用户名: 密码: 验证码:
高速弹体对混凝土侵彻效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着深层工事目标越埋越深,对侵彻战斗部侵彻性能的要求也越来越高。目前提高侵彻战斗部速度是提高侵彻战斗部作用性能的主要技术途径之一。本文围绕较高撞击速度(800~1200m/s)下小口径弹体垂直侵彻混凝土靶体响应,尤其对以质量侵蚀为特征的弹体质量演化过程及其对侵彻阻力的影响,采用实验研究、理论分析和数值模拟相结合的方法进行了研究,具体内容包括:
     1、运用φ25mm弹道炮开展了小口径弹体高速侵彻混凝土靶体实验研究。将质量为67g、直径为12mm弹体加速至约1.4km/s;采用缩小弹体直径和减小弹体材料硬度值的弱化弹体方法,可在现有实验条件模拟了更高速度撞击下弹体破坏模式为:质量侵蚀、弯曲、屈曲、碎裂甚至熔融状态,而且某些现象是综合体现的,造成弹体破坏的原因不仅与弹体横截面上载荷有关,而且与弹体材料的破坏极限有关;35CrMnSiA、T10A两种不同硬度材料弹体侵彻实验结果表明,硬度更高的碳素工具钢T10A,确实可以更好抵抗质量侵蚀,但由于材料的低韧性,促使弹体发生拉伸破坏而碎裂,侵彻行程更小而综合性能较好的高强度合金钢35CrMnSiA,侵彻能力较好;35CrMnSiA弹体在8001200m/s区间里,弹体破坏模式主要是质量损失,而在大于1200m/s后,弹体质量损失除更加明显外,还会发生弯曲,甚至断裂,其中弹体质量损失主要发生在弹头部分,但弹身部分也会发生质量侵蚀;弹头曲率比在高速段中对弹体侵蚀影响不明显,也可能由于侵彻实验数据样本数太少,无法得出曲率比影响规律。
     2、理论分析了考虑弹体质量损失侵彻过程。针对刚性弹侵彻模型在高速侵彻时侵深计算值较实验值偏大,且随撞击速度的提高不会出现极限穿深的缺陷,建立了考虑弹体质量损失三阶段,即开坑阶段、质量损失侵彻阶段和残余弹体刚性侵彻阶段侵彻模型,计算结果在较高速和较低速段均能吻合实验结果;当忽略质量损失,此模型就转化为刚性侵彻模型;计算结果表明,单纯的质量损失对侵彻结果影响较小,但由于弹头质量损失导致弹形系数的改变对侵彻结果影响较大;严重的质量损失会导致弹头由卵形变为钝头,由于卵形弹头和钝形弹头对侵彻阻力影响不同,导致侵彻阻力曲线出现双峰结构。
     3、数值模拟了存在弹体质量损失侵彻过程。针对HJC模型输入参数较多的问题,采用参数敏感性分析方法,研究了模型参数值对结果的影响,结果表明模型中七个参数即密度ρ、抗压强度fc、抗拉强度T、过渡区介质体应变μlock、归一化压力硬化系数B、压力硬化指数N、密实介质压力Pcrush对结果影响较大,其余可参考经典文献取值;计算与实验结果的一致性,证明参数输入较少的塑性随动模型和HJC模型可以满足弹体高速侵彻混凝土预测侵彻结果的要求;计算结果表明侵彻过程可以分为开坑阶段、弹体形状因子改变阶段和残余弹体刚性侵彻阶段,弹体参量在较高速和较低速侵彻时有明显不同,较高速时弹体速度时程曲线变化不再均匀,侵彻阻力和加速度曲线也出现了双峰曲线,进一步分析表明这源于弹体在高速侵彻过程中弹头形状的严重改变。
     4、研究了钢纤维对混凝土靶体抗侵彻性能的影响。通过刚性侵彻模型计算与实验验证证明,证实了钢纤维的掺入可以提高靶体抗侵彻性能,钢纤维含量增加对高强度的RPC靶抗侵彻性能的改善比低强度的纤维砼更明显;而准静态力学性能测试及侵彻实验表明钢纤维的掺入对混凝土具有明显的阻裂效果,钢纤维能明显增强混凝土的抗侵彻性能,随钢纤维体积含量的增加,开坑直径显著减小,侵深随弹体着速增加也较缓慢。
With the underground targets lying deeper and deeper, the demand on the performance of projectile penetrating into concrete become more and more important. One of the most important method to increasing depth of penetration (DOP) is increase the projectiles impact velocity. This thesis is mainly focus on the response of projectiles within the impact velocity between 800 and 1200m/s, an evolutional process of projectiles mass loss and its effect on the penetration resistance were studied by experimental, theoretical and numerical method. Main contents in the paper were as follows:
     1. A series of penetrating experiments into concrete target is carried out withφ25mm ballistic gun. With the method of sub caliber technology, the 67g,12mm projectile could be speed up to the velocity of 1.4km/s. The failure modes of projectiles at higher velocity phase were studied by reducing projectiles diameters and decreasing projectiles materials hardness values. The modes including mass loss, bending, flexuosity, fragmentation, molten state or plural. Further analyses showed projectiles failure was correlated with the load on cross section and the strength of projectiles material. Two kinds of projectiles 35CrMnSiA and T10A penetrating concrete targets were studied. The result showed that T10A projectiles which hardness was higher could resist abrasin but took tension failure and fragmentation due to its low toughness, and the 35CrMnSiA projectiles penetrate ability was more preferable than T10A projectiles'. The failure mode of 35CrMnSiA projectiles was mass loss within the velocity between 800 and 1200m/s, but the modes were bend and fracture except mass loss as the striking velocity increasd. Mass loss mostly occurred in the head but the phenomenon also occurred in the shell body. In the high velocity region the CRH (caliber-radius-head) had little effect on mass loss based on available penetration experimental data.
