用户名: 密码: 验证码:
基于微波诱导的市政污泥干化与热解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着污水处理厂建设进程的加快,我国市政污泥规模逐年增加,急需减量化和资源化处理。鉴于目前污泥热处理技术存在的效率低、能耗高的不足,本文以基于微波诱导的市政污泥干化和低温热解技术作为研究内容,并针对污泥处理过程中其它关键技术开展了实验和模拟研究。考察了温度、微波破解对市政污泥干燥特性的影响。研究表明:干燥温度越高,污泥干燥的速率就越快。当干燥温度从70℃上升到160℃时,相对应的最大干燥速率从0.005 g·(g·min)-1变化到0.060 g·(g·min)-1。微波诱导污泥相对原始污泥容易干化。在实验条件下,微波诱导污泥干化时间比普通污泥最大可缩短近30%。微波辐射能够大幅度提高市政污泥的扩散系数,在辐射剂量15w/g,60s、90s、180s条件下,相对原始样提高了228%、295%、388%;在20w/g、60s辐射条件下,污泥的有效扩散系数提高了293%。经Fick定律计算得出同等温度条件下,市政污泥的扩散系数比造纸污泥大3个数量级。利用Arrhenius等式对实验数据计算,市政污泥的平均活化能为37kJ/mol。市政污泥的组分和结构与造纸污泥存在较大差异,在相同热力条件下的干化过程,市政污泥比造纸污泥吸热更多,能耗更高。通过最佳拟合度选择,筛选出WeiBull模型相比其他动力学模型能更好地模拟污泥干燥过程。通过对不同污水处理厂的两种污泥开展TG-DSC实验研究,获得污泥热解的温度—失重数据,利用Coats-Redfern积分法计算得到热分解反应的表观活化能、反应级数及频率因子,其中20K/min升温速率下,热解反应的活化能分别为45 kJ/(mol·k)、41 kJ/(mol·k)。采用Malek寻优法在常用的机理函数中找出最慨然函数,证明污泥热解是以三维扩散反应为主的多级反应。利用低剂量微波的诱导作用,了解其在传统热源热解过程中提高产率和节能效果。通过TG-DSC实验,研究微波辐射对污泥热解特性的影响,与污泥—生物质混合热解特性作对比,并利用Coats-Redfern积分法计算出污泥热分解反应的表观活化能、反应级数及频率因子。实验发现在辐射剂量为10、20、25 w/g辐照剂量和10K/min升温速率的条件下,污泥TG实验的失重率分别提高了4.6%、5.7%和11.6%;热解反应的活化能分别降低了19.2、2.6、12.7kJ/(mol·k),平均降低了24%,反应级数略有变化。10K/min升温速率下,添加5%木屑和麦秆提高污泥热解失重率,具有促进作用。通过污泥固定床热解实验,利用红外分析仪、气相色谱-质谱仪等分析手段,定性地分析微波破解对污泥热解反应的促进作用。污泥与微波破解污泥对比实验发现,不同终温下的三态产物产率的变化表明后者热解难度降低,深度得到加强。GC-MS分析发现,污泥热解生物油中多以单环芳香化合物和含氮芳香化合物为主,而后者的热解生物油成分发生了较大改变,含氮芳香化合物含量增加;以400℃终温为例,胺和酮的含量分别提高了152%和118%。实验还发现微波破解污泥在较低终温下气体产率更高,而最大产率没有提高。FTIR光谱对比分析显示,微波作用使热解残渣中烷烃、烯烃、醇、酮有机物含量降低。通过市政污泥粘度测量实验,得到污泥剪切速率与剪切应力关系数据,并且观察到剪切稀化现象;运用分段拟合方法求解出初始屈服应力和临界剪切速率,从而得到全范围污泥流变曲线。在此基础上,建立污泥管流模型并完成计算,计算结果与参考文献中经验公式和实验结果接近。且可知管径、流速以及流动指数对管道流动的影响显著。入口流速不变的条件下,减小流动管径33%,驱动压力增大了152.1%;管径不变条件下,提高入口流速10倍,驱动压力增大了11倍;保持管径和入口流速条件不变,增大流动指数10倍,驱动压力减少了20.2%。通过Aermod、K-ε和K-ω-sst湍流模型对有害气体扩散污染情况的模拟预测。Aermod结果显示最远厂界以外600米范围浓度超过污水厂排放国家一级标准,但是满足二级标准。对比研究发现,相同污染源排放条件下,采用高斯扩散模型为核心的AERMOD模型计算结果比K-ε模型计算浓度值偏大;K-ω-sst模型与K-ε模型计算结果对比,前者的污染物扩散速度更快。
With the acceleration of the construction of wastewater treatment plant, the scale of municipal sludge has been increasing year after year. Reduction and resource treatment technologies are need. In view of the deficiency of the current sludge treatment technology on drying efficiency and pyrolysis energy consumption, this paper focused on the drying and low-temperature pyrolysis technology based on microwave inducement. Experimental research and numerical simulation are carried out on the key technology for sludge treatment.Through the municipal sludge drying experiments, the effects of temperature and microwave inducement on the drying characteristics of the sludge are considered. The results show that the higher the drying temperature, the faster the rate of sludge drying. When the drying temperature increases from 70℃to 160℃, the corresponding maximum drying rate changes from 0.005 g·(g·min)-1 to 0.060 g·(g·min)-1. Under the experimental conditions, the time of microwave-induced sludge drying can be reduced by nearly 30% compared with original sludge. The microwave-induced sludge drying is relatively easier than primitive sludge drying. Microwave radiation can significantly improve the diffusion coefficient of municipal sludge. The diffusion coefficient increases by 