,刘松龄.气膜孔形状对排孔下游冷却效率的影响[J].航空学报,2002,23(1):75-78.
    [59] D. G. Bogard and K. A. Thole. Gas turbine film cooling[J]. J. Propulsion andPower,22(2):249-270,2006.
    [60] M. Harrington, M. McWaters, D. G. Bogard, C. Lemmon, and K. Thole. Fullcoverage film cooling with short normal injection holes[J]. J. Turbomachinery,123:798-805,2001.
    [61]原和朋,朱惠人,孔满昭.后台阶三维缝隙冷却效率的数值模拟[J].燃气轮机技术,2006,19(4):38-42.
    [62]刘江涛,吴海玲,陶涛,等.斜孔气膜冷却数值模拟分析[J].工程热物理学报,2004,25(6):1034-1036.
    [63] Carlos A C, Marshall A W. Surface and gas-phase temperatures near a filmcooled wall[R]. AIAA-2004,3654,2004.
    [64] Han Jechin, Jenkins P E. Predict ion of f ilm cooling effectiveness of stream[R].AIAA-3654,2004.
    [65]杨宝庆,陈建华,周立新.推力室多条内冷却环带近壁层混合比计算新模型[J].火箭推进,2002,28(4):20-25.
    [66]陈建华,卢钢,张贵田,周立新,孙宏明.冷却环带喷注结构对煤油超临界液膜的影响研究[J].航空动力学报,2008,23(2):336-341.
    [67] Matesanz A, Velazquez A, Rodriguez M. Performance of algebraic and models inthe study of film cooling problems inside convergent-divergent nozzles[R].AIAA-94-3384,1994.
    [68] Katorgin B I, Chvanov V K, Chelk is F J. RD-180engine production and flightexperience[R]. AIAA-2004-3998,2004.
    [69] Cook R T, Quentmeyer R J. Advanced cooling techniques for high pressurehydrocarbon fuel rocket engines [R]. AIAA80-1266,1980.
    [70] Wolkmann J C, Mcleod J M, Claflin S E. Investigation of throat film coolant foradvanced LOX/RP-1thrust chambers[R]. AIAA91-1979, Int.27thAIAA/SAE/SAME/ASEE Joint Propulsion Conference,1979.
    [71] Grisson W M. Liquid film cooling in rocket engines[R]. AD-A234288,1989.
    [72] Luikov A V. Heat and mass transfer with transpiration cooling[J]. InternationalJournal of Heat and Mass Transfer,1963,6(7):559-570.
    [73] Keener D, Lenertz J, Bowersox R, Bowman J. Transpiration cooling effects onnozzle heat transfer and performance[J]. Journal of Spacecraft and Rockets,1995,32(6):981-985.
    [74] Beckwith I E. Similar solutions for the compressible boundary layer on a yawedcylinder with transpiration cooling[R]. NASA No.19980231019,1998.
    [75] Andoh Y H, Lips B. Prediction of porous walls thermal protection by effusion ortranspiration cooling. An analytical approach[J], Applied Thermal Engineering,2003,23(15):1947-1958.
    [76] Von Wolfersdorf J. Effect of coolant side heat transfer on transpiration cooling[J].Heat And Mass Transfer,2005,41(4):327-337.
    [77] John E Terry. Transpiration and film cooling of liquid rocket nozzles[R]. AD98-486409.
    [78] Hutt C R, Howe A J. Forward facing spiked effects bodies of differentcrosssection in supersonic flow [J]. The Aeronautical Journal of the RoyalAeronautical Society,1989,93(6):229-234.
    [79] Grawford D H. Investigation of the flow over a spiked nose hemisphere cylinderat Mach number6.8[R]. NASA TN-D118,1959.
    [80] Maull D J. Hypersonic flow over axially symmetric spiked bodies[J]. J. F. M.,1960,8(4):584-592.
    [81]张涵信,黄洁高树椿.带针尖杆的钝体粘性绕流的数值模拟[J].航空学报,1994,15(5):519-525.
    [82]耿云飞,阎超.高超声速自适应激波针数值研究[J].力学学报,2011,43(3):441-446.
    [83] Ahmed M.Y.M., Qin N. Metamodels for aerothermodynamic design optimizationof hypersonic spiked blunt bodies[J]. Aerospace Science and Technology2010,14:364-376.
    [84] Mehta R.C. Numerical Simulation of Self-Sustained Oscillations Over SpikedBlunt-Bodies[R]. AIAA2001-0262,2011.