     2. The penetration process with mass loss was analyzed.By using rigid projectile penetrating model, DOP computed values were bigger than experimental values and the computed values always increased with impact velocity. To deal with the shortage, abrasion model was built incluing three stages of cratering phase, mass loss penetration phase and remainder rigid projectile penetrate phase.The computed values show a good agreement with experimental values at both high and low velocities. When the mass loss is ignore the model came close to rigid projectile model. The computed results showed that projectiles mass loss was incidental head shape varied with mass loss was the staple. Furthermore, the influence was more obvious in high velocity phase than that in low. The shape of projectiles nose became blunt from ogive. In high velocity phase penetrate resistance curves appeared double-humped waves due to different nose shape effect on projectiles nose shape coefficient.
     3. The numerical simulation of high velocity projectile penetrating into concrete target has been presented. Method of parameter sensitivity analyses was adopted to study the influence of Holmquist-Johnson-Cook (HJC) model parameters on results. The results showed that seven parameters ofρ, fc', T,μock, B, N and Pcrush had important effect on penetration results and the rest had little effect with given values by referring to classic literature. The plastic kinematic model 30CrMnSiA projcetiles penetrating C35 concrete targets with HJC model was also studied. The agreement between computed data and experimental data shows the two models could be applied to high velocity penetration analyses and the penetration process could be divided into cartering stage, projectiles nose shape factor transformation stage and rigid remainder projectiles stage. Furthermore, the velocity versus time travel curves of high velocity no longer had variation uniformity opposite low velocity, and penetrate resistance and decelerating curves became bimodal curves as a result of serious variation of projectiles head shapes in the high velocity penetration process.
     4. Steel fiber enhancing concrete targets performance was studied. The enhancement was proved by rigid penetration model calculation and experimental verification. Especially anti-penetrate ability of high strength reactive powder concrete (RPC) targets was enhanced by steel fiber more evidently than that of low strength SFRC. The quasi-static mechanical property test and penetration experiment results showed that steel fibers could arrest crack propagation and strengthen concrete targets anti-penetration ability. In addition, with the icreasing of the steel fiber volume fraction, the carter diameter become smaller and the DOP increasd slowly with increasing impact velocity.
