用户名: 密码: 验证码:
动物组织中微量糖链结构分析方法的建立及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以C57BL/6J小鼠肝脏、肾脏及心脏为研究对象,运用多种现代提取分离与分析技术,建立了一种系统分析微量组织中神经节苷脂(ganglioside, GLS)、N-糖链及糖胺聚糖(glycosaminoglycan, GAGs)的分析方法,并将所建立的方法首次应用于人宫颈癌细胞(HeLa)中N-糖链和2型糖尿病小鼠(db/db)肾脏中GAGs组成及其精细结构差异性研究。在此基础上,以所得内源性糖链和外源性海洋糖链为原料,利用糖生物芯片技术,首次研究了GLS及海洋拟寡糖脂(NGLs)与甲型流感病毒(influenza A virus, H1N1)神经氨酸酶(neuraminidase,NA)的结合作用,探讨和分析了内源性GAGs和海洋酸性多糖与结缔组织生长因子(connective tissue growth factor, CTGF)的结合特性。得出的主要结论如下:
     (1).利用高效薄层色谱(HPTLC)和电喷雾质谱(ESI-MS)联用技术,建立了一种可适用于不同组织中微量GLS组成的快速分析方法。以C57BL/6J小鼠肝脏、肾脏和心脏组织为研究对象,首次对其组织中GLS进行比较分析。结果表明,不同组织来源的GLS的种类及组成存在较大差异。C57BL/6J小鼠肝脏中以GM1和GM2为主,心脏中主要含GM1、GM2和GT1a,而肾脏中5种GLS(GM3、GM2、GM1、GD1a和GT1a)含量差异不大。肝脏中GLS的种类和含量最多,与其作为脂类代谢的主要器官有关。
     (2).以C57BL/6J小鼠肾脏为研究对象,建立了一种从同一组织中分步释放微量N-糖链和GAGs的方法。研究表明,C57BL/6J小鼠肾脏中主要是硫酸乙酰肝素(heparan sulfate, HS)。N-糖链轮廓分析表明,小鼠肾脏有60种复杂多样的N-糖链,其中高甘露糖型所占比例较大,多数N-糖链含有乙酰神经氨酸(NeuAc)和岩藻糖(Fuc)。利用所建立的N-糖链分析方法,首次全面分析了HeLa细胞膜表面N-糖链的结构。在获得的34种N-糖链中,除存在高甘露糖型N-糖链,二天线、三天线、四天线和五天线等复杂型N-糖链外,还发现了与肿瘤发生和转移相关的平分型和Lewis糖链结构。
     (3).建立了一种适用于动物组织中微量GAGs精细结构分析方法,并将其应用于2型糖尿病小鼠肾脏组织中GAGs的精细结构差异性分析。采用2-氨基吖啶酮(2-aminoacridone,2-AMAC)荧光标记柱前衍生高效液相色谱法,比较分析了C57BL/6J正常组小鼠,db/db糖尿病模型组小鼠和海洋寡糖药物HS203给药组小鼠肾脏中GAGs的种类及二糖组成结构差异性。首次发现db/db糖尿病组小鼠肾脏中HS较正常组N-硫酸化程度降低,而海洋寡糖药物HS203可显著提高病变组肾脏中HS硫酸化程度,表明HS203具有治疗糖尿病肾病作用。
     (4).利用寡糖芯片技术,首次比较分析了6种内源性GLS及36种海洋红藻来源拟寡糖脂与甲型流感病毒NA的特异性结合作用。结果表明,36种海洋来源的不同类型的卡拉胶寡糖及琼胶寡糖与NA蛋白的结合强度绝大多数都强于内源性GLS,且这种结合强度与寡糖硫酸根的有无、糖残基种类、连接方式及聚合度大小等相关。
     (5).利用多糖芯片技术,首次探讨了内源性GAGs和海洋酸性多糖与2型糖尿病肾病相关因子CTGF的结合作用,并发现硫酸化程度和糖醛酸含量是影响CTGF与硫酸乙酰肝素类多糖识别的关键因素。
     综上,通过动物组织中GLS、N-糖链及GAGs快速分析方法的建立及该方法的成功应用,一方面可为糖组学研究提供了可靠方法,有利于寻找新的疾病标志物,并为疾病的早期诊断治疗提供新的途径;另一方面,将有利于从GAGs细微结构的改变上评价药物的有效性,并有利于阐释糖链在相关疾病发生发展的生物学作用,并为以此开发相关糖类药物提供方法学基础。
In the thesis, by using modern multiple extraction, separation and diverseanalysis techniques, a system method for structural analysis of ganglioside (GLS),N-glycans and glycosaminoglycan (GAGs) with small amount animal tissues wasestablished by using the liver, kidney and heart tissue of C57BL/6J mouse asmaterials. The method was firstly applied on studying the structural difference ofN-glycans from human cervical cancer cells (HeLa) and GAGs from kidneys of db/dbdiabetic mouse, respectively. Based on the method established, series endogenous andexogenous glycans were used as materials, the interaction of endogenous GLS andmarine neoglycolipids (NGLs) with (Neuraminidase, NA) of influenza A virus (H1N1)was firstly investigated by oligosaccharide chips method. Meanwhile, the interactionof endogenous GAGs and marine acidic polysaccharides with connective tissuegrowth factor (CTGF) was also firstly studied by polysaccharide chips method.The major conclusions were listed below:
     (1). A rapid analytical method of composition and structural characteristic of traceamount of GLS from animal tissues was established by high-performance thinlayer chromatography (HPTLC) and electrospray ionization mass spectrometry(ESI-MS) techniques. The method was firstly applied on the structural analysis ofGLS in the liver, kidney and heart tissue from C57BL/6J mice, respectively. It wasshown that the compositions of GLS from different tissues were significantlydifferent. The mice liver mainly contained GM1and GM2and the mice heartmainly contained GM1, GM2and GT1a. The content of GM3, GM2, GM1, GD1aand GT1a from mice kidney had little difference. The GLS content from liver washighest in the three tissues, and this maybe associate with it to be the major organof lipid metabolization.
     (2). A method of continuous release of trace amount of N-glycans and GAGssfrom the same tissue was established. The method was applied on N-glycans andGAGss extraction from the kidney of C57BL/6J mice. The result showed that thekidney mainly contained heparan sulfate (HS) and small amount of dermatan sulfate. Sixty kinds of glycans were detected according to the MALDI-TOF-MSprofiling, including high mannose types with relative high amount and mostN-glycans contained acetylneuraminic acid (NeuAc) and Fucose (Fuc). Theestablished N-glycan analysis method was firstly applied to the structure of HeLacells glycoprotein N-glycans profiling. The34types of N-glycans obtained fromHeLa cells included both high-mannose and complex (bi-, tri-, tetra-, andpenta-antennary) types, some of the latter containing bisecting and Lewisdeterminants, which were relevant to tumor metastasis in same way.