    [85] Mehta R.C. Heat Transfer Analysis over Disc and Hemispherical Spike Attachedto Blunt-Nosed Body at Mach6[R]. AIAA2011-2228,2011.
    [86] YAMAUCH I. M., FUJII K., HIGASHINO F. Numerical investigation ofsupersonic flows around a spiked blunt-body[R]. AIAA93-0887,1993.
    [87] MEHTA R. C. Numerical heat transfer study over spikedblunt bodies at Mach6.80[R]. AIAA2000-0344,2000.
    [88] Viren Menezes, S. Saravanan, G. Jagadeesh, and K. P. J. Reddy. ExperimentalInvestigations of Hypersonic Flow over Highly Blunted Cones withAerospikes[J]. AIAA J.,2003,41(10):1955-1966.
    [89] J. Michael Shoemaker. Aerodynamic Spike Flowfield Computed to SelectOptimum Configuration at Mach2.5with Experimental Validation[J].AIAA-90-0414,1990.
    [90] Lawrence D. Huebner, Anthony M. Mitchell. Experimental Results on theFeasibility of an Aerospike for Hypersonic Missiles[R]. AIAA95-0737,1995.
    [91] Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T. and Kubota, H., ThermalProtection and Drag Reduction with use of Spike in Hypersonic Flow[R], AIAApaper2001-1828,2001, Vol.32, No.1, January-February1995
    [92] Bogdonoff, S. M, and Vas, I. E. Preliminary Investigations of Spiked Bodies atHypersonic Speeds[J]. Journal of the Aero. Space Sciences, Vol.26, No.2,1959,pp.65-74.
    [93] Masafumi Yamauchi, Kozo Fujii and Fumio Higashino. Numerical Investigationof Supersonic Flows Around a Spiked Blunt Body[J]. J. of Spacecraft andRockets,1995,32(1):32-42.
    [94]培强.三叉戟I型导弹的减阻空气锥[J].现代军事,1985,1:25-29.
    [95] Laptoff M. Wingflow study of pressure drag reduction at transonic speed byprojecting a jet of air from the nose of a prolate spheroid of fineness ratio6[R].NACA RM L5109,1951.
    [96] Warren C H E. An experimental investigation of the effect of ejecting a coolantgas at the nose of a bluff body[J], Journal of Fluid Mechanics,1960,8:400-417.
    [97] Finley P J. The flow of a jet from a body opposing a supersonic free stream[J].Journal of Fluid Mechanics,1966,26(2):337-368.
    [98] Fujita M. Axisymmetric oscillations of an opposing jet from a hemisphericalnose[A].32nd Aerospace Sciences Meeting and Exhibit[C]. Reno, NV, US.January,1994. AIAA94-0659.
    [99] Aso S, Kurotaki T. Experimental and computational study on reduction ofaerodynamic heating load by film cooling in hypersonic flows[A].35th AIAAAerospace Sciences Meeting and Exhibit[C]. Reno, NV,1997. AIAA97-0770.
    [100] Meyer B, Nelson H F, Riggins D.Hypersonic drag and heat-transfer reductionusing a forward-facing jet[J].Journal of Aircraft,2001,38(4):680-686.
    [101] Aso S, Hayashi K, Mizoguchi M. A study on aerodynamic heating reduction dueto opposing jet in hypersonic flow[A].40th AIAA Aerospace Sciences Meetingand Exhibit[C]. Reno, NV,2002. AIAA2002-0646.
    [102] Takagi R. Numerical simulation of heating rate reduction by directed energy airspike[J]. Journal of the Japan Society for Aeronautical and Space Sciences,2002,50:109-117.
    [103] Hayashi K, Aso S. Effect of pressure ratio on aerodynamic heating reduction dueto opposing jet[A].33rd AIAA Fluid Dynamics Conference and Exhibit[C].Orlando, FL, US,2003. AIAA2003-4041.
    [104] Kitamura T, Ohnishi N, Sawada K. Computational analysis of opposing jet fromvertical-lander space vehicle[A].42nd AIAA Aerospace Sciences Meeting andExhibit[C]. Reno, NV,2004. AIAA2004-0871
    [105] Hayashi K, Aso S, Tani Y. Numerical study of thermal protection system byopposing jet[A].43rd AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno,NV,2005. AIAA2005-188.
    [106] Hayashi K, Aso S, Tani Y. Experimental study on thermal protection system byopposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets,2006,43(1):233-235.