引文
1 王云峰,冯顺山,董永香等.地下硬目标毁伤分析[J].弹箭与制导学报,2006,26(4):132-134.
    2 罗星.西方攻击加固深埋目标的战斗部[J].飞航导弹,1998,(12):24-30.
    3张学伦,曾娥.钻地战斗部与地下目标毁伤关系的分析[J].四川兵工学报,2008,29(4):6-8.
    4 Ronald G Lundgren. High velocity penetrators[R]. Monterey:American Institute of Aeronautics and Astronautics Missile Sciences,1994.
    5 王涛,余文力,王少龙.钻地武器采用的关键技术及实现途径[J].飞航导弹,2005,(8):4-7.
    6王涛,余文力,王少龙等.国外钻地武器的现状与发展趋势[J].导弹与航天运载技术,2005,(5):51-56.
    7金丰年,刘黎,张丽萍等.深钻地武器的发展及其侵彻[J].解放军理工大学学报(自然科学版),2002,3(2):34-40.
    8石艳霞,郝丽萍.国外钻地武器的技术特点及发展趋势[J].导弹与航天运载技术,2003,(4):50-53.
    9 臧晓京,朱爱平MBDA公司为AASM研制新型战斗部[J].飞航导弹,2009,(7):2-3.
    10 Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering,1996,18(5): 465-476.
    11 Maj Mike Lauden. BLU-122 warhead program:Precision strike technology symposium [EB/OL]. [2005-10-19]. http://www. dtic.mil/ndia/2005psts/lauden.pdf.
    12 Werne R W. Structure response of an earth penetrator [R]. UCID-17327,1982.
    13 Dilmore Morris, Ruhlman James D. A low alloy high strength composition:US,7537727 [P].2009-5-26.
    14赵生伟,古仁红,初哲等.大装填比弹侵彻钢筋混凝土实验研究[J].中国工程科学,2009,11(8):44-47.
    15初哲,周刚,韩娟妮等.模拟钻地弹的设计与实验研究[J].高压物理学报,2003,17(1):69-74.
    16梁斌.动能攻坚战斗部对混凝土靶侵爆效应研究[D].中国工程物理研究院,2009.
    17 Anderson C E Jr, Bodner S R. Ballistic impact:The status of analytical and numerical modeling[J]. International Journal of Impact Engineering,1988,7(1):9-35.
    18 Corbett G G, Reid S R, Johnson W. Impact loading of plates and shells by free-flying projectiles:A review[J]. International Journal of Impact Engineering,1996,18(2): 141-230.
    19 Brown S J. Energy release protection for pressurized systems-Part Ⅱ:Review of studies into impact terminal ballistics[J]. Applied Mechanics Reviews,1986,39(2):177-201.
    20 Goldsmith W. Review:Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering,1999,22(2,3):95-395.
    21 Ben-Dor G, Dubinsky A, Elperin, T. Ballistic impact:Recent advances in analytical modeling of plate penetration dynamics[J]. Applied Mechanics Reviews,2005,58(6): 355-371.
    22陈小伟.混凝土的侵彻与穿甲理论[J].解放军理工大学学报,2007,8(5):486-495.
    23 Alekseevskii, V P. Penetration of a rod into a target at high velocity[J]. Combustion Explosion and Shock Waves.1966,2(2):63-66.
    24 Tate A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids,1967,15(6):387-399.
    25 Tate A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids,1969,17(3):141-150.
    26 Steven B S, William P W. Efficient solution of the long-rod penetration equations [R]. ARL-TR-2855.
    27 Yossifon G, Rubin M B, Yarin A L. Penetration of a rigid projectile into a finite thickness elastic plastic target comparison between theory and numerical computations [J]. International Journal of Impact Engineering,2001,25(3):265-290.
    28王政.弹靶侵彻动态响应的理论与数值分析[D].上海:复旦大学,2005.
