用户名: 密码: 验证码:
高山离子芥铁蛋白基因CbFer的克隆、表达及其抗氧化功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高山离子芥(Chorispora bungeana Fisch. & C. A. Mey)是一种稀有的高山冰缘植物,具有很强抗寒能力,它不具备特殊的形态结构,但在生理和分子水平上是研究植物适应冷冻环境机制的理想材料。本文以高山离子芥为实验材料,克隆到一个全新的铁蛋白基因(CbFer),在不同温度下(4℃、0℃和-4℃)对其进行低温胁迫后,系统性的检测了AsA-GSH系统和CbFer基因对低温的响应表达,重点对诱导CbFer基因表达的信号途径进行了初步研究。结果认为高山离子芥作为高山冰缘植物所特有的抗寒机制主要表现在以下几个方面:
     1、高山离子芥铁蛋白基因(CbFer)全长975bp,有一个编码260个氨基酸的开放阅读框(ORF)。对应编码的蛋白分子量为29.17 kDa,等电点是5.44。在氨基酸结构域分析中,揭示了高山离子芥铁蛋白有类似铁蛋白双铁结构域并且具有铁蛋白铁结合区域的特征。
     2、CbFer cDNA编码的铁蛋白亚基含有一段定位于叶绿体蛋白的转运肽。RT—PCR分析表明这个基因是组织特异性表达的基因,只能在叶片中检测到它的表达。这表明CbFer基因编码的铁蛋白功能在叶片中发挥。
     3、检测这个基因在冷冻胁迫(4℃、0℃和-4℃)下的表达情况,发现它的转录物在4℃逐渐积累,而在0℃和-4℃的积累反而直接和迅速。这表明CbFer基因的表达与温度密切相关、对温度反应敏感,所以CbFer基因的表达是高山离子芥传递抵御低温胁迫信号的一个重要保护机制。随着胁迫强度的增大,植物启动这个保护机制就越迅速。这恰恰就反映了高山离子芥具有适应温度剧烈变化的能力。
     4、铁鳌合剂(Ferrozine)处理明显的抑制了CbFer基因的表达,表明铁是调控CbFer基因表达的一个重要限制因子。但值得注意的是经铁鳌合剂处理后再进行冷冻胁迫又可以重新诱导CbFer基因的表达。这说明在冷冻情况下诱导CbFer表达的信号除了铁这个因素以外还可能包含其他因素。
     5、用外源信号处理发现:过量铁和H_2O_2正调控CbFer基因的表达;ABA负调控CbFer基因的表达;SNP处理不能引起CbFer基因表达的变化。铁鳌合剂处理后引起的CbFer基因的表达抑制不能被外源ABA、Fe、SNP处理所恢复。但在同样情况下,用H_2O_2处理在一定程度上诱导了CbFer的表达。这表明CbFer
Chorispora bungeana Fisch. & C.A. Mey (C. bungeana) is a rare alpine subnival plant species that is highly capable of resisting freezing environment. Lacking special morphological structure, it is an ideal plant in studying physiological and molecular mechanism in resisting freezing stress. Ferritin cDNA, CbFer, was cloned from C. bungeana. The responses of AsA-GSH system and CbFer to temperature change were examined during the course of different temperature (4℃、0℃ and -4℃) stresses, the signal transduction way of the expression of CbFer was also investigated in this paper. The special cold resistance ability of C. bungeana shows in the following aspects:
    1. CbFer gene is 975 bp in length with an open reading frame (ORF) of 260 amino acids, corresponding to a protein of predicted molecular mass 29.17 kDa and an isoelectric point of 5.44. The deduced amino acid sequence possesses ferritin-like diiron domain and the ferritin iron-binding regions signature.
    2. CbFer cDNA codes for a ferritin subunit plus a chloroplast-targeting transit peptide. RT-PCR analysis revealed that CbFer was a tissue-specfic gene, the expression could only be detected in leaves. These results suggest that the protein coded by CbFer plays function only in leaves.
    3. The expression patterns of CbFer gene were investigated in relation to cold stress. The CbFer gene transcript progressively increased under 4℃ and increased much more distinctly and quickly under 0℃ and -4℃. This result suggests there is a close relationship between the expression of CbFer and cold stress, CbFer expression is sensitive to low temperature. CbFer plays an important protective mechanism in signal transduction to resist cold stress in C. bungeana. Lower temperature could trigger the expression more quickly exactly, this phenomenon reflects fitly that C. bungeana has the ability to adapt to acute temperature change in the growth environment.