    [107] Suzuki T, Nonaka S, Inatani Y. Computations of opposing jet from verticallanding rocket vehicle[A].24th AIAA Applied Aerodynamics Conference[C].San Francisco, CA, US,2006. AIAA2006-3329
    [108]陈延辉,关于超声速气流中喷嘴逆向喷射降低气动热问题的研究[J].飞航导弹,2004(12):47-52.
    [109]李海燕,额日其太.反向喷流减小了气动加热技术[J].飞航导弹,2006(1):28-30.
    [110]李海燕,额日其太.反向喷流降低钝体头部气动加热的数值模拟研究[A].第三届工程计算流体力学会议[C].2006:287-293.
    [111]耿湘人,桂业伟,王安龄,贺立新.利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J].空气动力学学报,2006,24(1):85-89.
    [112]何琨,陈坚强,董维中.逆向喷流流场模态分析及减阻特性研究[J].力学学报,2006,38(4):438-445.
    [113]田婷,阎超.超声速场中的反向喷流数值模拟[J].北京航空航天大学学报,2008,34(1):9-12.
    [114] Anurag G., Stephen M. Investigation of Artificially Blunted Leading EdgeGeometries with curved Channels for High Speed Drag Reduction[C].38thAerospace Sciences Meeting and Exhibit. January10-13,2000,AIAA-2000-0901.
    [115] Anurag G., Stephen M. Application of Artificially Blunted Leading EdgeConcept for Directional Control of High Speed Vehicle[C]. Fluids2000, June,19-22,2000, AIAA-2000-2598.
    [116] Jing P., Chao Y., Yunfei G., Jie W.. Aerothermodynamics of the WaveridersApplying Artificially Blunted Leading Edge Concept[C].47th AIAA AerospaceSciences Meeting Including The New Horizons Forum and Aerospace Exposition.January5-8,2009, AIAA-2009-748.
    [117] Roukis, J., Rogovin, J and Swerdling, B., Heat Pipe Applications to SpaceVehicles[C], AIAA6th Thermophysics Conference. April26-28,1971,AIAA-71-0410
    [118] Scollon, T. R. Jr., Heat Pipe Energy Distribution System for Spacecraft ThermalControl[C], AIAA6th Thermophysics Conference. April26-28,1971,AIAA-71-0412.
    [119] Tawil, M., Alario, J., Prager, R. and Bullock, R., Heat Pipe Applications for theSpace Shuttle[C], AIAA6th Thermophysics Conference. April10-12,1972,AIAA-72-0272.
    [120] Donovan, B. D., Chang, W. S. and Gottschlich, J. M., Missile Fin Heat PipeCooling[R]. AD358663, May1998.
    [121] Bruno C. and Buffone C., Nozzle Cooling in the Future Rubbia’s Engine TestFacility[C],2002, Paper ISTS2002-a-22, presented at the23rd InternationalSymposium on Space Technology and Science, May26-June02, Matsue, Japan.
    [122] Buffone, C., Bruno, C. and Sefiane, K., Liquid Metal Heat Pipes for CoolingRocket Nozzle Walls[C],39th AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit20-23July2003, AIAA-2003-4452.
    [123] Niblock, G. A., Reeder, J. C., and Huneidi, F., Four Space Shuttle Wing LeadingEdge Concepts[J], Journal of Spacecraft and Rockets, Vol.11, No.5,1974:314-320.
    [124] Anon. Study of Structural Active Cooling and Heat Sink Systems for SpaceShuttle[R]. NASA CR123912, June1972.
    [125] Camarda, C. J. Analysis and Radiant Heating Tests of a Heat-Pipe-CooledLeading Edge[R]. NASA TN D-8468, Aug.1977.
    [126] Camarda, C. J. Aerothermal Tests of a Heat-Pipe-Cooled Leading Edge at Mach7[R]. NASA TP-1320, Nov.1978.
    [127] Camarda, C. J. and Masek, R. V. Design, Analysis and Tests of a Shuttle-TypeHeat-Pipe-Cooled Leading Edge[J]. Journal of Spacecraft and Rockets, Vol.18,No.1,1981:71-78.
    [128] Peeples, M. E., Reeder, J. C., and Sontag, K. E. Thermostructural Applications ofHeat Pipes[R]. NASA CR159096, June1979.
    [129] Boman, B. L., Citrin, E. C., Garner, E. C., and Stone, J. E., Heat Pipes for WingLeading Edges of Hypersonic Vehicles[R], NASA CR181922, Jan.1990.