     (3). A microanalysis method of fine structural difference of trace amount of GAGsin animal tissues was established and applied on the disaccharides analysis ofGAGs from the kidney tissue of type2diabetic mice. By pre-columnderivatization of disaccharides with2-aminoacridone (2-AMAC) and followed byreverse-phase HPLC analysis, and compared with the normal C57BL/6J mouse,the N-sulfation degree of HS was obviously decreased in the kidney of db/dbdiabetes mice. It was notable that the marine-derived oligosaccharide drug (HS203)could enhance the sulfation degree of HS from the abnormal kidney tissue, thisresult suggest HS203could be a potential drug for treatment of diabeticnephropathy.
     (4). The interaction of6kinds of endogenous GLS and36kinds of NGLs preparedfrom marine red alga with H1N1neuraminidase (NA) was firstly analyzed byoligosaccharides chip method. It was shown that all36kinds of marine-derivedoligosaccharides showed a higher binding ability to NA proteins than theendogenous GLS, and the binding strength was related to sorts of residue, linkages,sulfation degree and position, and the degree of polymerization ofoligosaccharides.
     (5). The interaction of endogenous GAGs and marine acidic polysaccharide withtype2diabetic nephropathy related factor-CTGF was first analyzed bypolysaccharides chip method. The results showed that the sulfation degree and theuronic acid content of the polysaccharides significantly affected the bondingstrength to CTGF.
     In conclusion, the method of the system analysis of trace amount of GLS,N-glycans and GAGs in animal tissues was established, and this could be a reliablemethod for the glycomics study. It was also useful for new markers development fromtissues and new treatment for the early diagnosis of diseases. Meanwhile, it was beneficial to the validity of drug evaluation by analysis the fine structural differenceof GAGss. Furthermore, it could provide methodological foundation for further revealthe biological function of glycans in the occurrence and development of relateddiseases and new drugs development.
引文
[1] Sandhoff K, Kolter T. Biosynthesis and degradation of mammalian glycosphingolipids. PhilosTrans R Soc Lond B Biol Sci,2003,358:847~861
    [2]王艳萍,王征,朱健,俞云会,许秀坤,李云森.鞘糖脂研究进展.生命科学,2011,23(6):583~591
    [3] Yu RK, Bieberich E, Xia T, Zeng G. Regulation of ganglioside biosynthesis in the nervoussystem. J Lipid Res,2004,45:783~793
    [4] Chester MA. IUPAC-IUB Joint Commission on Biochemical, Nomenclature (JCBN).Nomenclature of glycolipids. Recommendations1997. Glycoconj J,1999,16:1~6
    [5] Schauer R. Achievements and challenges of sialic acid research. Glycoconj J,2000,17:485~499
    [6] Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J,2009,26:231~245
    [7] Svennerholm L. Chromatographic separation of human brain gangliosides.J Neurochem,1963,10:613~623
    [8] Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A. New insights inglycosphingolipid function:‘‘glycosignaling domain,’’ a cell surface assembly ofglycosphingolipids with signal transducer molecules, involved in cell adhesion coupled withsignaling. Glycobiology,1998,8:xi~xviii
    [9] Hakomori S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis ofcell recognition and membrane organization.Glycoconj J,2004,21:125~137
    [10] Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: Recollectionsand future trends. Biochim Biophys Acta,2008,1780:325~346
    [11] Schnaar RL.Glycolipid-mediated cell-cell recognition in inflammation and nerveregeneration. Arch Biochem Biophys,2004,426:163~172
    [12] Feizi T. Progress in deciphering the information content of the‘glycome’-A crescendo in theclosing years of the millennium.Glycoconj J,2000a,17:553~565
    [13] Feizi T. Carbohydrate-mediated recognition systems in innate immunity. Immunol Rev.,2000,173:79~88
    [14] Hoetzl S, Sprong H, van Meer G.The way we view cellular glycosphingolipids. J Neurochem,2007,103(Suppl1):3~13
    [15] Lahiri S, Futerman AH. The metabolism and function of sphingolipids andglycosphingolipids. Cell Mol Life Sci.,2007,64:2270~2284
    [16] Mishra S, Joshi PG.. Lipid raft heterogeneity: An enigma. J Neurochem.,2007,103(Suppl1):135~142
    [17] Fishman PH. Role of membrane gangliosides in the binding and action of bacterial toxins. JMembr Biol,1982,69:85~97
    [18] lsson KA.1995. Microbial recognition of target-cell glycoconjugates. Curr Opin StructBiol,1995,5:622~635
    [19] Miller-Podraza H. Polyglycosylceramides, poly-N-acetyllactosamine containingglycosphingolipids: Methods of analysis, structure, and presumable biological functions. ChemRev,2000,100:4663~4682
    [20] Hidari Ki, Shimada S, SuzukiY, SuzukiT. Binding kinetics of influenza viruses to sialicacid-containing carbohydrates. Glycoconj J,2007,24:583~590
    [21] Villar E, Barroso IM. Role of sialic acid-containing molecules in paramyxovirus entry intothe host cell: A minireview. Glycoconj J,2006,23:5~17
    [22] Karlsson KA. Animal glycosphingolipids as membrane attachment sites for bacteria. AnnuRev Biochem,1989,58:309~350
    [23] Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Mo¨llbyR,Winberg J, Normark S. The Gal(a1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae isneeded for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA,1994,91:11889~11893
    [24] Godaly G, Frende′us B, Proudfoot A, Svensson M, Klemm P, Svanborg C. Role offimbriae-mediated adherence for neutrophil migration across Escherichia coli-infected epithelialcell layers. Mol Microbiol,1998,30:725~735
    [25] Johannes L, Decaudin D. Protein toxins: Intracellular trafficking for targeted therapy. GeneTher,2005,12:1360~1368