    4. The expression of CbFer was strongly inhibited by treatment with iron chelating agent Ferrozine. This result indicates that iron is a main factor in the regulating of CbFer gene expression. It was remarkable that we found cold stress could induce the expression of CbFer after Ferrozine treatment, which means there is another signal except iron induces the expression of the gene during cold stress.
    5. Two tested exogenous signals, excessive iron and H_2O_2, up-regulated the expression of CbFer gene. However, the expression of the gene was down-regulated
引文
Aisen P., Listowsky I. (1980) Iron transport and storage proteins. Annu. Rev. Biochem. 49: 357-393
    Andrews S. C., Arosio P., Bottke W., Briat J. F., von Darl M., Harrison P. M. et al. (1992) Structure, function and evolution of ferritins. J. Inorg. Biochem. 47: 161-174
    Asada K. (1999) The water-water cycle in chloroplast: Scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639
    Asada K., Takahashi M. (1987) Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (Topics in Photosynthesis) (Vol. 9) (Kyle D.J. et al., eds.), Elsevier, pp: 227-287
    Aust S. D., Morehouse L. A., Thomas C. E. (1985) Hypothesis paper-role of metals in oxygen radical reactions. J. Free Rad. Biol. Med. 1:3-25
    Babbs C. F., Pham J. A., Coolbaugh R. C. (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 90:1267-1270
    Balla G., Jacob H. S., Balla J. et al. (1992) Ferritin: A cytoprotective antioxidant stratagem of endothelium. J. Biol. Chem. 267:18148—18153
    Barcelo R, Pons J., Petitpierre E., Barjau I., Portugal J. (1997) Polymorphic curvature of satellite DNA in three subspecies of the beetle Pimelia sparsa. Eur. J. Biochem. 244:318-324
    Basilion J. P., Kennedy M. C., Beinert H., Massinople C. M., Klausner R. D., Rouault T. A. (1994) Overexpression of iron-responsive element-binding protein and its analytical characterization as the RNA-binding form, devoidofaniron-sulfur cluster. Arch. Biochem. Biophys. 311: 517-522
    Bauminger E. R., Harrison P. M., Hechel D., Nowik I., Treffry A. (1991) M(o|¨)ssbauer spectroscopic investigation of structure-function relations in ferritins. Biochem. Biophys. Acta. 1118: 48-58
    Becana M., Moran J. F. (1998) Iturbe2Ormaetxe I. Iron 2 dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil. 201:137—147
    Becker R., Manteuffel R., Neumann D., Scholz G. (1998) Excessive iron accumulation in the pea mutants dgl and brz: subcellular localization of iron and ferritin. Planta. 207: 217- 223
    Bergersen F. J. (1963) Iron in the developing soybean nodules. Aust. J. Biol. Sci. 16: 916-919
    Bienfait H. F. (1985) Regulated redox process at the plasmalemma of plant root cells and their function in iron uptake. J. Bioenerg. Biomembr. 17: 73-83
    Bowler C., Van Montagn C., Inze D. (1992) Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol Biol. 43:83-116
    Branton D., Jacobson L. (1962) Iron transport in pea plants. Plant Physiol. 37: 539-545
    Briat J. F. (1996) Roles of ferritin in plants, J. Plant Nutr. 19: 1331-1342
    