    29 Bernaard R S, Creighton D. Projectile penetration in soil and rock:analysis for non-normal impact[R]. US Army Waterways Experiment Station, Vicksburg, SL-79-15 AD-A 081044,1979.
    30 Ben-Dor G, Dubinsky A, Elperin T. Shape optimization of penetrators nose[J]. Theoretical and Applied Fracture Mechanics,2001,35(3):261-270.
    31 Amini A, Anderson J. Modeling of projectile penetration into geologic targets based on energy tracking and momentum impulse principles [R]. ISIEMS6th, Germany,1993. NATO.
    32 Q M Li, S R Reid, H M Wen. Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering,2005,32(1-4):224-284.
    33文鹤鸣.混凝土靶板冲击响应的经验公式[J].爆炸与冲击,2003,23(3):267-274.
    34钱伟长.穿甲力学[M].北京:、国防工业出版社,1984.
    35 Gerlach U. Microstructural analysis of residual projectiles-a new method to explain penetration mechanisms[J]. Metallurgical and Materials Transactions,1986,17(A): 435-442.
    36 Shockey D A, Marchand A H, Skaggs S R, Cort G E, Burkett M W and R Parker. Failure phenomenology of confined ceramic targets and impacting rods[J]. International Journal of Impact Engineering,1990,9(3):263-275.
    37史可顺,叶铃,姜东华.韧性金属受高速粒子碰撞的侵蚀破坏[J].爆炸与冲击,1984,4(2):706-75.
    38 Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering,1994,15(4):395-405.
    39 Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures.1997,34(31,32):4127-4146.
    40 Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering,1996,18(5): 465-476.
    41 Frew D J, Hanchak S J, Green M L, et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering,1998,21(6):489-497.
    42王琳,王富耻,王鲁等.空心弹体侵彻金属靶板的数值模拟和实验研究[J].兵器材料科学与工程,2001,24(6):13-17.
    43岳小兵,于川等.高速弹体侵彻靶板能力及影响因素的数值研究[J].解放军理工大学学报:自然科学版,2002,3(2):45-48.
    44周布奎,周早生,唐德高等.刚玉块石粒径对刚玉块石砼抗侵彻性能影响的试验研究[J].爆炸与冲击,2004(4):370-375.
    45周布奎,唐德高,周早生等.着靶速度对刚玉块石混凝土抗侵彻性能的影响[J].爆炸与冲击,2005(1):59-63.
    46徐建波,林俊德,唐润棣等.长杆射弹侵彻混凝土实验研究[J].爆炸与冲击,2002(2):174-178.
    47梁斌,陈小伟,姬永强等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击,2008,28(1):1-9.
    48武海军,黄风雷,王一楠.高速弹体非正侵彻混凝土试验研究[C]∥第八届全国爆炸力学学术会议论文集.江西吉安,2007:488-494.
    49何翔,徐翔云,孙桂娟等.弹体高速侵彻混凝土的效应实验[J].爆炸与冲击,2010, 30(1):1-6.
    50武海军,黄风雷,王一楠等.高速侵彻混凝土弹体头部侵蚀终点效应实验研究[C]//反深层/多层坚固目标研讨会论文集.海南三亚,2010:110-119.
    51初哲,周刚,韩娟妮等.模拟钻地弹的设计与实验研究[J].高压物理学报,2003,17(1):269-275.
    52武海军,姚伟,黄风雷等.超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报,2010,30(3):258-262.
    53孙传杰,卢永刚,张方举等.新型头形弹体对混凝土的侵彻[J].爆炸与冲击,2010,30(3):269-275.
    54 Forrestal M J, Frew D J, Hickerson J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering.2003, 28(5):479-497.
    55 Frew D J, Forrestal M J, Cargile J D. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. International Journal of Impact Engineering,2006, 32(10):1584-1594.
    56 Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering,2002,27(6): 619-637.