    [26] Aspholm M, Olfat FO, Norde′n J, Sonde′n B, Lundberg C, Sjo¨stro¨mR, AltrajaS, OdenbreitS, Haas R,Wadstro¨mT, Engstrand L, Semino-Mora C, Liu H, Dubois A, Teneberg S, Arnqvist A,Bore′n T. SabA is the H.pylori hemagglutinin and is polymorphic in binding to sialylated glycans.PLoS Pathog,2006,2:0989~1001
    [27] Manes S, del Real G, Mart′nez-A C. Pathogens: Raft hijackers. Nat Rev Immunol,2003,3:557~568
    [28] Fujinaga Y. Transport of bacterial toxins into target cells: Pathways followed by cholera toxinand botulinum progenitor toxin. J Biochem,2006,140:155~160
    [29] Chinnapen DJF, Chinnapen H, Saslowsky D, Lencer WI. Rafting with cholera toxin:Endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett,2007,266:129~137
    [30] Muthing J, Schweppe CH, Karch H, Friedrich AW. Shiga toxins, glycosphingolipid diversity,and endothelial injury. Thromb Haemost,2009,101:256~266
    [31] Karch H, Tarr PI, Bielaszewska M. Enterohaemorrhagic Escherichia coli in human medicine.Int J Med Microbiol,2005,295:405~418
    [32] Lencer WI, Saslowsky D. Raft trafficking of AB5subunit bacterial toxins. Biochim BiophysActa,2005,1746:314~321
    [33] Mu¨thing J, Schweppe CH, Karch H, Friedrich AW. Shiga toxins, glycosphingolipid diversity,and endothelial injury. Thromb Haemost,2009,101:256~266
    [34] Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL, Read RJ.Structures of Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3.Biochemistry,1998,37:1777~1788
    [35] Lencer WI, Saslowsky D. Raft trafficking of AB5subunit bacterial toxins. Biochim BiophysActa,2005,1746:314~321
    [36] Kasahara K.; Walanabe Y.; Yamamoto T. Association of Src family tyrosine kinase Lyn withganglioside GD3in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-likedomains.J. Biol. Chem,1997,272(47):29947~29953
    [37] Suarez P. E., Greiser U., Sanchez B. Br. Growth inhibition of human lung adenocarcinomacells by antibodies against epidermal growth factor receptor and by ganglioside GM3:involvement of receptordirected protein tyrosine phosphatase(s) J. Cancer,1997,75(2):213~220
    [38] FM Weis and RJ Davis. Regulation of epidermal growth factor receptor signal transduction. Roleof gangliosides. J. Biol. Chem.,1990,265(20):12059~12066
    [39] Rebbaa A, Hurh J, Yamamoto H, Kersey DS, Bremer EG. Ganglioside GM3inhibition ofEGF receptor mediated signal transduction. Glycobiology,1996,6(4):399~406
    [40] Hakomori. SI, Murakami WT. Glycolipids of hamster fibroblasts and derived malignanttransformed cell lines. Proc Natl Acad Sci USA,1968,599(1):254~261
    [41] Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures ofglycoproteins and glycolipids are onco-developmental antigens. Nature,1985,314:53~57
    [42] Kannagi R, Yin J, Miyazaki K, Izawa M. Current relevance of incomplete synthesis andneo-synthesis for cancer-associated alteration of carbohydrate determinants-Hakomori’s conceptsrevisited. Biochim Biophys Acta,2008,1780:525~531
    [43] Mu¨thing J, Meisen I, Kniep B, Haier J, Senninger N, Neumann U, Langer M, Witthohn K,Milosevic′J, Peter-Katalinic′J. Tumor-associated CD75s gangliosides and CD75s-bearingglycoproteins with Neu5Aca2–6Galb1–4GlcNAc-residues are receptors for the anticancer drugrViscumin. FASEB J,2005,19:103~105
    [44] Distler U, Souady J, Hu¨lsewig M, Drmic′-Hofman I, Haier J, Denz A, Gru¨tzmann R,Pilarsky C, Senninger N, Dreisewerd K, Berkenkamp S, Schmidt MA, Peter-Katalinic′J,Mu¨thing J. Tumor-associated CD75s-and iso-CD75s-gangliosides are potential targets foradjuvant therapy in pancreatic cancer. Mol Cancer Ther,2008,7:2464~2475
    [45] Mu¨thing J, Meisen I, Bulau P, Langer M, Witthohn K, Lentzen H, Neumann U,Peter-Katalinic′J. Mistletoe lectin I is a sialic acid-specific lectin with strict preference togangliosides and glycoproteins with terminal Neu5Aca2–6Galb1–4GlcNAc residues.Biochemistry,2004,43:2996~3007
    [46] Mu¨thing J, BurgM,Mo¨ckel B, Langer M, Metelmann-StrupatW,Werner A,Neumann U,Peter-Katalinic′J, Eck J. Preferential binding of the anticancer drug rViscumin (recombinantmistletoe lectin) to terminally a2-6-sialylated neolacto-series gangliosides. Glycobiology,2002,12:485~497
    [47] Scho¨ffski P, Riggert S, Fumoleau P, Campone M, Bolte O, Marreaud S, Lacombe D, BaronB, Herold M, Zwierzina H, Wilhelm-Ogunbiyi K, Lentzen H, Twelves C. Phase I trial ofintravenous aviscumine (rViscumin) in patients with solid tumors: A study of the EuropeanOrganization for Research and Treatment of Cancer New Drug Development Group. Ann Oncol,2004,15:1816~1824
    [48] Scho¨ffski P, Breidenbach I, Krauter J, Bolte O, Stadler M, Ganser A, Wilhelm-Ogunbiyi K,Lentzen H. Weekly24h infusion of aviscumine (rViscumin):Aphase I study in patients with solidtumours. Eur J Cancer,2005,41:1431~1438
    [49] Fraster JR, Laurent TC: Turnover and metabolism of hyaluronan. Ciba. Found. Symp.,1993,143:41~53
    [50] Nieduszynski I, Huokerby TN, Dickenson JM, et al. There are two major types of skeletalkeratin sulfate. Biochem J.,1990,271:243~245
    [51] Roden L. Structure and metabolism of connective tissue proteoglycans. In The biochemistryof glycoproteins and proteoglycans (ed. Leannarz WJ), pp.267~271. Plenum Press, New York.
    [52] Conrad HE. Heparin-binding proteins. Academic Press,1998, San Diego
    [53] Salmivirta M, Lidholt K, Lindahl U. Heparan sulfate: A piece of information. FASEB J.1996,10:1270~1279
    [54] tano N. Simple primary structure, complex turnover regulation and multiple roles ofhyaluronan. J Biochem,2008,144:131~137
    [55] Hascall VC, Heinegard D: Aggregation of cartilage proteoglycans. II.Oligosaccharidecompetitors of the proteoglycan-hyaluronic acid interaction. J Biol Chem,1974,249(13):4242~9.