    [130] Boman, B. L., and Elias, T.,“Tests on a Sodium/Hastelloy X Wing Leading EdgeHeat Pipe for Hypersonic Vehicles[C],” AIAA Paper90-1759, June1990.
    [131] Merrigan, M. A., Sena, J. T., and Glass, D. E., Evaluation of aSodium/Hastelloy-X Heat Pipe Designed to Cool the Wing Leading Edge of anAdvanced Space Transportation System[C], Proceedings of the ASME HeatTransfer Conference, Houston, TX, August1996:333-341.
    [132] Clark, L. T., and Glenn, G. S. Design Analysis and Testing of Liquid Metal HeatPipes for Application to Hypersonic Vehicles[R]. AIAA Paper88-2679, June1988.
    [133] Wojcik, C. C. Niobium Alloy Heat Pipes for Use in Oxidizing Environments[C].8th Symposium on Space Nuclear Power Systems, Albuquerque, NM, January1991:326~333.
    [134] Wojcik, C. C. and Clark, L. T. Design, Analysis, and Testing of Refractory MetalHeat Pipes Using Lithium as the working fluid[R]. AIAA Paper91-1400, June1991.
    [135] Glass, D. E., Camarda, C. J., Sena, J. T., and Merrigan, M. A., Fabrication andTesting of Heat Pipes for a Heat-Pipe-Cooled Leading Edge[C], AIAA97-3876,August1997.
    [136] Glass, D. E., and Camarda, C. J., Preliminary Thermal/Structural Analysis of aCarbon-Carbon/Refractory-Metal Heat-Pipe-Cooled Wing Leading Edge[C],Thermal Structures and Materials for High Speed Flight, edited by E. A.Thornton, Vol.140, Progress in Astronautics and Aeronautics, AIAA,Washington, DC,1992, pp.301-322.
    [137] Glass, D. E., Merrigan, M. A., and Sena, J. T., Fabrication and Testing of Mo-ReHeat Pipes Embedded in Carbon/Carbon[R], NASA/CR-1998-207642, March1998.
    [138] Glass, D. E., Closed Form Equations for the Preliminary Design of aHeat-Pipe-Cooled Leading Edge[R], NASA CR-1998-208962, Dec.1998
    [139] Glass, D. E., Camarda, C. J., Merrigan, M. A., Sena, J. T., and Reid, R. S.,Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe[C], AIAA-99-4866
    [140] Glass, D. E., Camarda, C. J., Merrigan, M. A. and Sena, J. T., Fabrication andTesting of Mo-Re Heat Pipes Embedded in Carbon/Carbon[J], Journal ofSpacecraft and Rockets, Vol.36,#1, pp.79-86,1999
    [141] Glass, D. E., Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles[R],NASA/CR-2006, July2006.
    [142] Glass, D. E., Merski, N. R. and Glass, C. E., Airframe Research and Technologyfor Hypersonic Airbreathing Vehicles[R], NASA/TM-2002, July2002.
    [143] Steeves, C. A., He, M. Y., Valdevit, L. et al. Metallic Structural Heat Pipes asSharp Leading Edges for Mach7Vehicles[C], Proceedings of IMECE2007,November11-15,2007, Seattle, USA.
    [144] Steeves, C. A., He, M. Y., Valdevit, L., et al. Feasibility of Metallic StructuralHeat Pipes as Sharp Leading Edges for Hypersonic Vehicles[J], Journal ofApplied Mechanics MAY2009, Vol.76,031014-1-9.
    [145]姜贵庆,艾邦成,俞继军,陈连忠.高温热管在疏导式热防护技术中的应用
    [C].第十一届全国热管会议论文集,威海,2008:72-78.
    [146]陈连忠,欧东斌,刘德英.高温热管在热防护中应用初探[J].前沿科学,2009.10(3):41-45.
    [147]吴国庭.统一热管理的疏导式防热系统概念研究[J].航天器工程,2009, Vol.18, No.4:13-18.
    [148]曲伟,王焕光.高温及超高温热管的相容性和传热性能[J].化工学报,2011,Vol.62, No.S1:77-81.
    [149]刘冬欢,郑小平,王飞,刘应华.内置高温热管热防护结构的传热防热机理[J].清华大学学报,2010,50(7):28-36.
    [150]刘冬欢,郑小平,王飞,刘应华.内置高温热管C/C复合材料热防护结构热应力耦合机制[J].复合材料学报,2010,27(3):43-49.