    57陈小伟,李继承.刚性弹侵彻深度和阻力的比较分析[J].爆炸与冲击.2009,29(6):584-589.
    58 Chen X W, Fan S C, Li Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering,2004,30(6):617-637.
    59陈小伟,李小笠,陈裕泽等.刚性弹侵彻动力学中的第三无量纲数[J].力学学报.2007(1):77-84.
    60陈小伟.动能深侵彻弹的力学设计(Ⅰ):侵彻/穿甲理论和弹体壁厚分析[J].爆炸与冲击,2005,25(6):499-505.
    61陈小伟,张方举,杨世全等.动能深侵彻弹的力学设计(Ⅲ):缩比实验分析[J].爆炸与冲击,2006,26(2):105-114.
    62陈小伟,金建明.动能深侵彻弹的力学设计(Ⅱ):弹靶的相关力学分析与实例[J].爆炸与冲击,2006,26(1):71-78.
    63陈小伟,张方举,谢若泽等.Φ25mm小尺寸缩比钻地弹的实验[J].工程物理研究院科技年报,2004(1):110-111.
    64赵军,陈小伟,金丰年等.考虑头形磨损变化的动能弹侵彻深度研究[J].力学学报,2010,42(2):212-218.
    65 Zhao J, Jin F N, Y Xu. Study on the DOP KE penetrator with including the effect of mass abrasion[C]//Proceedings of 25th International Symposium on Ballistics. Beijing,2010-5: 1132-1139.
    66 Silling S A, Forrestal M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets[J]. International Journal of Impact Engineering,2007,34(11): 1814-1820.
    67 Anderson CE. From fire to ballistics:a historical retrospective [J]. International Journal of Impact Engineering,2003,29(1):13-67.
    68王一楠,黄风雷,武海军等.卵形弹体高速侵彻混凝土质量损失及头部形状改变研究[C]//反深层/多层坚固目标研讨会论文集.海南三亚,2010:146-154.
    69徐翔云,沈俊,陈小伟等.弹体高速侵彻混凝土效应理论研究[C]//岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会论文集:湖北科学技术出版社,2010-10:75-79.
    70何涛,文鹤鸣.弹体侵彻混凝土靶板过程中的磨蚀效应[C]//第七届全国工程结构安全防护学术会议论文集:宁波市,2009:153-159.
    71张丁山,王浩,冯国增等.钻地弹侵彻混凝土靶过程中弹体温度的变化[J].爆炸与冲击,2010,30(3):314-319.
    72 Jones S E, Foster J C, TonessO A, et al. An estimate for mass loss from high velocity steel penetrators[C]//Proceedings of the ASME PVP-435 Conference on Thermal-Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, NewYork:ASME, 2002,422:227-237.
    73 DavisR N, Jones S E, HughesM L. High-speed penetration of concrete using a new analytical model of velocity-dependent friction[C]//ASME 2003 PressureVessels and Piping Conference, Cleveland:ASME,2003,454:111-116.
    74 L L He, X W Chen. Analyses of the penetration process considering mass loss[J]. European Journal of Menchanics A/Solids,2011,30:145-157.
    75何丽灵,陈小伟.影响钻地弹质量损失的参数讨论[C]//第九届全国工程结构安全防护学术会议论文集:132-137.
    76何丽灵,陈小伟,夏源明.侵彻混凝土弹体磨蚀的若干研究进展[J].兵工学报,2010,(7):950-966.
    77陈小伟,赵军,何丽灵等.动能弹质量磨蚀的若干研究[C]//第七届全国工程结构安全防护学术会议论文集:139-146.
    78陈小伟,杨世全,何丽灵.动能侵彻弹体的质量侵蚀模型分析[J].力学学报.2009(5):739-747.
    79 X W Chen, L L He, J Zhao. Studies on Mass Abrasion of EPW-overviews[C]//25th International Symposium on Ballistics. Beijing,2010-5:1115-1123.
    80 Beissel S R, Johnson G R. An abrasion algorithm for projectile mass loss during penetration[J]. International Journal of Impact Engineering,2000,24(2):103-116.