228%,295%,388% than the original sample under irradiation time 60s,90s,180s with 15 w/g radiation dose; and increases by 293% under irradiation time 60s with 20 w/g radiation dose. Calculated by Fick's law under the same temperature, the diffusion coefficient of the municipal sludge is three orders of magnitude bigger than that of paper mill sludge. Processing the experimental data with the Arrhenius equations, the average activation energy of the municipal sludge is 37 kJ/mol. There is a big difference of the composition and structure between the municipal sludge and paper mill sludge. Under the same thermal conditions, the drying process of municipal sludge absorbs more heat and consumes more energy than that of paper mill sludge. Through the best fit selection, it is found that the WeiBull model is the best to simulate the sludge drying process compared to other dynamic models.A TG-DSC experiment was designed to observe the pyrolysis characteristics of sludge from two wastewater treatment plant. Coats-Redfern method was used to carry out dynamics calculation concerning pyrolysis of the sludge. When the heating rate is 20K/min, the mean active energy were 45kJ/(mol-k) and 41kJ/(mol·k). Malek optimization method was used to find the most generously function in the mechanism function, and proof of sludge pyrolysis is mainly in accordance with three-dimensional diffusion reaction.In order to understand the effect of low dose microwave radiation on traditional pyrolysis to improve productivity and energy saving effect, TG-DSC experiments were designed to observe the characteristic of sludge treated with various doses of microwave radiation, and compared with the mixture of sludge and biomass pyrolysis characteristics. Coats-Redfern integral method was used to calculate the apparent activation energy, the reaction order and frequency factor of the sludge thermal decomposition reaction. The experiments showed that the reaction depth was improved by the microwave radiation. Microwave-induced sludge samples were treated with the dense of 10 (w/g),20 (w/g) and 25 (w/g) in 10K/min heating rate conditions. And the reductions of mean active energy were 19.2 kJ/(mol·K),2.6 kJ/(mol·K) and 12.7 kJ/(mol·K), an average scale of 24%. On the other hand, the mass-loss rates were increased by a range of 4.6%,5.7% and 11.6%. In lOK/min heating rate conditions, the microwave radiation had slight impact on the reaction rank in the experiments. It was improved that adding 5% of wheat stalk or wood chips could give a boost to the pyrolysis.During the experiments of fixed-bed pyrolysis of sludge, the effect of microwave cracking to the pyrolysis of sludge was analyzed qualitatively through spectrometry and gas chromatography-mass spectrometry analysis and so on. Through comparing the productivity of the tri-state product from the fixed-bed pyrolysis experiments and microwave cracking of the sludge under different ultimate temperature, it was found that the pyrolysis in microwave cracking was easier to proceed and the reaction intensity was strengthened. GC-MS analysis indicated that the bio-oil derived