    [56] West DC, Hampson IN, Arnold F, Kumar S: Angiogenesis induced by degradation productsof hyaluronic acid. Science,1985,228:1324~1326
    [57] Feinberg RN, Beebe DC: Hyaluronate in vasculogenesis. Science,1983,220(4602):1177~1179
    [58] Xu H, Ito T, Tawada A, Maeda H, Yamanokuchi H, Isahara K,Yoshida K, Uchiyama Y, Asari:A. Effect of hyaluronan oligosaccharides on the expression of heat shock protein72. J Biol Chem,2002,277(19):17308~17314
    [59] West DC, Hampson IN, Arnold F, Kumar S: Angiogenesis induced by degradation productsof hyaluronic acid. Science,1985,228:1324~1326
    [60] McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, Noble PW:Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The roleof HA size and CD44. J Clin Invest,1996,98(10):2403~2413
    [61] Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H,Miyasaka M: Hyaluronanoligosaccharides induce CD44cleavage and promote cell migration in CD44-expressing tumorcells. J Biol Chem,2003,278(34):32259~32265
    [62] Linhardt R.J., Gunay N.S. Production and chemical processing of low molecular weightheparins. Semin Thromb Hemost,1999,25:5~16
    [63] Vlodavsky I, Ilan N, Nadir Y, Brenner B, Katz B-Z, Naggi A, Torri G,Casu B andSasisekharan R. Heparanase, heparin and the coagulation system in cancer progression.Thrombosis Research,2007,120:112~120
    [64] Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC andSanderson RD. Heparanase-enhanced shedding of syndecan-1by myeloma cells promotesendothelial invasion and angiogenesis. Blood,2010,115:2449~2457
    [65] Bergamaschini L, Rossi E, Vergani C and De Simoni MG, Alzheimer’s disease: another targetfor heparin therapy. The Scientific World Journal,2009,9:891~908
    [66] Scholefield Z, Yates EA, Wayne G, Amour A, McDowell W and Turnbull JE.Heparan sulfateregulates amyloid precursor protein processing byBACE1, the Alzheimer’s beta secretase. Journalof Cell Biology,2003,163:97~107
    [67] LAUDER R M. Chondroitin sulphate: A complex molecule with potential impacts on a widerange of biological systems. Complementary Therapies in Medicine,2009,17(1):56~62
    [68] Chou M M,Vergnolle N,McDougall J J, et al. Ef fects of chondroitin andglucosamine sulfatein a dietary bar formulation on inflammation, inter leukin-1beta, matrix met alloprotease-9, andcartilage damage in arthritis. Exp Biol Med(Maywood),2005,230(4):255~262
    [69] McAlindon T. Glucosanune and chondroitin for osteoarthritis. Bull Rheum Dis,2001,50(7):1~4
    [70] Sakai S, Akiyama H, Harikai N, Toyoda H, Toida T, Maitani T, et al. Effect of chondroitinsulfate on murine splenocytes sensitizedwith ovalbumin. Immunol Lett,2002,84:211~216
    [71] Sakai S, Akiyama H, Maitani T, Toida T. Effects of chondroitin sulfate on immune responsein mice. Glycobiology,2004,14:1160~160
    [72] Cho SY, Sim JS, Jeong CS, Chang SY, Choi DW, Toida T, et al. Effects of low molecularweight chondroitin sulfate on type II collagen-induced arthritis in DBA/1J mice. Biol Pharm Bull,2004,27:47~51
    [73] Fried M, Lauder RM, Duffy PE. Plasmodium falciparum: adhesion of placental isolatesmodulated by the sulfation characteristics of the glycosaminoglycan receptor. Exp Parasitol,2000,95:75~78
    [74] Beeson JG, Andrews KT, Boyle M, Duffy MF, Choong EK, Byrne TJ, et al. Structural basisfor binding of Plasmodium falciparum erythrocyte membrane protein1to chondroitin sulfate andplacental tissue and the influence of protein polymorphisms on binding specificity. J Biol Chem2007,282(31):22426~22436
    [75] Xiong SL, Jin ZY, Li AL. Bioactive composition of pig laryngeal cartilage extracts and theirfree radical-scavenging activity. Food Sci Technol Int,2006,12:371~377
    [76] Xiong SL, Jin ZY. The free radical-scavenging property of chondroitin sulfate from piglaryngeal cartilage in vitro. J Food Biochem,2007,31:28~44
    [77] Truant S, Bruyneel E, Gouyer V, et al. Requirement of both mucins and proteoglycans incell-cell dissociation and invasiveness of colon carcinoma HT-29cells. Int. J. Cancer.,2003,104:683~694
    [78]章晓联.蛋白糖基化与免疫.中国免疫学杂志,2004,20(4):290~293
    [79] Rudd PM, Wormald MR, Stanfield RL, et al. Roles for glycosylation of cell surfacereceptors involved in cellular immune recognition. J Mol Biol,1999,293(2):351~366
    [80] Pang, P. C., Chiu, P. C., Lee, C. L., Chang, L. Y., Panico, M., Morris, H. R., Haslam, S. M.,Khoo, K. H., Clark, G. F., Yeung, W. S.,&Dell, A. Human sperm binding is mediated by thesialyl-Lewis(x) oligosaccharide on the zona pellucida. Science,2011,333(6050),1761~1764
    [81] Itoh, N., S. Sakaue, et al."Analysis of N-glycan in serum glycoproteins from db/db mice andhumans with type2diabetes." Am J Physiol Endocrinol Metab,2007,293(4): E1069~E1077
    [82] Chung, Y. B., Y. Kong, et al."Enzymatic N-glycan analysis of31kDa molecule inplerocercoid of Spirometra mansoni (sparganum) and its antigenicity after chemical oxidation."Korean J Parasitol,2004,42(2):57~60
    [83] Lamari, F. N., R. Kuhn, et al."Derivatization of carbohydrates for chromatographic,electrophoretic and mass spectrometric structure analysis." J Chromatogr B Analyt TechnolBiomed Life Sci,2003,793(1):15~36
    [84] Ambrosius, M., K. Kleesiek, et al."Quantitative determination of the glycosaminoglycanDelta-disaccharide composition of serum, platelets and granulocytes by reversed-phasehigh-performance liquid chromatography." J Chromatogr A,2008,1201(1):54~60