    81 Johnson G R, Stryk R A, Holmquist T J, Beissel S R. Numerical algorithms in a Lagrangian hydrocode[R]. Report WL-TR-1997-7039, Wright Laboratory, US Air Force, Ft. Walton Beach, FL,1997.
    82 Beissel S R and Johnson G R. A three-dimensional abrasion algorithm for projectile mass loss during penetration[J]. International Journal of Impact Engineering,2002,27(7): 771-789.
    83庄峰青,刘大有.等质量异形粒子超高速撞击侵蚀[J].空气动力学学报,1997,15(2):216-219.
    84陈克.MCA方法与弹体侵彻混凝土过程研究[D].南京理工大学,2005.
    85石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    86宋毅,荣光等.MCA方法在混凝土力学性能研究中的应用[J].材料研究学报,2002,16(4):399-405.
    87陈克,黄德武,S G Psakhie模拟长弹体侵彻混凝土靶的MCA方法[J].爆炸与冲击,2004,24(2):127-132.
    88何俊,黄德武,陈克.弹体侵彻土壤及混凝土介质的MCA方法研究[J].沈阳工业学院学报,2004,23(3):68-71.
    89荣光,黄德武,陈克等.MCA方法在长弹体侵彻土壤及混凝土复合介质中的应用[J].弹箭与制导学报,2005,25(3):60-63.
    90陈克,姚俊,黄德武.弹体对混凝土板侵彻的MCA方法数值模拟[J].弹箭与制导学报,2006,26(3):117-120.
    91 Jason T. Gomez, Arun Shukla. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering,2001,25(10):965-979.
    92 M Unosson, L Nilsson. Projectile penetration and perforation of high performance concrete:experimental results and macroscopic modelling[J]. International Journal of Impact Engineering,2006,32(1-4):1068-1085.
    93 Dennis W Baum, Robert M Kuklo, John E Reaugh, et al. Time-resolved diagnostics for concrete target Response[J]. International Journal of Impact Engineering,1997,20(1-5): 93-100.
    94 J K Gran, D J Frew. In-target radial stress measurements from penetration experiments into concrete by orive-nose steel projectile[J]. International Journal of Impact Engineering, 1997,19(8):715-726.
    95 Dennis W Baum, Robert M Kuklo, John E Reaugh, et al. Time-resolved diagnostics for concrete target Response[J]. International Journal of Impact Engineering,1997,20(1-5): 93-100.
    96 Paul M Booker, James D Cargile, Bruce L Kistler. Investigation on the response of segmented concrete targets to projectile impacts[J]. International Journal of Impact Engineering,2009,36(7):926-939.
    97 D J Frew, M J Forrestal, J D Cargile. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. International Journal of Impact Engineering,2006, 32(10):1584-1594.
    98 Dancygier A N, Yankelevsky D Z. High strength concrete response to hard projectile impact[J]. International Journal of Impact Engineering,1996,18(6):583-599.
    99 Mahmoud Nili, V Afroughsabet. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete[J]. International Journal of Impact Engineering,2010,37(8):879-886.
    100胡秀章,刘永胜,王肖钧等.超短钢纤维混凝土抗侵彻性能的实验研究[J].弹道学报,2008,20(2):5-8.
    101刘瑞朝,吴飚,张晓忠等.高强高含量钢纤维混凝土抗侵彻性能试验研究[J].爆炸与冲击,2002,22(4):368-372.
    102刘永胜,王肖钧,金挺等.钢纤维混凝土力学性能和本构关系研究[J].中国科技大学学报,2008,37(7):717-723.
    103巫绪涛,胡时胜,陈德兴等.钢纤维高强混凝土冲击压缩的试验研究[J].爆炸与冲击,2005,25(2):125-131.
    104石志勇,汤文辉,赵国民等.混凝土靶中侵彻深度的相似性研究[J].弹道学报,2007,17(1):62-66.