from sludge pyrolysis was dominated by single-ring aromatic compounds and nitrogen-containing aromatic compounds. By contrast, the content of nitrogen-containing aromatic compounds increased in the product of the sludge by microwave cracking. For example, the content of amine and ketone had increased by 152 and 118% respectively. It was also found that the yield of gas was higher under lower final temperature in the pyrolysis of sludge by microwave cracking, but the maximum productivity could not be promoted. The contrast analysis of FTIR spectra indicated that the microwave reduced the contents of organic compounds such as alkanes, olefins, alcohols and ketones in the pyrolysis residue.By measuring the viscosity of municipal sludge, the relationship data of the shear rate and shear stress of sludge were obtained, and the shear-thinning phenomenon was observed. The initial yield stress and critical shear rate were simultaneously solved by piecewise fitting method, and then a full range of sludge flow curve was gained. The results, which numerical simulation of pipe flow sludge through establishing a simplified model, were close to the empirical formula and experimental results of references. And it is found that diameter, flow rate and flow index have significant effects on the pipeline flow. When other conditions remain unchanged, reducing the flow diameter of 33% can lead driving pressure to increase 152.1%, and increasing the flow rate 10 times can lead driving pressure to increase 11 times, as well as increasing the flow index 10 times can lead driving pressure to decrease 20.2%.The Aermod model, K-εmodel and K-ω-sst model were used to simulation and prediction of harmful gas diffusion and pollution. The result of Aermod model showed the most far beyond 600 meters factory boundary concentration exceeded the sewage plant emission standards at the national level, but to meet two criteria. Contrast research discovery, the same source of pollution discharge conditions, calculation using the Gaussian diffusion model as the core of the AERMOD model results than the K-εmodel calculates the value is too large; K-ω-sst model calculation results with the K-εmodel, the former dispersion of pollutants faster.
引文
[1]中国污泥处理处置市场调查报告2011, http://wenku.baidu.com/.
    [2]杭世珺,史骏,关春雨.全国城镇污水厂污泥处理处置规划的技术路线研究[J].中国给水排水,2011,专刊:1-7.
    [3]吴雪峰,李青青,李小平.城市污泥处理处置管理体系探讨[J].环境科学与技术,2010,33(4):186-189,195.
    [4]王凯军.坚持正确的技术方向稳步推进我国污泥处理处置工作[J].给水排水,2010,36(10):1-3,18.
    [5]孔祥娟,何强,柴宏祥.城镇污水厂污泥处理处置技术现状与发展[J].建设科技,2009,(19):57-59.
    [6]王洪臣.污泥处理处置设施的规划建设与管理[J].中国给水排水,2010,26(14):1-6.
    [7]徐玉裕,陆大根,黄健平.杭州污泥产生处置现状及综合利用研究[J].环境污染与防治,2009,31(11):99-103.
    [8]深圳市规划和国土资源委员会,深圳市污泥处置布局规划(2006-2020) [Z].2006.
    [9]何品晶,顾国维,邵立明,等.污水污泥低温热解处理技术研究[J].中国环境科学,1996,(04):254-257.
    [10]王洪臣.城市污水处理厂运行控制与维护管理[M].1997,北京:科学出版社.
    [11]谢少镇,郑晓彬,徐春秀.污水处理厂‘污泥成分的分析及探讨其利用[J].广州化工,2006,34(2):54-57.
    [12]裘伯钢,赵美红.浅谈污泥干化焚烧处理[J].中国环保产业,2006,(01):38-39.
    [13] V.Z. Caracristi. Low-temperature carbonization [J]. Journal of the Franklin Institute, 1926,202(3):323-336.
    [14]蔺丽丽,蒋文举,金燕.微波法制备污泥活性炭研究[J].环境工程学报,2007,1(4):119-122.