    [85] Prater, B. D., H. M. Connelly, et al."High-throughput immunoglobulin G N-glycancharacterization using rapid resolution reverse-phase chromatography tandem mass spectrometry."Anal Biochem,2009,385(1):69~79
    [86]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物研究与开发,1995,7(2):60~65
    [87]王静,王晴,向文胜.色谱法在糖类化合物分析中的应用,分析化学,2001,29(2):222~227
    [88]王皓,于广利,赵峡,郝翠,李广生,王培培.大鼠肾脏糖胺聚糖的种类及二糖组成分析.光谱学与光谱分析,2010,30(9):2484~2487
    [89] Deakin, J. A. and M. Lyon."A simplified and sensitive fluorescent method for disaccharideanalysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples."Glycobiology,2008,18(6):483~491
    [90]付海宁,赵峡,于广利,陈娥功,文松松.盐藻多糖单糖组成分析的四种色谱分析方法比较.中国海洋药物杂志,2008,27(4):30~34
    [91] Grey, C., P. Edebrink, et al."Development of a high performance anion exchangechromatography analysis for mapping of oligosaccharides." J Chromatogr B Analyt TechnolBiomed Life Sci,2009,877(20~21):1827~1832
    [92]梁丽娜,张萍,蔡亚岐.高效阴离子交换2脉冲安培检测同时分析单糖和糖醛酸.分析化学研究报告,2006,10(34):1371~1374
    [93] Takahashi N., Nakagawa H., Fujikawa K., et al. Three-Dimensional Elution Mapping ofPyridylaminated N-Linked Neutral and Sialyl Oligosaccharides. Analytical Biochemistry,1995,226(1):139~146
    [94] Jackson RThe Analysis of Fluorophore-Labeled Glycans by High-Rest PolyaCIγlamide-Gel:Electrophoresis-Anal.Biochem,1994,216(2):243~252
    [95] Volpi, N., F. Maccari, et al."Capillary electrophoresis of complex natural polysaccharides."Electrophoresis,2008,29(15):3095~106
    [96] Shaw G S, Sun Y, Barber K R, et al. Phytochemistry,2000,53:135~144
    [97] Kogelberg H, Piskarev V E, ZhangY, et al. Eur. J. Biochem.,2004,271:1172~1186
    [98] Jang-Lee, J., S. J. North, et al."Glycomic profiling of cells and tissues by mass spectrometry:fingerprinting and sequencing methodologies." Methods Enzymol,2006,415:59~86
    [99] Zaia, J."Mass spectrometry of oligosaccharides." Mass Spectrom Rev,2004,23(3):161~227
    [100] North, S. J., P. G. Hitchen, et al."Mass spectrometry in the analysis of N-linked andO-linked glycans." Curr Opin Struct Biol,2009,19(5):498~506
    [101] Dyukova V I, Shilova N V, Galanina O E, et al. Biochimica etBiophysica Acta,2006,1760:603~609
    [102] Wang D N, Liu S Y, Trummer B J, et al. Nat. Biotechnol.,2002,20:275~280
    [103] Wang D. Carbohydrate microarrays.Proteomics,2003,3(11):2167~2175
    [104] Bryan M C,Fazio F,Lee H K, et al.Covalent display of oligosaccharidearrays in microtiterplates. J Am Chem Soc,2004,126:8640~8641
    [105] Suzuki Y. Gangliosides as influenza virus receptor, variation of influenza viruses and theirrecognition of the receptor sialosugar chains. Prog. Lipid Res.,1994,33:429~457
    [106] Xu Guiyun, Suzuki T, Tahara H et al. Specificity of sialylsugar chain mediated recognitionby the hemagglutinin of human influenza B virus isolates. J. Biochem.,1994,115:202~207
    [107] Xu G Y, Horiike G, Suzuki T et al. A novel strain, B/Gifu/2/73, different from otherinfluenza B viruses in the receptor binding specificities toward sialo-sugar chain linkage. Biochem.Biophys. Res. Commun.,1996,224:815~818
    [108] Childs R A, Palama A S, Wharton S, et al. Receptor-binding specificity of pandemicinfluenza A (H1N1)2009virus determined by carbohydrate microarray. Nature Biotechnology,2009,27(9):797~799
    [109] Steegmaier M, Berger E, Schwarz H, et al. J. Cell Sci.,1997,110:687~694
    [110] Steegmaier M, Borges E, Berger J, et al. Influenza Virus: Influenza Virus Neuraminidase,Enzyme and Ant igen. New York:Plenum Press,1989,175~218
    [111] Ungar D. Golgi linked protein glycosylation and associated diseases. Semin Cell DevBiol,2009,20(7):762~769
    [112] McMillan D E. Elevation of glycoprotein fucose in diabetes mellitus. Diabetes,1972,21(8):63~71
    [113] Capila I, Linhardt R J. Heparin-protein interactions. Angew Chem Int EdEngl,2002,41(3):391~412
    [114] Sasisekharan R, Shriver Z, Venkataraman G, et al. Roles of heparan-sulphate glycosamin-oglycans in cancer. Nat Rev Cancer,2002,2(7):521~528
    [115] Krystyna O, Andrzej G, Ewa M. Non-insulin-dependent diabetes mellitus-associatedchanges in serum glycosaminoglycans. Pathophysiology,1997,4(2):121~129
    [116] Cadaval R A, Kohlman O, Michelacci Y M. Urinary excretion of glycosaminoglycans andalbumin in experimental diabetes mellitus. Glycobiology,2000,10(2):185~192
    [117] de Lima C R, Aguiar J A, Michelacci Y M. Reduced urinary excretion of sulfatedpolysaccharides in diabetic rats[J]. Biochim Biophys Acta,2005,1741(1~2):30~41
    [118] Hoven M J,Rops A L, Bakker M A, et al. Increased Expression of Heparanase in OvertDiabetic Nephropathy. Kidney Int,2006,70(12):2100~2108
    [119] Lauer M E, Hascall V C,Wang A. Heparan sulfate analysis from diabetic rat glomeruli. JBiol Chem,2007,282(2):43~52.
    [120]王皓,于广利,赵峡,郝翠,李广生,王培培.大鼠肾脏糖胺聚糖的种类及二糖组成分析.光谱学与光谱分析,30(9):2484~2487
    [121]王培培,于广利,郝杰杰.与2型糖尿病相关糖复合物中糖链结构变化.中国生物化学与分子生物学报,2010,26(10):898~902
    [122] Dube DH, Bertozzi CR.Glycans in cancer and inflammation potential for therapeutics anddiagnostics. Nat Rev Drug Discov,2005,4:477~488
    [123] Fuster MM, Brown JR, Wang L, et al. A disaccharide precursor of sialyl Lewis X inhibitsmetastatic potential of tumor cells. Cancer Res.,2003,63(11):2775~2781
    [124] Aubert M, Paincot L, Crotte C, et al. Restoration of α(1,2)-fucosyltransferase activitydecreases adhesive and metastatic properties of human pancreatic cancer cells.Cancer Res,2000,60(5):1449~1456
    [125] Iwai T, Kudo T, Kawamoto R, et al. Core3synthase is down~regulated in colon carcinomaand profoundly suppresses the metastatic potential of carcinoma cells. Proc Natl Acad Sci,2005,102(12):4572~4577