    105N Gebbeken, S Greulich, A Pietzsch. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests[J]. International Journal of Impact Engineering,2006,32(12):2017-2031.
    106Atef Badr, Ashraf F Ashour. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete[J]. International Journal of Impact Engineering,2006,32(11): 0907-1920.
    107王斌,金丰年,徐迎等.吸能因子在计算弹体侵彻钢纤维混凝土深度中的应用[J].兵工学报,2005,26(4):477-480.
    108王斌,金丰年,徐汉中.武器侵彻钢纤维混凝土深度的实用计算方法[J].爆炸与冲击, 2004,24(4):376-381.
    109Norwood F R. Cylindrical cavity expansion in a locking soil[R]. SLA-74-0201, Sandia Laboratories, July,1974.
    110Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures,1997,34(31,32):4127-4146.
    111黄民荣,顾晓辉,高永宏.基于Griffith强度理论的空腔膨胀模型与应用研究[J].力学与实践,2009,31(5):30-34.
    112徐建波.长杆射弹对混凝土的侵彻特性研究[D].长沙:国防科学技术大学,2001.
    113S Mastilovic, D Krajcinovic. Penetration of rigid projectile through quasi-brittle materials[J]. Journal of Applied Mechanics,1999,66(3):585-592.
    114Joseph Sternberg. Material properties determing the resistance of ceramics to high velocity penetration[J]. Journal of Applied Mechanics,1999,65(9):3417-3424.
    115Forrestal M J, Tzou D Y, Longcope D B. Penetration into ductile metal targets with rigid spherical-nose rods[J]. International Journal of Impact Engineering,1995,16(5): 669-710.
    116周辉.弹塑性材料中的空穴膨胀理论及其在侵彻力学中的应用[D].合肥:中国科学技术大学,2004.
    117王延斌,朱轶韵,俞茂宏等.基于统一强度理论的高速钨弹体体侵彻陶瓷靶研究[J].爆炸与冲击,2004,24(6):534-540.
    118俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    119 王德荣,葛涛,周泽平等.钢纤维超高强活性混凝土(RPC)抗侵彻计算方法研究[J].爆炸与冲击,2006,26(4):367-372.
    120Chen X W, Li X L, Huang F L, et al. Damping function in the penetration perforation struck by rigid projectiles[J]. International Journal of Impact Engineering,2008,35(11): 1314-1325.
    121Zhao J, Chen XW, Jin FN, et al. Depth ofpenetration of high-peed penetratorwith including the effect ofmass abrasion[J]. International Journal of Impact Engineering,2010, 37(9):971-979.
    122张先锋.聚能弹体对带壳炸药引爆研究[D].南京:南京理工大学,2005.
    123刘永胜.钢纤维混凝土力学性能和抗侵彻机理研究[D].合肥:中国科学技术大学,2006.
    124John O Hallquist. LS-DYNA theoretical manual[M]. California:Livermore Software Technology Corporation,2006.
    125Livermore Software Technology Corporation. LS-DYNA keyword user's manual (971R4) [M]. California:Livermore Software Technology Corporation,2009.
    126白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005:30-60.
    127时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2005:25-89.
    128李裕春,时党勇,赵远ANSYS10.0基础理论与工程实践[M].中国水利水电出版社,2006:75-116.
    129尚晓江,苏建宇.ANSYS/LS-DYNA动力分析方法与工程实例[M].中国水利水电出版社,2005.
    130Johnson GR, Cook W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985,21(1):31-48.
    131Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strains, high strain rates and high pressures [C]//14th International Symposium on Ballistics. Quebec, Canada,1993:591-600.
    132邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1988.
    133邓聚龙.灰预测与灰决策[M].武汉:华中理工大学出版社,2002.
    134傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    135张凤国,李恩征.混凝土撞击损伤模型参数的确定方法[J].弹道学报,2001,(4):12-23.
    136杨榕,徐文峥.弹药侵彻混凝土过载性能的数值模拟[J].弹箭与制导学报,2009,29(4):129-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700