    [15] I.H. Hwang, K. Kawamoto. Survey of carbonization facilities for municipal solid waste treatment in Japan [J]. Waste Management,2010,30(7):1423-1429.
    [16] S. Mori. A new complex plant for carbonization and composting of municipal wastes [J]. Particuology,2010,8(6):599-601.
    [17]赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给水排水,2001,17(6):23-25.
    [18] T.D. Karapantsios. Conductive drying kinetics of pregelatinized starch thin films [J]. Journal of Food Engineering,2006,76(4):477-489.
    [19]邓文义,严建华,李晓东.流化床内干化污泥燃烧污染物排放特性研究[J].浙江大学学报(工学版),2008,42(10):1805-1811.
    [20] W.Y. Deng, J.H. Yan, X.D. Li, et al. Emission characteristics of volatile compounds during sludges drying process [J]. Journal of Hazardous Materials,2009,162(1): 186-192.
    [21]王睿坤,刘建忠,虞育杰,等.城市污泥特性及其干化技术[J].给水排水,2010,36(s1).
    [22] W. Beckers, D. Schuller, O. Vaizert. Thermolytical treatment of dried sewage sludge and other biogenic materials--including upgrading of pyrolysis vapours by a cracking catalyst and examination of heavy metals by X-ray fluorescence [J]. Journal of Analytical and Applied Pyrolysis,1999,50(1):17-30.
    [23] R. Font, A. Fullana, J.A. Conesa, et al. Analysis of the pyrolysis and combustion of different sewage sludges by TG [J]. Journal of Analytical and Applied Pyrolysis, 2001,58-59:927-941.
    [24] A. Fullana, J.A. Conesa, R. Font, et al. Pyrolysis of sewage sludge:nitrogenated compounds and pretreatment effects [J]. Journal of Analytical and Applied Pyrolysis, 2003,68-69:561-575.
    [25] R. Font, A. Fullana, J. Conesa. Kinetic models for the pyrolysis and combustion of two types of sewage sludge [J]. Journal of Analytical and Applied Pyrolysis,2005, 74(1-2):429-438.
    [26] G. Gasco, C.G. Blanco, F. Guerrero, et al. The influence of organic matter on sewage sludge pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):
    413-420.
    [27] W.C. DING, D.X. LI, Enhancing excess sludge aerobic digestion with low intensity ultrasound [J]. South Univ Technol,2006,13(4):408-411.
    [28]翟小薇,潘涛,GHYOOT.W.利用原生动物消减剩余活性污泥产量[J].中国给水排水,2000,16(11):6-9.
    [29]魏源送,樊耀波.嚅虫污泥减量效果及其影晌因素分析[J].环境科学,2005,26(1):76-83.
    [30]李颖,叶芬霞.化学解耦联剂对活性污泥产率的控制作用[J].环境科学研究,2006,19(3):88-90.
    [31] P. B.CLARK, O. I.NUJJO. Ultrasonic sludge pre-treatment for enhanced sludge digestion [J]. Journal of the Chartered Institution of Water and Environment Mangement,2000,14(1):66-71.
    [32]王琳,孙德栋.臭氧氧化分解污泥的试验研究[J].中国海洋大学学报,2005,35(1):83-86.
    [33]曹秀芹,陈君,王洪臣.超声处理对活性污泥系统污泥减量效果的研究[J].环境污染治理技术与设备,2006,7(6):85-88.
    [34]刘春红,杨顺生,戴本林.我国超声波处理污泥技术的研究进展[J].安徽化工,2007,33(2):20-22.
    [35]何玉凤.碱处理促进剩余污泥高温水解的试验研究[J].环境科学,2008,29(8):2260-2265.
    [36] T.I.Ohm, J.S. Chae. A study on the dewatering of industrial waste sludge by fry-drying technology [J]. Journal of Hazardous Materials 2009,168(1):445-450.
    [37] J.A. Menendez, A. Dominguez, M. Inguanzo, et al. Microwave pyrolysis of sewage sludge:analysis of the gas fraction [J]. Journal of Analytical and Applied Pyrolysis, 2004,71(2):657-667.
