用户名: 密码: 验证码:
高山离子芥BADH基因和LEA基因的克隆、表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高山离子芥(Chorispora bungeana Fisch.& C.A.Mey)是一种稀有的高山冰缘植物,具有很强抗寒能力,但它不具备特殊的形态结构,被推测它在生理和分子水平上具有特殊的抗冻机制。因此,高山离子芥是研究植物适应冷冻环境和克隆植物抗逆基因的理想材料。本文以高山离子芥为实验材料,克隆到甜菜碱醛脱氢酶基因(CbBADH)和胚胎发生晚期丰富蛋白基因(CbLEA)。对CbBADH基因在不同处理条件下的基因表达模式和甜菜碱的积累进行了研究;通过农杆菌介导的叶盘法将CbLEA基因成功地转化了烟草,并对转基因烟草的抗逆性和CbLEA蛋白的功能进行了分析,内容概括如下:
     1.从高山离子芥中克隆了甜菜碱醛脱氢酶基因(CbBADH),此基因全长1729bp,编码502个氨基酸的蛋白,分子量为54.5KD,等电点为5.30。氨基酸序列分析表明,CbBADH蛋白中含有与酶活性位点和结合位点相关的十肽VSMELGGKSP。CbBADH蛋白与其他已经发现的BADH蛋白的同源性在73.3%~95.4%之间,其中与拟南芥的同源性最高,达到了95.4%,说明克隆到的基因属于BADH基因家族。
     2.外源表达和纯化的CbBADH蛋白具有氧化甜菜碱醛的能力,并且在不同的pH值下其酶活性不同,pH 8.0时活性最大。证明CbBADH基因确实是甜菜碱醛脱氢酶的功能基因,其编码的蛋白能催化甜菜碱醛合成甜菜碱,其酶活性不因保守十肽中的L被M代替而受到影响。
     3.检测CbBADH基因在冷冻胁迫(4℃、0℃和-4℃)下的表达情况,发现它的转录物在4℃逐渐积累,而在0℃和-4℃的积累更直接和迅速。这表明CbBADH基因的表达与温度密切相关、对温度反应敏感。所以CbBADH基因的表达是高山离子芥传递抵御低温胁迫信号的一个重要保护机制。随着胁迫强度的增大,植物启动这个保护机制就越迅速。这恰恰就反映了高山离子芥具有适应温度剧烈变化的能力。
     4.高山离子芥是甜菜碱积累型的植物,在低温胁迫下能够迅速积累甜菜碱以调节细胞的渗透势。在温度和时间梯度上,随着温度的降低甜菜碱的积累迅速增加,并且甜菜碱的积累并不是不断增加的,而是有一定的限度的(在低温胁迫下它增加了3倍),当达到一定的浓度时,甜菜碱含量就维持在相对稳定的水平。这一结果表明在高山离子芥中,甜菜碱的渗透调节具有一定的局限性,当胁迫强度超过一定范围,它的调节能力不再增强。同时表明,渗透调节只是高山离子芥低温保护机制的一种,但并不是最主要的,在高山离子芥中可能存在其他特殊的低温保护机制。
     5.从高山离子芥中克隆了胚胎发生晚期丰富蛋白基因(CbLEA),此基因全长842bp,编码169个氨基酸的小分子蛋白,其分子量为17.9KD,等电点为6.45。亲水性分析表明该蛋白富含亲水氨基酸,是一种高度亲水性的蛋白,其蛋白二级结构中只含有83.43%的α-螺旋占和16.57%的无规卷曲。CbLEA蛋白除了与拟南芥的LEA蛋白同源性为87.57%外,与其他已经发现的LEA蛋白的同源性都不高,一般在35.84%~52.78%之间,说明克隆到的CbLEA蛋白是一种新的LEA蛋白。
     6.通过农杆菌介导法将CbLEA基因转化烟草,经PCR、Real time RT-PCR和Western blot确定了阳性转基因植株,并且检测了转基因植株中CbLEA蛋白的积累量。发现各转基因株系地CbLEA蛋白积累量不同,这就为研究CbLEA蛋白在植物抗逆过程中的作用提供了很好的研究对象。
     7.通过对转基因烟草的T_1代幼苗进行生理测定和生长分析发现,在盐和低温胁迫下转基因植株的生长状况都较野生型植株好,转基因植株的种子萌发率、相对含水量和叶绿素含量都比野生型植株高,而其离子渗漏率、丙二醛含量又明显的低于野生型植株。转基因烟草细胞的半致死温度为-3℃,而野生型的仅为-2℃,并且在-2℃的低温下,转基因烟草存活时间较野生型要长。这说明CbLEA是一种真正的抗逆基因,转基因烟草的抗盐和抗冻性明显得到提高。
     8.进一步研究发现,转基因烟草抗逆性提高的程度似乎与CbLEA蛋白的积累量呈正相关,CbLEA蛋白积累量越大,转基因烟草的抗逆性越强,反之亦然。这一结果更加充分地证明CbLEA蛋白在胁迫条件下对植物细胞起保护作用。
     综上所述,高山离子芥中也存在甜菜碱的渗透调节途径,说明植物在抗寒分子机制方面具有保守性,克隆的基因具有潜在的抗寒功能;同时,甜菜碱的渗透调节具有一定的局限性,渗透调节只是高山离子芥低温保护机制的一种,但并不是最主要的,在高山离子芥中可能存在其他特殊的低温保护机制。转基因植物的抗逆性分析表明高山离子芥CbLEA蛋白在胁迫条件下可能通过结合水分子、维持膜结构而达到保护细胞的作用,高山离子芥的抗逆基因较其它植物的抗逆基因而言在抗冻方面似乎具有显著的优势。
Chorispora bungeana Fisch. & C.A. Mey is a rare and typical alpine subnival plant species that is highly capable of resisting freezing environment. However, it does not possess special morphological characteristics that helped it surviving under freezing environment, physiological and molecular mechanisms were assumed to account for its adaptation to the freezing environment. Therefore, it is a valuable species for stress-related genes cloning and research on the mechanism of cold resistance. In our work, BADH gene (CbBADH) and LEA gene (CbLEA) were cloned from C. bungeana. The pattern of CbBADH expression and accumulation of betaine under various treatments were investigated; the function of CbLEA protein in stress protection was investigated by transgenic approach. The summary is as follows:
     1. CbBADH gene is 1729 bp in length with an open reading frame (ORF) of 502 amino acids, corresponding to a protein of predicted molecular mass 54.5 KD and an isoelectric point of 5.30. The deduced amino acid sequence possesses a decapeptide (VSMELGGKSP), which is involved in the enzyme active site and NAD~+ binding. The putative amino acid sequence of the CbBADH showed 73.3-95.4% similarity to the BADH of other plants. All of these indicate that CbBADH gene is the homologus gene of BADH.
     2. CbBADH was expressed in and purified from Escherichia coli. Through investigation the function of the enzyme coded by CbBADH, we found that recombinant CbBADH protein showed high activity for the oxidation of betaine aldehyde, and the optimal pH of CbBADH was 8.0. These results indicated that CbBADH gene encoded a functional BADH enzyme, which could catalyze betaine aldehyde to betaine, and the enzyme activity was not affected by the substitution of M for L in the decapeptide.
     3. The expression patterns of CbBADH gene were investigated under cold stress. The CbBADH gene transcript progressively increased under 4°C and increased much more distinctly and quickly under 0°C and -4℃. This result suggests there is a close relationship between the expression of CbBADH and cold stress, CbBADH expression is sensitive to low temperature. CbBADH plays an important protective mechanism in signal transduction to resist cold stress in C bungeana. Lower temperature could trigger the expression more quickly exactly, this phenomenon reflects fitly that C. bungeana has the ability to adapt to acute temperature change in the growth environment.
     4. Like other higher plants, C. bungeana accumulated betaine in response to low temperature stress. Lower temperature could trigger the accumulation more quickly exactly. Moreover, the increase in the endogenous betaine levels in C. bungeana seemed to have a maximum level, which increased 3-fold, under different low temperature stresses. These results implied that the accumulation of betaine was one but not the main protective mechanisms in C. bungeana to resist cold stress, other special cold-hardiness mechanism still existed in C. bungeana
     5. CbLEA gene is 842 bp in length with an open reading frame (ORF) of 169 amino acids, corresponding to a protein of predicted molecular mass 17.9 KD and an isoelectric point of 6.45. Hydrophilicity prediction shows CbLEA is a highly hydrophilic small protein. The secondary structure analysis shows CbLEA protein contains 83.43% alpha helix and 16.57% random coil. CbLEA protein shares lower similarity with LEAs from other plants (35.84%~52.78%) except A.thalian, indicating that CbLEA is a novel LEA gene.