    [126] Fuster MM, Brown JR, Wang L, et al. A disaccharide precursor of sialyl Lewis X inhibitsmetastatic potential of tumor cells. Cancer Res.,2003,63(11):2775~2781
    [127] MiyoshiE, Uozumi N, Nod K, et al. Expression of alpha1-6fucosyltransferase in rat tissuesand human cancer cell lines. Int J Cancer,1997,72(6):1117~1121
    [128] Chandrasekaran E V, Xue J, Piskorz C, et al.Potential tumor markers for human gastriccancer: an elevation of glycan: sulfotransferases and a concomitant loss of alpha1,2-fucosyltransferase activities. J Cancer Res Clin Oncol,2007,133(9):599~611
    [1] Huwiler, A., Kolter, T., Pfeilschifter, J., Sandhoff, K.: Physiology and pathophysiology ofsphingolipid metabolism and signaling. Biochim. Biophys Acta,2000,1485,63~99
    [2] Yanagisawa, K.: Role of gangliosides in Alzheimer’s disease. Biochim. Biophys. Acta,2007,1768,1943~1951
    [3] Hakomori, S.: Glycosylation defining cancer malignancy: new wine in an old bottle. PNAS,2002,99,10231~10233
    [4] Sonnino, S., Mauri, L., Chigorno, V., Prinetti, A.: Gangliosides ascomponents of lipidmembrane domains. Glycobiology,2007,17,1R~13R
    [5] Sonnino, S., Prinetti, A., Mauri, L., Chigorno, V., Tettamanti, G.Dynamic and structuralproperties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev.,2006,106,2111~2125
    [6] Scandroglio F, Loberto N, Valsecchi M, et al. Thin layer chromatography of gangliosides.Glycoconjugate journal,2009,26(8):961~973
    [7] SouadY J, Soltwisch J, Dreisewerd K, et al. Structural profiling of individualglycosphingolipids in a single thin-layer chromatogram by multiple sequential immunodetectionmatched with Direct IR-MALDI-o-TOF mass spectrometry. Analytical chemistry,2009,81(22):9481~9492
    [8] MiyazakiIM, Yonesige A, Matsuda J, et al. High-performance thin-layer chromatography/massspectrometry for rapid analysis of neutral glycosphingolipids. J AOAC Int FIELD Full JournalTitle:Journal of AOAC International,2008,91(5):1218~1226
    [9] Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-timequantitative PCR and the2-DDCT Method. Methods,2001,25,402~408
    [10] Yewdell, J., Garcia-Sastre, A. Influenza virus still surprises. Curr. Opin. Microbiol.,2002,5,414~418
    [11] Moscona A. Medical management of influenza infection. Annu Rev Med,2008,59:397~413
    [12] Childs R A, Palma A S, Wharton, et al. Receptor-binding specificity of pandemic influenza A(H1N1)2009virus determined by carbohydrate microarray. Nature Biotechnology,2009,27(9):797~799
    [13] Buck, C.B., Thompson, C.D., Roberts, J.N., Muller, M., Lowy, D.R., Schiller,J.T.Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog.,2006,2,0671~0680
    [14] Pujol, C.A., Scolaro, L.A., Ciancia, M., Matulewicz, M.C., Cerezo, A.S., Damonte, E.B.Antiviral activity of a carrageenan from Gigartinatina skottsbergii against intraperitoneal murineherpes simplex virus infection. Planta Med.,2006,72,121~125
    [15] Ji, J., Wang, L.C., Wu, H., Luan, H.M., Bio-function Summary of Marine Oligosaccharides.Int. J. Biol.,2011,3,74~86
    [16] Yamada, T., Ogamo, A., Saito, T., Watanabe, J., Uchiyama, H., Nakagawa, Y.Preparationand anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives.Carbohydr. Polym.,1997,32(1),51~55
    [17] Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y. Preparation of Oacylatedlow-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect.Carbohydr. Polym.,2000,41,115~120
    [18] Yu R K, Ledeen R W. Gangliosides of human, bovine, and rabbit plasma. Journal of lipidresearch,1972,13(5):680~686
    [19] Folch J, Lees M, Sloane Stanley G H. A simple method for the isolation and purification oftotal lipides from animal tissues. The Journal of biological chemistry,1957,226(1):497~509
    [20] Schnaar R L. Isolation of glycosphingolipids. Methods in enzymology,1994,230:348~70
    [21] Schinaar R L, Needham L K. Thin-layer chromatography of glycosphingolipids. Methods inenzymology,1994,230:371~389
    [22]王玉峰,于广利,韩章润等.糖芯片技术研究琼胶寡糖与凝集素RCA(120)相互作用.化学学报,2011,08:106~110
    [23]王玉峰.海洋半乳寡糖芯片制备及寡糖与凝集素相互作用研究.[博士学位论文]:中国海洋大学,医药学院,2011
    [24] Ladisch S, Gillard B. A solvent partition method for microscale ganglioside purification.Anal Biochem,1985,146:220~231
    [25] Taki, T., T. Kasama, et al."A simple and quantitative purification of glycosphingolipids andphospholipids by thin-layer chromatography blotting." Anal Biochem,1994,223(2):232~238
    [26] Muthing, J. and D. Heitmann "Nondestructive detection of gangliosides with lipophilicfluorochromes and their employment for preparative high-performance thin-layerchromatography." Anal Biochem,1993,208(1):121~124
    [27] Souady, J., J. Soltwisch, et al. Structural profiling of individual glycosphingolipids in a singlethin-layer chromatogram by multiple sequential immunodetection matched with DirectIR-MALDI-TOF mass spectrometry, Anal Chem,2009,81(22):9481~9492
    [28] Miyazaki, M., A. Yonesige, et al. High-performance thin-layer chromatography/massspectrometry for rapid analysis of neutral glycosphingolipids. J AOAC International,2008,91(5):1218~1226
    [29] Zhao-Chun Tsui, Qi-Rui Chen, Michael J. Thomas, Michael Samuel, Zheng Cui. A methodfor proWling gangliosides in animal tissues using electrospray ionization–tandem massspectrometry. Analytical Biochemistry,2005,341:251~258
    [30] Jongkon, N. and C. Sangma. Receptor recognition mechanism of human influenza A H1N1(1918), avian influenza A H5N1(2004) and pandemic H1N1(2009) neuraminidase. J Mol Model.2012,18(1):285-93.