    [151]刘冬欢,尚新春.接触热阻对疏导式热防护结构防热效果的影响研究[J].航空学报,2012,33:1-7.
    [152]李同起,胡子君,定向高导热碳材料及其热管理结构设计[J],航空材料工艺,2007第1期:16-18.
    [153]贺福.碳纤维及其应用技术[M],北京:化学工业出版社,2004:133.
    [154] Klett, J., Hardy, R., Romine, E. et al. High-thermal-conductivity,Mesophase-pitch-derived Carbon Foams: Effect of Precursor on Structure andProperties[J]. Carbon,2000,38:953-973.
    [155] Adams, P. M., Katzman, H. A., Rellich, G. S. et al. Characterization of HighThermal Conductivity Carbon Fibers and a Self-reinfored Graphite Panel[J].Carbon,1998;36(3):233.
    [156]日本炭素材料学会,中国金属学会炭素材料专业委员会编译.新炭材料入门.1999:120.
    [157] Heremans, J. and Beetz, C. P. Thermal Conductivity and Thermopower ofVapor-grown Graphite Fibers[J]. Physical Review B,1985;32(4):1981-1986.
    [158] Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H.m, Thernal Conductanceof an Individual Single-wall Carbon Nanotube above Room Temperature[J].Nano Letters.2006, Vol.6:96-100.
    [159] Hone, J., Whitney, M., Piskoti, C. and Zettl, A., Thermal Conductivity ofSingle-wall Carbon Naontube[J]. Physical Review B,1999, Vol.59,R2514-R2516.
    [160] Kim, P., Shi, L., Majumdar, A. and McEuen, P. L, Thermal TransportMeasurements of Individual Multiwalled Nanotubes[J]. Physical Review Letters,2001, Vol.87,215502.
    [161] Balandin, A. A., Ghosh, S., and Bao, W. et al., Superior Thermal Conductivity ofSingle-Layer Graphene[J], Nano Letters., Vol.8, No.3,2008:902-907.
    [162] Berger, S.; Kwon, Y-K.; Tománek, D. Unusually High Thermal Conductivity ofCarbon Nanotubes[J]. Physical Review Letters.2000,84,4613-4616.
    [163] Osman, M. A., Srivastava, D., Temperature Dependence of the ThermalConductivity of Single-wall Carbon Nanotubes[J]. Nanotechnology,2001, Vol.12, pp:21-24.
    [164] Drolen B. L., Johnson D. S.. High Thermal Conductivity Graphite CompositeThermal Doublers[C].30th Aerospace Science Meeting and Exhibit, January6-9,1992, AIAA-92-0706.
    [165] Peck S. O.. High thermal conductivity Graphite in Space Application[C].AIAA-95-26840.
    [166] Nagano H., Ohnoishi A., Nagasaka Y.. Thermophysical Properties ofHigh-Thermal-Conductivity Graphite Sheets for Spacecraft Thermal Design[J].Journal of Thermophysics and Heat Transfer,2001,15(3):347-353.
    [167] Atxaga G., Marcos J., Segura M., Landaberea A., Antolin J. C., Lamela F..Multifunctional Structures Using High Thermal Conductivity Fibres[J]. Journalof Thermophysics and Heat Transfer,2003,17(8):320-328.
    [168]姜贵庆,艾邦成,俞继军.疏导热防护的固体传导的性能表征与传导特性分析[J],空气动力学学报,2008, Vol.26:44-50.
    [169]石振海,李克智,李贺军,田卓.航天器热防护材料研究现状与发展趋势[J].材料导报,2007,21(8):15-17.
    [170]瞿章华,刘伟,曾明,柳军.高超声速空气动力学[M].长沙:国防科技大学出版社,2001(第二版).
    [171] Diomar C L.Povitsky A. Modeling of Plume Dynamics in Laser Ablation withApplication to Nanotubes Synthesis.
    [172]王晓栋.超声速燃料冲压发动机内部流场的数值模拟[D].中国空气动力研究与发展中心研究生部博士学位论文,2001.9.
    [173] Gordon S, McBride B J. Computer program for Calculation of ComplexChemical Equilibrium Compositions, Rocket Performance[J]. Incident andReflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273,1971.
    [174] Wilke C R. A Viscosity Equation for Gas Mixtures[J]. J. Chem. Phys.,1950,18(4)
    [175]王应时,范维澄,周力行,徐旭常.燃烧过程数值计算[J].科学出版社,1986:118-123.