     6. CbLEA gene was over-expressed in tobacco by Agrobacterium-mediated leaf disc transformation with a construct containing the CbLEA ORF under control of CaMV 35S promoter. The transgenic tobacco plants were confirmed by polymerase chain reaction, real time RT-PCR and Western bolt analysis. To investigate the function CbLEA protein, the three transgenic lines were chosen to test whether over-expression of the CbLEA protein increased their ability for tolerance against stress, based on accumulated amounts of CbLEA protein.
     7. Under stress condition, the transgenic T_1 plants show better performance than non-transgenic plants, and maintaine higher RWC and chlorophyll content, less MDA and EL, when compared with non-transgenic plants. Moreover, the LT50 (the killing temperature for 50% of the cells) values was significantly altered in transgenic plant, which was declined to -3°C, the LT50 value is -2°C in non-transgenic plants, and the transgenic plants survived longer time than non-transgenic plants at the constant freezing treatment of -2°C. These results indicated that CbLEA gene was an excellent stress-tolerance gene, and the transgenic tobacco plants exhibited significantly increased tolerance to salinity and cold.
     8. Furthermore, the extent of increased stress tolerance shows a positive correlation to accumulation level of the CbLEA protein, indicating that the CbLEA gene product function in cell protection under stress condition.
     In conclusion, the accumulation of betaine was also found in C. bungeana, indicating that there is a conservative mechanism in plant cold-resisting process. However, the increase in the endogenous betaine levels in C. bungeana seemed to have a maximum level under cold stress, and the accumulation of betaine was one but not the main protective mechanisms in C. bungeana to resist cold stress, other special cold-hardiness mechanism still existed in C. bungeana. Tthe analysis of stress tolerance in transgenic plant show that the CbLEA protein may protein cell through binding water, maintaining membrane structure, the stress-tolerance gene from C. bungeana seem to be more efficient than the stress-tolerance gene from other plant in cold tolerance.
引文
Arakawa K, Takabe T, Sugiyama T, Akazawa T (1987) Purification of betaine aldehyd-dehydrogenase from spinach leaves and preparation of its anti-body. J Biochem 101: 1485-1488
    Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24: 1-15
    Ayitu R, Tan DY, Li ZJ, Yao F (1998) The relationship between the structures of vegetative organs in C. bungeana and its environment. J Xinjiang Agric Univ 21: 273-277
    Bajaj S, Targolli J, Liu L, Ho D, Wu R (1999) Transgenic approaches to increase dehydration stress tolerance in plants. Mol breed 5: 493-503
    Baker J, Steel C, Dure III L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11: 277-291
    Blackman SA, Obendorf RL, Leopold AC (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol. 100: 225-230
    Blackman SA, Wettlaufer SH, Obendorf RL, Leopold AC (1991) Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol 96: 868-874
    Boyd LA, Adam L, Pelcher LE, McHughen A, Hirji R, Selvaraj G (1991) Characterization of an Escherichia coli gene encoding betaine aldehyde dehydrogenase (BADH): structural similarity to mammalian ALDHs and a plant BADH. Gene 103: 45-52
    Bradford KJ, Chandler PM (1992) Expression of "dehydrin-like" proteins in embryos and seedlings of Zizania palustris and Oryza sativa during dehydration. Plant Physiol 99: 488-494
    Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
    Bray EA (1993) Molecular Responses to Water Deficit. Plant physiol 103: 1035-1040
    Browne J, Tunnacliffe A, Burnell A (2002). Plant desiccation gene found in a nematode. Nature 416: 38
    Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45: 113-141
    Chaudhary S, Crossland L (1996) Identification of tissue-specific dehydration-responsive elements in the Trg-31 promoter. Plant Mol Biol 30: 1247-1257
    Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and Improving Salt Tolerance in Plants. Crop Sci 45: 437-448
    Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97: 795-803
    Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100: 291-296
    Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparision of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13: 95-108
    Curry J, Walker-Simmons MK (1993) Unusual sequence of group 3 LEA (II) mRNA inducible by dehydration stress in wheat. Plant Mol Biol 21: 907-912
    Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Bio 29: 897-907
    Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation, J Exp Bot 32: 79-91
    Dure L III, Chlan CA (1981) Developmental biochemistry of cotton seed embryogenesis and germination XII Purification and properties of principal storage proteins. Plant Physiol 68: 180-186
    
    Dure L III, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12: 475-486
    Falkcnbcrg P, Strom AR (1990) Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochim Biopphys Acta 1034:353-259
    Franz G, Hatzopoulos P, Jones TJ, Krauss M, Sung ZR (1989) Molecular and genetic analysis of an embryonic gene, DC8, from Daucus carota L. Mol Gen Genet 218: 143-151