    [38]瞿广飞.剩余污泥低温裂解催化剂的筛选研究[J].武汉理工大学学报,2007,29(11):44-46.
    [39]赵庆良,涂剑成,杨倩倩.微波辅助化学试剂浸提城市污水处理厂污泥中重金属[J].中国建设信息(水工业市场),2010,07:14-18.
    [40] M. Inguanzo, A. Dominguez, J.A. Menendez, et al. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas fractions [J]. Journal of Analytical and Applied Pyrolysis,2002,63(1):209-222.
    [41] A. Dominguez, J. A. Menendez, J.J.Pis. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature [J]. Journal of Analytical and Applied Pyrolysis,2006,77(2):127-132.
    [42] I. Fonts, M. Azuara, G. Gea, et al. Study of the pyrolysis liquids obtained from different sewage sludge [J]. Journal of Analytical and Applied Pyrolysis,2009, 85(1-2):184-191.
    [43]荀锐.城市污泥处理现状与强化脱水的水热减量化技术[J].环境卫生工程,2008,16(2):28-32.
    [44]董誊,汤兵,许奕春,等.微波法处理处置污泥研究进展[J].科技导报,2010,28(3):112-115.
    [45]肖朝伦.微波辐射对脱水城市污泥穿透性和脱水性的影响[J].过程工程学报,2011,11(2):459-463.
    [46]王同华,胡俊生,夏莉,等.微波热解污泥及产物组成的分析[J].沈阳建筑大学学报(自然科学版),2008,24(4):662-666.
    [47]傅大放.污水厂污泥微波处理试验研究[J].中国给水排水,1999,15(6):56-57.
    [48]田禹.微波辐射预处理对污泥结构及脱水性能的影响[J].中国环境科学,2006,26(4):459-463.
    [49]方琳,赵绪新,田禹,等.传统热源及微波热源热解污泥热重分析的对比[J].哈尔滨商业大学学报(自然科学版),2009,25(3):296-300.
    [50] J. A. Menendez, A. Arenillas, B. Fidalgo, et al. Microwave heating processes involving carbon materials [J]. Fuel Processing Technology,2010,91(1):1-8.
    [51] Y. Tian, W. Zuo, Z. Ren, et al. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety [J]. Bioresource Technology,2011,102(2):2053-2061.
    [52] W. Zuo, Y. Tian, N. Ren, The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge [J]. Waste
    Management,2011,31(6):1321-1326.
    [53]吴淼,赵学义,潘越.城市污泥的特性及管道输送技术研究[J].环境工程学报,2008,2(2):260-265.
    [54]王全金,唐朝春.低含水率污泥管道排放驱动压力计算方法[J].华东交通大学学报,2001,18(3):90-92.
    [55] M. T. Steger, W. MeiBner. Drying and low temperature conversion— A process combination to treat sewage sludge obtained from oil refineries [J].Water Science and Technology,1996,34(10):133-139.
    [56] J. Vaxelaire, J. M. Bongiovanni, P. Mousques, et al. Thermal drying of residual sludge [J]. Water Research,2000,34(17):4318-4323.
    [57] P. Stasta, J. Boran, L. Bebar, et al. Thermal processing of sewage sludge [J]. Applied Thermal Engineering,2006,26(13):1420-1426.
    [58] S. Banerjee, T. Mahmood, P. M. Phelan, et al. IMPULSE DRYING SLUDGE [J]. Water Research,1998,32(1):258-260.
    [59] C. Peregrina, V. Rudolph, D. Lecomte, et al. Immersion frying for the thermal drying of sewage sludge:An economic assessment [J]. Journal of Environmental Management,2008,86(1):246-261.
    [60] T. Tao, X. F. Peng, A. Su, et al. Modeling convective drying of wet cake [J]. Journal of the Chinese Institute of Chemical Engineers,2008,39(3):287-290.
    [61] W. Y. Deng, J. H. Yan, X. D. Li, et al. Measurement and simulation of the contact drying of sewage sludge in a Nara-type paddle dryer [J]. Chemical Engineering Science,2009,64(24):5117-5124.