    [31] Childs, R. A., A. S. Palma, et al."Receptor-binding specificity of pandemic influenza A(H1N1)2009virus determined by carbohydrate microarray. Nature Biotechnology,2009,27(9):797~799
    [32] Leibbrandt, A., C. Meier, et al."Iota-carrageenan is a potent inhibitor of influenza A virusinfection." PLoS One,2010,5(12):1~11
    [33] Talarico, L.B., Noseda, M.D., Ducatti, D.R.B., Duarte, M.E., Damonte, E.B. Differentialinhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J. Gen.Virol,2011,92,1332~1413
    [1] Zhang F, Sun P, Munoz E, et al. Microscale isolation and analysis of heparin from plasmausing an anion~exchange spin column. Analytical biochemistry,2006,353(2):284~286
    [2] Haslam S M, North S J, Dell A. Mass spectrometric analysis of N-and O-glycosylation oftissues and cells. Current opinion in structural biology,2006,16(5):584~591
    [3] Bitter T, Muir H M. A modified uronic acid carbazole reaction. Anal Biochem,1962,4:330~334
    [4]王皓,于广利,赵峡,郝翠,胡艳南,殷秀红.污染肝素中多硫酸化硫酸软骨素的分步醋酸纤维素薄膜电泳分析.分析化学,2009,8:1147~1151
    [5]王培培,于广利,焦广玲,赵峡,李静,柴文刚.基于MALDI-TOF质谱技术分析人宫颈癌HeLa细胞N-糖链结构轮廓.高等学校化学学报,2012,33(06):1~5
    [6] Hakomori, S.I. A rapid permethylation of glycolipid, and polysaccharide catalyzed bymethylsulfinyl carbanion in dimethyl sulfoxide. The Journal of Biochemistry,1964,55:205~208
    [7] Morelle W, Michalski J C. Analysis of protein glycosylation by mass spectrometry. Natureprotocols,2007,2(7):1585~1602
    [8]吕惠中.原发性肝癌组织中糖胺聚糖组成与结构的变化:[博士毕业论文].青岛:中国海洋大学医药学院,2007
    [9]王皓.2型糖尿病大鼠肾脏糖胺聚糖结构和组成变化:[硕士学位论文].青岛:中国海洋大学医药学院,2009
    [10] Warda M, Toida T, Zhang F, et al. Isolation and characterization of heparan sulfate fromvarious murine tissues.Glycoconjugate journal,2006,23(7~8):555~563
    [11]王皓,于广利,赵峡,郝翠,李欣.几种动物肝脏糖胺聚糖的醋酸纤维素薄膜电泳分析.中国生物化学与分子生物学报,2009,25(2):193~198
    [12] Frazier SB, Roodhouse KA, Hourcade DE, et al. The quantification of glycosaminoglycans: Acomparison of HPLC, Carbazole, and Alcian Blue Methods. Open glycoscience,2008,1:31~39
    [1] Valdespino V.M., Valdespino V.E. Curr.Opin. Cervical cancer screening: state of the art.Obstet Gynecol,2006, l8(1):35~40
    [2] Frega A., Stentella P., De Ioris A, Piazze J., Frambinl M., Marchionni M. Young women,cervical intraepithelial neoplasia and human papillomavirus: risk factors for persistence andrecurrence. Cancer Letters,2003,196(2):127~134
    [3] Helenius A., Aebi M. Intracellular Functions of N-Linked Glycans Science,2001,291:2364~2379
    [4] Aarnoudse C.A, GarciaVallejo J. J., Saeland E., van Kooyk Y. Recognition of tumor glycans byantigen-presenting cells. Curr Opin Immunol.,2006,18:105~111
    [5] Dube D.H., Bertozzi C.R. Glycans in cancer and inflammation-potential for therapeutics anddiagnostics.Nat Rev Drug Discov,2005,4:477~488
    [6] Taniguchi N. Toward Cancer Biomarker Discovery using the Glycomics Approach.Proteomics,2008,8:3205~3208
    [7] Orntoft T.F.,Vestergaard E.M. Clinical aspects of altered glycosylation of glycoproteins incancer. Electrophoresis,1999,20(2):362~371
    [8] Van Beek W.P., Smets L.A., Emmelot P. Changed surface glycoprotein as a marker ofmalignancy in human leukaemic cells. Nature,1975,253(5491):457~460
    [9] An H.J., Lebrilla C.B. A Glycomics Approach to the Discovery of Potential Cancer Biomarkers.Methods Mol Biol.,2010,600:199~213
    [10]郝春燕,马秀俐,刘志强,季怡萍,刘淑莹,刘长城,孙允秀,刘举正.糖的基质辅助激光解吸电离质谱(MALDI-MS).研究高等学校化学学报,1998,19:1090~1094
    [11]徐莎,张萍,黄琳娟,王仲孚. Pronase E酶解释放糖蛋白N-糖链的方法及荧光标记衍物的LC-MS分析.高等学校化学学报,2010,10:1992~1998
    [12] Haslam S.M., North S.J., Dell A. Novel Tags for the Stable Isotopic Labeling ofCarbohydrates and Quantitative Analysis by Mass Spectrometry. Curr. Opin. Struct. Biol.,2006,16:584~591
    [13] Jang-Lee J., North S. J., Sutton-Smith M., Goldberg D., Panico M., Morris H., Haslam S.,Dell A. Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting andsequencing methodologies. Methods Enzymol,2006,415:59~86
    [14]王培培,于广利,焦广玲,赵峡,李静,柴文刚.基于MALDI-TOF质谱技术分析人宫颈癌HeLa细胞N-糖链结构轮廓.高等学校化学学报,2012,33(06),1~5
    [15] Wada Y., Azadi P., et al. Comparison of the methods for profiling glycoprotein glycans-HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology,2007,17:411~422
    [16] Ceroni A., Maass K., Geyer H., Geyer R., Dell A. GlycoWorkbench: A tool for thecomputer-assisted annotation of mass spectra of Glycans. J. Proteome Res.,2008,7:1650~1659
    [17] Naka R., Kamoda S., Ishizuka A., Kinoshita M., Kakehi K. Analysis of total N-glycans in cellmembrane fractions of cancer cells using a combination of serotonin affinity chromatography andnormal phase chromatography. J Proteome Res,2006,5:88~97
    [18] Dennis J., Waller C., Timpl R., Schirrmacher V. Surface sialic acid reduces attachment ofmetastatic tumour cells to collagen type IV and fibronectin. Nature,1982,300:274~276
    [19] Bhaumik M., Harris T., Sundaram S., Johnson L., Guttenplan J., Rogler C., Stanley P.Progression of Hepatic Neoplasms Is Severely Retarded in Mice Lacking the BisectingN-Acetylglucosamine on N-Glycans: Lacking the Bisecting N-Acetylglucosamine on N-Glycans:Lacking the Bisecting N-Acetylglucosamine on N-Glycans. Cancer Res.,1998,58:2881~2887
    [20] Kim Y. S., Gum J., Brockhausen I. Mucin glycoproteins in neoplasia. Glycoconj J.,1996,13:693~707
    [21] Fuentes D., Avellanet J., Garcia A.., et al. Combined therapeutic effect of a monoclonalanti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breastcarcinoma model Breast Cancer Res Treat.,2010,120(2):379~389
    [1] Olsen SK, Li JY, Bromleigh C, Eliseenkova AV, Ibrahimi OA, Lao Z, Zhang F, Linhardt RJ,Joyner AL, Mohammadi M Genes Dev,2006,20(2):185~198
    [2] Laremore TN, Zhang F, Dordick JS, Liu J, Linhardt RJ.Recent progress and applications inglycosaminoglycan and heparin research. Curr Opin Chem Biol,2009,13:633~640