    Fu XY, Chang JF, An LZ, Zhang MX, Xu SJ, Chen T, Liu YH, Wang JH (2006) Association of the cold-hardiness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. Environ Exp Bot 55: 282-293
    Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit J Biol Chem 275: 5668-5674
    Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388: 151-157
    Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70: 303-307
    Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187-223
    Hayashi M, Aoki M, Kondo M, Nishimura M (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxyterminal tripeptide. Plant Cell Physiol 38: 759-768
    Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K (2001) Molecular cloning and functional characterization of two kinds of betaine aldehyde dehydrogenase in betaine accumulating mangrove Avicennia marine ( Forsk. ) vierh. Plant Mol Bio 45: 353-363
    Hong B, Uknes SJ, Ho THD (1988) Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol Biol 11: 495-506
    Hong Z (2000) Removal of feedback inhibition of △I-pyrroling-5-carboxylate synthase results in increase dproline accumulation and protection of plants from osmotic stress. Plant physiol 122: 1129-1136
    Honjoh KI, Oda Y, Takata R, Miyamoto T, Hatano S (1999) Introduction of the hiC6 gene, which encodes a homologue of a late embryogenesis abundant (LEA) protein, enhances freezing tolerance of yeast. J Plant Physiol 155: 509-512
    Hsing YC, Chen Z, Chow T (1992) Nucleotide sequences of a soybean complementary DNA encoding a 50-Kilodalton late embryogenesis abundant protein. Plant Physiol 99: 354-355
    Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243-248
    Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27: 307-315
    Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20: 555-558
    Jaakola L, Pirtila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L) fruit. Mol Biotech 19: 203-210
    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci7: 106-111
    Jiang MY, Yang WY, Xu J, Chen QY (1994) Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Bot Sin 36: 289-295
    Johansson K, El-Ahmad M, Ramaswamy S, Hjelmqvist L, Jornvall H, Eklund H (1998) Structure of betaine aldehyde dehydrogenase at 2.1 A resolution. Protein Sci7: 2106-2117
    Jose MC, Liz PM, Claudia ES, Alejandra AC (1999) Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120: 93-103
    Kazuoka T, Oeda K (1994) Purification and characterization of Cor 85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol 35: 601-611
    Kim HS, Lee JH, Kim JJ, Kim CH, Jun SS, Hong YN (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344: 115-123
    King SW, Joshi CP, Nguyen HT (1992) DNA sequence of an ABA-responsive gene (rab15) from water-stressed wheat roots. Plant Mol Biol 18: 119-121
    Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T (1994) Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 17: 89-95
    Ladyman AR, Hitz WD, Hanson AD (1980) Translocation and metabolism of glycine betaine by barley plants in relation to water stress. Planta 150: 191-196
    Legaria J, Rajsbaum R, Munoz-Clares RA, Villegas-Sepulveda N, Simpson J, Iturriaga G (1998) Molecular characterization of tow genes encoding betaine aldehyde dehydrogenase from amaranth, Expression in leaves under short-term exposure to osmotic stress or abscisic acid. Gene 218: 69-76
    McCue KF, Hanson AD (1992) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol 18: 1-11
    Moons A, Bauw G, Prinsen E, Montagu Van M, Straeten Van Der D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107: 177-186
    Moons A, De KA, Van MM (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191: 197-204
    Morris CF, Anderberg RJ, Goldmark PJ, Walker-Simmons M (1991) Molecular cloning and expression of abscisic acid-response genes in embryos of dormant wheat seeds. Plant Physiol 95: 814-821
    Nakamura T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T (2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol 42: 1088-1092
    Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J 11: 1115-1120
    Okkes A, Barbaros N (2003) Antifreeze proteins in higher plants. Phytochemistry 64: 1187-1196
    Pan SM, Moreau RA, Yu C, Huang AHC (1981) Betaine accumulation and betaine-aldehyde dehydrogenase in spinach leaves. Plant Physiol 67: 1105-1108
    Park BJ, Liu ZC, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169: 553-558
    Quartrano RS (1986) Regulation of gene expression by abscisic acid during angiosperm embryo development. Oxford Sury Plant Cell Mol Biol 3: 467-473
    Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166: 141-149
    Quintero JM, Fournier JM, Benlloch M (1999) Water transport in sunflower root systems effects of ABA, Ca~+ status and HgCl_2. J Exp Bot 339: 1607-1612
    Rajashekar CB, Zhou H, Marcum KB, Prakash O (1999) Glycine betaine accumulation and induction of cold tolerance in strawberry plants. Plant Sci 148: 175-183
    Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193: 155-162
    Raynal M, Gaubier P, Grellet F, Delseny M (1990) Nucleotide sequence of a radish cDNA clone coding for a late embryogenesis abundant (LEA) protein. Nucleic Acids Res 18: 6132
    Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44: 357-384.