    [62] R. Font, M. F. Gomez-Rico,A. Fullana. Skin effect in the heat and mass transfer model for sewage sludge drying [J]. Separation and Purification Technology,2011, 77(1):146-161.
    [63] A. R. Celma, S. Rojas, F. Lopez, et al. Thin-layer drying behaviour of sludge of olive oil extraction [J]. Journal of Food Engineering,2007,80(4):1261-1271.
    [64] W. Wang, A. Li, X. Zhang, et al. Multifractality analysis of crack images from indirect thermal drying of thin-film dewatered sludge [J]. Physica A:Statistical Mechanics and its Applications,2011,390(14):2678-2685.
    [65] N. Kamil Salihoglu, V. Pinarli, G. Salihoglu. Solar drying in sludge management in Turkey [J]. Renewable Energy,2007,32(10):1661-1675.
    [66] L. Ulrich. Solar sludge drying—Based on the IST process [J]. Renewable Energy, 16(1-4):785-788.
    [67] N. Roux, D. Jung, J. Pannejon, et al. Modelling of the solar sludge drying process SoliaTM. Computer Aided Chemical Engineering,2010,28:715-720.
    [68] L. Zhao, W. M. Gu, P. J. He, et al. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge [J]. Water Research,2010,44(20):6144-6152.
    [69] D.G.Prabhanjan, H.S. Ramaswamy,G.S.V.Raghavan. Microwave-assisted convective air drying of thin layer carrots [J]. Journal of Food Engineering,1995,25(2): 283-293.
    [70] Z. W. Cui, S. Y. Xu, D. W. Sun. Microwave-vacuum drying kinetics of carrot slices [J]. Journal of Food Engineering,2004,65(2):157-164.
    [71] W. A. M. McMinn. Thin-layer modelling of the microwave-convective and microwave-vacuum drying of lactose powder [J]. Journal of Food Engineering,2006, 72(2):113-123.
    [72] B. Ozbek, G. Dadali, Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment [J]. Journal of Food Engineering,2007,83(4): 541-549.
    [73] I. A. Ozkan, B. Akbudak, N. Akbudak, Microwave drying characteristics of spinach [J]. Journal of Food Engineering,2007,78(2):577-583.
    [74] A. Idris, K. Khalid, W. Omar, Drying of silica sludge using microwave heating [J]. Applied Thermal Engineering,2004,24(5-6):905-918.
    [75] I. Doymaz, O. Gorel, N. A. Akgun. Drying Characteristics of the Solid By-product of Olive Oil Extraction [J]. Biosystems Engineering,2004,88(2):213-219.
    [76] W. A. M. McMinn. Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder [J]. Journal of Food Engineering,2006,72(2):113-123.
    [77] A. Leonard, E. Meneses, E. Le Trong, et al. Influence of back mixing on the convective drying of residual sludges in a fixed bed [J]. Water Research,2008, 42(10-11):2671-2677.
    [78] T. Ruiz,C.Wisniewski.Correlation between dewatering and hydro-textural characteristics of sewage sludge during drying [J]. Separation and Purification Technology,2008,61(2):204-210.
    [79]杭世珺.污泥干化新技术的特点与应用[J].建设科技,2009,(23):66-69.
    [80]王瑞.污泥干化基础特性及工艺研究[D].硕士学位论文.沈阳:沈阳航空工业学院,2010.
    [81] T. Kahyaoglu, S. Kaya. Modeling of moisture, color and texture changes in sesame seeds during the conventional roasting [J]. Journal of Food Engineering,2006,75(2): 167-177.
    [82] N. A. Akgun, I. Doymaz. Modelling of olive cake thin-layer drying process [J]. Journal of Food Engineering,2005,68(4):455-461.
    [83]刘凯,马晓茜,肖汉敏.造纸污泥薄层干燥实验及动力学模型分析[J].燃料化学学报,2011,39(2):149-154.