    [176]常雨.超声速/高超声速等离子体流场数值模拟及其电磁特性研究[D].国防科技大学博士学位论文,2009.4.
    [177]王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M].长沙:国防科技大学出版社,2000(第一版).
    [178] Peery K M, Imlay S T. Blunt-body flow simulations[R]. AIAA Paper88-2904,1988.
    [179] Chauvat Y, Moschetta J M, Gressier J. Shock wave numerical structure and thecarbuncle phenomenon[J]. International Journal of Numerical Methods in Fluids,2004,00:1-6.
    [180] Ramalho M V C, Azevedo J H A, Azevedo J L F. Further investigation into theorigin of the carbuncle phenomenon in aerodynamic simulations[A].48th AIAAAerospace Sciences Meeting Including the New Horizons Forum and AerospaceExposition[C]. Orlando, FL, US,2011. AIAA2011-1184.
    [181] Kim S S, Kim C G, Rho O H, Hong S K. Cures for the shock instability:Development of a shock-stable Roe scheme[J] Journal of Computational Physics,2003,185:342-374.
    [182] Ismail F, Roe P L, Nishikawa H. A proposed cure to the carbunclephenomenon[A].4th International Conference on Computational FluidDynamics[C]. Ghent, Belgium,2006.
    [183] Kitamura, Roe P L, Ismail F. An evaluation of Euler fluxes for hypersonic flowcomputations[A].18th AIAA Computational Fluid Dynamics Conference[C].Miami, Florida, June25-28,2007. AIAA-2007-4465.
    [184]周禹,阎超. Roe格式中不同类型熵修正性能分析[J].北京航空航天大学学报,2009,35(3):356-360.
    [185] M. S. Liou J, Steffen C J. A new flux splitting scheme[J]. Journal ofComputational Physics,1993,107:23-39.
    [186] Kim K H, Rho O H. An improvement of AUSM schemes by introducing thepressure-based weight functions[A]. The fifth Annual Conference of theComputational Fluid Dynamics Society of Canada (CFD97)[C]. Canada,1997:(14-33)-(14-38).
    [187] Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducingthe pressure-based weight functions[J]. Computers&Fluids,1998,27(3):311-346.
    [188] Pramote Dechaumphai, Earl A. Thornton, Allan R. Wieting.Flow-Thermal-Structural Study of Aerodynamically Heated Leading Edges[J]. J.SPACECRAFT,1989,26(4):201-209.
    [189] Josepb W.Cleary. Effects of Angle of Attack and Bluntness on LaminarHeating-Rate Distributions of a150Cone at A Mach Number of10.6[C]. NASATN D-5450,1969.
    [190]赵玉新.超声速混合层时空结构的实验研究[D].国防科技大学研究生院.2008.
    [191]王博.基于微型涡流发生器的激波/边界层干扰控制研究[D].国防科技大学研究生院.2010.
    [192]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000(第一版)
    [193] Faghri A. Heat pipe science and technology[M]. USA: Taylor&Francis,1995
    [194] Bowman W J, Hitchcock J. Transient compressible heat-pipe vapor dynamics[C].Proceedings of25th ASME National Heat Transfer Conference. USA: ASME,1998:361-365.
    [195] DUNN P D, REAY D A. Heat pipes[M]. New York: Pergamon,1994.
    [196] CHI S W. Heat pipe theory and practice[M]. New York: Hemisphere PublishingCrop.,1976.
    [197]柴宝华,杜文开,卫光仁,魏国锋,冯波,毕可明.钾热管稳态数值模拟分析[J],原子能科学技术,2010,4(5):553-557.
    [198]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001(第二版).
    [199]胡小平,吴海燕,鄢昌渝,周进.传热传质分析[M].长沙:国防科技大学出版社,2011(第一版).
    [200] Levy E K. Chou S F. The sonic limit in sodium heat pipes. ASME J. HeatTransfer.1973,218-223.
    [201] Levy E K. Theoretical Investigation of heat pipes operating at low vaporpressures. ASME J. Engineer Industry.1968,90:547-552.
    [202] Busse C A. Theory of ultimate heat transfer limit of cylindrical heat pipes. Int. J.Heat Mass Transfer.1973,16:169-186.
    [203] Chi S W. Heat pipe theory and practice[M]. McGrow Hill.1976.
    [204] G P Peterson. An Introduction to Heat Pipe: Modeling, Testing, and Applications.John Wiley and Sons, New York,1994.
    [205] A Faghri. Heat pipe Science and Technology. Taylor&Francis,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700