    Richard MB, Ralph SQ (1992) Regulation of Em gene expression in rice: interaction between osmotic stress and abscisic acid. Plant physiol 98: 1356-1363
    Ried JL, Walker-Simmons MK (1993) Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat {Triticum nestivum L). Plant Physiol 102: 125-131
    Roberto Velsco Gfarci A, Carlos Mjica J IME (1999) Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonasaeruginosa. J Bacteriol 181: 1292-1300
    Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51: 81-88
    Shen Q, Uknes SJ, Ho THD (1993) Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268: 23652-23660
    Shih MD, Lin SC, Hsieh JS, Tsou CH, Chow TY, Lin TP, Hsing YI (2004) Gene cloning and characterization of a soybean {Glycine max L) LEA protein, GmPM16. Plant Mol Biol 56: 689-703
    Sivamani E, Bahieldinl A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water-deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155: 1-9
    Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503-512
    Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean, Evidence of poly(L-proline)-type II structure. Plant Physiol 131: 963-975
    Still DW, Kovach DA, Brandford KJ (1994) Development of desiccation tolerance during embryogenesis in rice (Oryza sativa) and wild rice (Zizania palustris). Plant Physiol 104: 431-438
    Straub PF, Shen Q, Ho THD (1994) Structure and promoter analysis of an ABA and stress regulated barley gene, HVA1. Plant Mol Biol 26: 617-630
    Swire-Clark GA, Marcotte WR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39: 117-128
    Tyeman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25: 173-194
    Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97: 11632-11637
    Walker K, Croteau R (2000) Taxol biosynthesis-molecular cloning of a benzoyl-CoA-taxane 2a-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA 97: 13591-13596
    Wang YC, Jiang J, Zhao X, Liu GF, Yang CP, Zhan LP (2006) A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci 171: 655-666
    Weatherley PE (1950) Studies in the water relation cotton plants: the field measurement of water deficit in leaves. New Phytol 49: 81-87
    Weretilnyk EA, Hanson AD (1989) Betaine aldehyde dehydrogenase from spinach leaves purification, in vitro translation of the mRNA, and regulation by salinity. Arch Biochem Biophys 271: 56 - 63
    Weretilnyk EA, Hanson AD (1990) Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA 87: 2745-2749
    Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum: molecular cloning and expression of two related genes. Plant Physiol 110: 1301-1308