    [3] Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions ofcell surface heparan sulfate proteoglycans. Annu Rev Biochem,1999,68:729~777
    [4] Petitou M, Herault JP, Bernat A, Driguez PA, Duchaussoy P, Lormeau JC, Herbert JM.Synthesis of Thrombin inhibiting Heparin mimetics without side effects. Nature,1999,398(6726):417~422
    [5] Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairsL-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. NatImmunol,2005,6(9):902~910
    [6] Vives RR, Pye DA, Salmivirta M, Hopwood JJ, Lindahl U, Gallagher JT. Sequence analysisof heparan sulphate and heparin oligosaccharides.Biochem J,1999,339(3):767~773
    [7] Pervin A, Gallo C, Jandik KA, Han XJ, Linhardt RJ. Preparation and structuralcharacterization of large heparin-derived oligosaccharides. Glycobiology,1995,5(1):83~95
    [8] Zhang Z, Li B, Suwan J, Zhang F, Wang Z, Liu H, Mulloy B, Linhardt RJ. Analysis ofPharmaceutical Heparins and Potential Contaminants Using1H-NMR and PAGE J PharmSci,2009,98(11):4017~4026
    [9] Volpi N, Maccari F, Linhardt RJ. Capillary electrophoresis of complex naturalpolysaccharides. Electrophoresis,2008,29(15):3095~3106
    [10]王皓,于广利,赵峡,郝翠,李广生,王培培.大鼠肾脏糖胺聚糖的种类及二糖组成分析.光谱学与光谱分析.2010,9(30):2484~2487
    [11] Deakin J A, Lyon M. A simplified and sensitive fluorescent method for disaccharide analysisof both heparan sulfate and chondroitin/dermatan sulfates from biological samples. Glycobiology,2008,18(6):483~491
    [12] Tsara M E, Papageorgacopoulou N, Karavia D D,et al. Distribution and changes ofglycosaminoglycans in neoplasias of rectum. Anticancer Res15(1995):2107~2112
    [1] Wild S, Oglic G, Green A, Sicree R, King H. Estimates for the year2000and projections for2030: Global Prevalence of Diabetes. Diabetes Care,2004,27:1047~1053
    [2] Harris MI. Definition and classification of diabetes mellitus and the criteria for diagnosis.In:Diabetes Mellitus: A Fundamental and Clinical Text. Philadelphia: Lippincott Williams&Wilkins,2004,57~467
    [3] Ziyadeh FN, Sharma K. Overview: combating diabetic nephropathy. J Am Soc Nephrol,2003,14:1355~1357
    [4] Mason RM,Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am SocNephrol,2003,14:1358~1373
    [5] Lauer, M.E., Hascall, V.C. and Wang, A. Heparan sulfate analysis from diabetic rat glomeruli.J Biol Chem,2007,282,843~852
    [6] de Lima, C.R., Aguiar, J.A. and Michelacci, Y.M. Reduced urinary excretion of sulfatedpolysaccharides in diabetic rats. Biochim Biophys Acta,2005,1741,30~41
    [7] Adler SG, Kang SW, Feld S, et al. GlomerularmRNAs in human type1diabetes: biochemicalevidence formiroalbuminuria as a manifesta2tion of diabetic nephropathy. Kidney Int,2001,60:2330~2336
    [8] Riser BL, Cortes P, Denichilo M, et al. Urinary CCN2(CTGF) as a possible p redictor ofdiabetic nephropathy: Preliminary report. Kidney International,2003,64:451~458
    [9] Twigg SM, CooperME. The time has come to target connective tissue growth factor indiabetic comp lications. Diabetologia,2004,47:965~968
    [10] Snchez L pezE, Rayego S, Rodrigues D!ez R, e t al. CTGF prom otes in flamm atory cell infiltrat ion of the rena l in terstit ium by activating NF~kappa B. J Am Soc Neph ro,l2009,20(7):1513~1526
    [11]韩章润.多糖荧光标记及标记多糖在糖芯片上的应用.[硕士学位论文].中国海洋大学,医药学院,2011
    [12] Zhang Z, Xie J, Zhang F, et al. Thin~layer chromatography for the analysis ofglycosaminoglycan oligosaccharides. Analytical biochemistry,2007,371(1):118~20
    [13] Kjekken L. Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphatebiosynthesis and biology. Biochem Soc Trans,2003,31(2):340~342
    [14] Grobe K, Ledin J, Ringvall M, et al. Heparan sulfate and development: differential roles ofthe N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. Biochimica et biophysicaacta,2002,1573(3):209~215
    [15] Merry C L R. The Molecular Phenotype of Heparan Sulfate in the Hs2st-/-Mutant Mouse.Journal of Biological Chemistry,2001,276(38):35429~35434
    [16] Habuchi H, Kimata K. Mice deficient in heparan sulfate6-O-sulfotransferase-1. Prog MolBiol Transl Sci,2010,93:79~111
    [17] Van Den Hoven M J, Rops A L, Bakker M A, et al. Increased expression of heparanase inovert diabetic nephropathy. Kidney international,2006,70(12):2100~2108
    [18] Van Den Hoven M J, Rops A L, Vlodavsky I, et al. Heparanase in glomerular diseases.Kidney international,2007,72(5):543~548
    [19] Okada Y,Yamada S.Structural recognition by recombinant human heparanase that playscritical roles in tumor metastasis.Hirrarchical sulfated groups with different effects and essentialtarget disulfated trisaccharide sequence. J Biol Chem,2002,277(45):42488~42495
    [20] u X., Kumar S., Polk M.B., et al. Synthesis of2,2',6,6'~Tetramethylbiphenyl-4,4'-DibenZthia-zole. Synthetic Communications,2009,67(12):1383~1388
    [21]李根,钱兆生,曹玲华.半乳糖伯羟基氧化及其衍生物的合成.应用化学,2005,(11):1182~1186
    [22] Motokawa K., Hahn S.K., Nakamura T., et al. Selectively Crosslinked Hyaluronic AcidHydrogels for Sustained Release Formulation of Erythropoietin. J Biomed Mater Res A,2006,78(3):459~465
    [23] Kobayashi M., Yanagihara S., Kitae T., et al. Use of Water-Soluble Carbodiimide (Edc) forImmobilization of Edc-Sensitive Dextranase. Agric. Biol Chem.,1989,53(8):2211~2216
    [24]王培培,于广利,张烜等.一种红藻(Chondracanthus chamisso)多糖的提取分离及结构初步研究.第十届中国海洋药物学术研讨会论文集
    [25]王培培,于广利,赵峡等.海茸多糖的分离纯化与结构表征.中国海洋药物,2010,05:1~5
    [26]吴建东,于广利,王培培等.高古罗糖醛酸含量的萱藻(Scytosiphon lomentarius)多糖细微结构研究.海洋科学,2011,01:40~43
    [27]王培培,于广利,杨波等.选育羊栖菜与野生羊栖菜中褐藻胶与褐藻糖胶组成分析.中国海洋药物,2009,(03):39~43
    [28] Zhang L, Zhang M,Dong J et al. Chemical structure and chain conformation of thewater-insoluble glucan isolated from Pleurotus tuber-regium. Biopolymers,2001,59(6):457~464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700