    [84]王雁河,张书廷.剩余污泥干化技术的研究进展与发展方向[J].污染防治技术,2007,20(03):51-53.
    [85]张月辉.污泥干化焚烧工艺系统分析[J].能源与环境,2009(04):76-77,79.
    [86]刘龙茂,陈建林,李娣,等.污泥的热解动力学实验研究[J].环境保护科,2008,34(5):33-35.
    [87]夏莉,胡俊生,王同华,等.微波辐照热解污泥的研究.中国环境科学学会2008年学术年会论文集,2008.
    [88]胡龙,何品晶,邵立明.城市污水厂污泥热干燥处理技术及其应用分析[J].重庆环境科学,1999(01):51-53.
    [89]何品晶,邵立明,顾国维,等.城市污水厂污泥低温热解动力学模型研究[J].环境科学学报,2001(02):148-151.
    [90]邵敬爱,陈汉平,晏蓉,等.热解温度对污泥热解半焦产率与特性影响的研究[J].可再生能源,2008,26(5):31-34.
    [91]邵敬爱.城市污水污泥热解试验与模型研究[D].博士学位论文.武汉:华中科技大学,2008:5-100.
    [92]李海英.生物污泥热解资源化技术研究[D].博士学位论文.天津:天津大学,2006:1-18.
    [93] J.A. Menendez, M. Inguanzo, J.J. Pis. Microwave-induced pyrolysis of sewage sludge [J]. Water Research,2002,36(13):3261-3264.
    [94] J.A. Menendez, A. Dominguez, M. Inguanzo, et al. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge:Vitrification of the solid residue [J]. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):406-412.
    [95]胡春波,魏进家,姜培正.宾汉流体物性参数对湍流强度影响的研究[J].应用力学学报,1997,14(3):19-23.
    [96]李宇宇,李瑞,田启魁,等.热重法研究落叶松热解动力学特性[J].东北林业大学学报,2011,39(7):63-66.
    [97]廖艳芬,马晓茜.城市污水污泥燃烧特性和动力学特性分析[J].燃料化学学报,2009,37(3):296-301.
    [98]李海英,张书廷,赵新华.城市污水污泥热解温度对产物分布的影响[J].太阳能学报,2006,27(8):835-840.
    [99]李海英,张书廷,赵新华,等.城市污水污泥热解实验及产物特性[J].天津大学学报,2006,39(6):739-744.
    [100]解立平,郑师梅,李涛.污水处理工艺对污泥热处理特性的影响[J].燃料化学学报,2009,37(4):501-505.
    [101] T. Karayildirim, J. Yanik, M. Yuksel, et al. Characterisation of products from pyrolysis of waste sludges [J]. Fuel,85(10-11):1498-1508.
    [102] M.E. Sanchez, J.A. Menendez, A. Dominguez, et al. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge [J]. Biomass and Bioenergy,33(6-7):933-940.
    [103] M.K. Hossain, V. Strezov, P.F. Nelson. Thermal characterisation of the products of wastewater sludge pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2009, 85(1-2):442-446.
    [104] V. Lotito, L. Spinosa, G. Mininni, et al. The rheology of sewage sludge at different steps of treatment [J]. Water Science and Technology,1997,36(11):79-85.
    [105]胡华,孙恒虎,黄玉诚.似膏体充填料浆流变特性及其多因素影响分析[J].有色金属(矿山部分),2003(03):4-7.
    [106]胡华,孙恒虎,黄玉诚,等.似膏体粘弹塑性流变模型与流变方程研究[J].中国矿业大学学报,2003(02).
    [107] J.C. Baudez, A. Ayol,P. Coussot. Practical determination of the rheological behavior of pasty biosolids [J]. Journal of Environmental Management,2004,72(3):181-188.
    [108]许毓海,许新启,李建雄,等.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,2004,13(3):16-19.
    [109]赵龙生,孙恒虎,孙文标,等.似膏体料浆流变特性及其影响因素分析[J].中国矿业,2005(10):45-48.
    [110]王伟云.脱水污泥流变特性及表观干燥动力学研究[D].沈阳航空工业学院,2007:3-9.