    Xu D, Duan X, Wang B, Hong B, Ho TH, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVAI, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249-257
    Yang Z, Zhong M, Zhang L (2006) Biosynthetic pathway of glycine betaine and its application in genetic engineering. Mol Plant Breeding 4:67-72
    Zhang JZ, Creelman RA, Zhu J-K (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615-621
    安黎哲,刘艳红,冯国宁等(2000a)乌鲁木齐河源区高寒冰缘植被的生态特征研究.西北植物学报20:98-105
    安黎哲,刘艳红,冯虎元等(2000b)乌鲁木齐河源区高寒冰缘植物化学元素的含量特征.西北植物学报20:1063-1069
    陈秀娟,王峻岭,赵彦修等(2001)中亚滨藜甜菜碱醛脱氢酶基因的表达特性.植物生理学报27:309-312
    崔杰,李滨胜,史淑芝等(2006)植物甜菜碱醛脱氢酶基因工程研究进展.中国甜菜糖业1:40-44
    杜金友,陈晓阳,李伟等(2004)干旱胁迫诱导下植物基因的表达与调控.生物技术通报2:10-14
    费云标,孙龙华,黄涛等(1994)沙冬青高活性抗冻蛋白的发现.植物学报36:649-659
    傅荣昭,孙勇如,贾士荣(1994)植物遗传转化技术手册北京:科学技术出版社
    郭北海,张艳敏,李洪杰(2000)甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报42:279-283
    郭岩,张莉,肖岗等(1997)甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学(C缉)27:151-155
    侯彩霞,汤章程(1999)细胞相容性物质的生理功能及作用机制.植物生理学通讯35:1-7
    侯彩霞,於新建,李荣等(1998)甜菜碱稳定PSⅡ放氧中心外周多肽机理.中国科学(C辑)28:355-361
    祭美菊,安黎哲,陈拓等(2001)天山寒区冰缘植物珠芽蓼叶片抗冻蛋白的发现.冰川冻土23:342-346
    贾宝全,闫顺,李国旗等(2002)天山乌鲁木齐河源区高山植被带及其生物多样性初步研究.干旱研究19:17-20
    金冬雁,黎孟枫等译,Sambrook J,Fritsch EF,Maniatis T著,(1992)分子克隆实验指南(第二版)北京:科学出版社
    李渤生,张经炜,王金亭等(1981)西藏高山冰缘植被的初步研究.植物学报23:132-139
    李银心,常凤启,杜立群等(2000)转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报42:480-484
    梁慧敏,夏阳,王太明(2003)植物抗寒冻、抗旱、耐盐基因工程研究进展.草业学报12:1-7
    梁峥,马德钦,汤岚等(1997)菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学报13:236-240
    梁峥,赵原,汤岚等(1994)甜菜碱对呼吸酶的保护作用.植物学报36:947-951
    刘凤华,郭岩,谷冬梅等.(1997)转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报24:54-58
    刘俊君,彭学贤(1995)大肠杆菌mtlD基因和gutD基因的克隆、全序列测序和高效表达.生物工程学报11:157-161
    刘振林,戴思兰(2004)植物甜菜碱醛脱氢酶基因研究进展.西北农林科技大学学报32:104-112
    卢存福,简令成,匡廷云(2000)低温诱导唐古特红景天细胞分泌抗冻蛋白.生物化学与生物物理进展27:555-559
    沈义国,陈受宜(2002)植物盐胁迫应答的分子机制.遗传23:365-369
    孙立平,李德全(2003)LEA蛋白的分子生物学研究进展.生物技术通报6:5-8
    骆爱玲,刘家尧,马德钦等(2000)转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高.科学通报45:1953-1956
    骆爱玲,刘家尧,马德欣等(2001)不同基因型小麦和高粱的抗旱性与其种芽甜菜碱醛脱氢酶的关系.植物报43:108-110
    骆爱玲,赵原,汤岚等(1995)甜菜碱醛脱氢酶在细胞中的定位.植物生理学报21:117-122
    王关林,方宏筠(2002)植物基因工程(第二版),北京:科学出版社
    王桂琴,赵岩,段亚军(2004)高山红景天解剖学研究.植物研究24:93-96
    肖岗,张耕耘,刘风华等(1995)山菠菜甜菜碱醛脱氢酶基因研究.科学通报40:741-745
    杨洪强,梁小娥(2001)蛋白激酶与植物抗逆信号转导.植物生理学通讯37:185-191
    杨淑慎,山仑,郭蔼光等(2005)水通道蛋白与植物抗旱性.干旱地区农业研究23:214-218
    愈嘉宁,山仑(2002)LEA蛋白与植物的抗旱性.生物工程进展22:10-14
    曾华宗,罗利军(2003)植物抗旱、耐盐基因概述.植物遗传资源学报4:270-273
    张艳敏(2003)植物逆境应答的分子机制及转基因研究.河北农业科学7:33-39
    周广泰,刘风琴,吴学明等(1992)青海高山植物解剖特征的研究.青海师范大学学报4:45-60
    祖元刚,颜廷芬,周福军(1998)高山红景天遗传变异及其濒危机制的探讨.植物研究3:304-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700