    [111]张新瑜,袁一星,伍悦滨.污水处理工艺中活性污泥流变特性的研究[J].西安建筑科技大学学报(自然科学版),2008(03):388-392+397.
    [112]黄玉诚,李晓明,耿向慧,等.似膏体充填料浆流型和流态的研究[J].中国矿业,2009(04):96-98+101.
    [113]丁仕强.氧化塘污泥流变特性的研究[J].中国新技术新产品,2010(04):18-19.
    [114]赵晓凤.浆体管道输送技术及应用[J].甘肃冶金,2007,29(4):122-124.
    [115]凌霄.西部原油管道输送技术研究[D].博士学位论文.山东:中国石油大学,2008:2-8.
    [116]王晓波,刘福志,黄亮,等.长距离输油工艺参数的优化设计[J].内蒙古石油化工,2010,36(22):69-71.
    [117]卢晓江.假塑性流体的本构方程[J].天津轻工业学院学报,1991(12):63-67.
    [118]姚晓,邓敏,唐明述.油井水泥浆流变模型研究进展[J].南京化工大学学报(自然科学版),1999(04):73-78.
    [119] M. Mori, I. Seyssiecq, N. Roche, Rheological measurements of sewage sludge for various solids concentrations and geometry [J]. Process Biochemistry,2006,41(7): 1656-1662.
    [120] E. Dieude-Fauvel, H. Van Damme, J.C. Baudez. Improving rheological sludge characterization with electrical measurements [J]. Chemical Engineering Research and Design,2009,87(7):982-986.
    [121] M. Ruiz-Hernando, J. Labanda, J. Llorens. Effect of ultrasonic waves on the rheological features of secondary sludge [J]. Biochemical Engineering Journal,2010, 52(2-3):131-136.
    [122]贺成才.牛顿流体一宾汉流体的圆管分层层流的数值模拟[J].天然气与油,2006,24(2):15-18.
    [123]赵国华,段钰锋.一种确定水煤浆流变模型中临界剪切速率的新方法[J].热力发电,2008,02:32-34.
    [124]杨小生,张荣曾,陈荩.宾汉流管壁滑移速度预测模型[J].矿冶工程,1993,13(4):24-27.
    [125]牛克胜,张建峰.城市污水处理厂H2S气体的产生、危害及预防[J].中国沼气,2003,21(4):28-30.
    [126]张燕.污水处理厂恶臭污染与控制技术研究[D].硕士学位论文.哈尔滨:哈尔滨工业大学,2004:5-35.
    [127]张少梅.城市污水处理厂臭气问题评价与控制的研究[D].博士学位论文.上海:同济大学,2005:1-10
    [128]席劲瑛,胡洪营,罗彬,等.城市污水处理厂主要恶臭源的排放规律研究[J].中国给水排水,2006,22(21):99-103.
    [129]眭光华,李建军,孙国萍.城市污水处理厂恶臭污染源调查与研究[J].环境工程学报,2008,2(3):399-402.
    [130]GB18918-2002,城镇污水处理厂污染物排放标准[S].国家环境保护总局科技标准司,2002:1-10.
    [131] W.B. Faulkner, B.W. Shaw. T. Grosch, Sensitivity of two dispersion models (AERMOD and ISCST3) to input parameters for a rural ground-level area source [J]. J Air Waste Manag Assoc,2008,58(10):88-96.
    [132]许雅娟,罗挺FLUENT用于大气污染扩散的数值模拟[J].后勤工程学院学报,
    2005,21(2):23-26,31.
    [133]邓特刚.污泥脱水机房恶臭扩散分布规律及控制研究[D].硕士学位论文.天津:天津大学,2008:5-8.
    [134] A. Maizi, H. Dhaouadi, P. Bournot, et al. CFD prediction of odorous compound dispersion:Case study examining a full scale waste water treatment plant [J]. Biosystems Engineering,2010,106(1):68-78.
    [135]环境保护总局环境工程评估中心,环境质量模拟重点实验室,大气预测软件系统AERMOD简要用户使用手册[Z].2009:12-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700