    Briat J. F., Lobreaux S. (1998) Iron storage and ferritin in plants. In: Iron transport and storage in microorganism Plants and Animals. (Vol.25) Metal ions in biological systems. pp:563-584
    Briat J. F. (2002) Metal-ion-mediated oxidative stress and its control. (M Montagu, D Inze, eds), Oxidative Stress in Plants. Taylor and Francis Publishers, London, pp: 171-189
    Briat J. F., Fobis-Loisy I., Grignon N., Lobreaux S., Pascal N., Savino G. et al. (1995) Cellular and molecular aspects of iron metabolism in plants. Biol. Cell 84: 69-81
    Briat J. F., Lobreaux S. (1997) Iron transport and storage in plants. Trends in Plant Science 2(5): 187-193
    Briat J. F., Lobreaux S. (1998). Iron storage and ferritin in plants. In: Iron Transport and Storage in Microorganism, Plants and Animals, vol. 25, Metal Ions in Biological Systems, (Sigel A. and Sigel H. eds), Marcel Dekker, New York pp:563-584
    
    Briat J. F., Lobreaux S., Grignon N., Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why? Cell Mol. Life Sci. 56:155-166
    Briat J. F., Lobreaux S. (1997) Iron transport and storage in plants, Trends Plant Sci. 2:187-193
    Brown H. P., McQueen S. D., Walden W. E., Patino M. M., Gaffield L., Bielser D. et al. (1989) Requirements for the translational repression of ferritin transcripts in wheat germ extracts by 90 kDa protein from rabbit liver, J.Biol.Chem. 264: 13383-13386
    Buchanan-Wollaston V., Ainsworth C. (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by substractive hybridisation. Plant Mol. Biol. 33: 821-834
    Davies K. J. A. (1987) Protein damage and degradation by oxygen radicals. J. Biol. Chem. 26: 9895-9902
    
    Emanuelsson O., Nielsen H., von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8: 978-984
    
    Evans P.J., Halliwell B (1994). Measurement of iron and copper in. biological systems: bleomycin and copper-phenanthroline assays. Methods Enzymol. 233:82-92
    Fitter A. H., Hay R. K. (1989) Environmental physiology of plants, Academic Press, London
    Fobis-Loisy I., London K., Lobréaux S., Lebrun M., Briat J. F. (1995) Structure and differential expression in response to iron and abscisic acid of two maize ferritin genes. Eur. J. Biochem. 231: 609-619
    Foyer C. H. (2002) The contribution of photosynthetic oxygen metabolism to oxidative stress in plants. In Oxidative Stress in Plants. (Inzé, D., Van Montagu, M., eds), Taylor and Francis, pp: 33-68
    Freeman B. A., Crapo J. D. (1982) Biology of disease—free radicals and tissue injury. Lab Invest. 47:412-426.
    Fridovich I. (1983) Superoxide radical: an endogenous toxicant. Annu. Rev. Pharmacol Toxicol. 23:239-257
    Fridovich I. (1991) Molecular oxygen: friend and foe, Active Oxygen/Oxidative Stress and Plant Metabolism, (Pell E.J., Steffen K.L. Eds.), American Society of Plant Physiologists, Rockville, pp:1-5
    Fu X. Y., Chang J. F., An L.Zh. et al.(2006)Association of the cold-hardiness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. Environmental and Experimental Botany 55:282-293
    
    Gaymard F., Boucherez J., Briat J. F. (1996) Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid. Biochem. J. 318: 67-73
    
    Giraudat J., Parcy F., Bertauche N., Gosti R, Leung J., Morris P. C. et al. (1994) Current advances in abscisic acid action and signalling. Plant Mol. Biol. 26: 1557-1577
    
    Gombos Z, Wada H., Murata N. (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membranelipids:a mechanism of chilling tolerance. Pro. Natl. Acad Sci. USA. 91: 8787 - 8791
    
    Grusak M. A. (1994) Iron transport to developing ovules of Pisum satium seed import characteristics and phloem iron-loading capacity of sources regions. Plant Physiol. 104: 649-655
    
    Guerinot M. L., Yi Y. (1994) Iron: nutritious, noxious and not readily available. Plant Physiol. 104: 815-820
    
    Guo B., Yu Y., Leibold E. A. (1994) Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J. Biol. Chem. 269:24252-24260
    
    Halliwell B. (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids. 44: 327-340
    
    Harrison P. M., Arosio P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochem. Biophys. Acta. 1275: 161-203
    
    Harrison P. M., Artymiuk P. J., Ford G. C., Guest J. R., Hirzman J., Lawson D. M. et al. (1991) Probing structure-function relations in ferritin and bacterioferritin. Adv. Inorg. Chem. 36: 449-486
    
    Harrison P. M., Ford G. C., Smith J. M. A., White J. L. (1991) The location of exon boundaries in the multimeric iron-storage protein ferritin. Biol. Metals. 4: 95-99
    
    Heijne G. V., Steppuhn J., Herrmann R. G. (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535-545
    Hentze M. W., K(u|¨)hn L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide and oxidative stress. Proc. Natl. Acad. Sci. USA. 93: 8175-8182
    Hentze M. W., Rouault T. A., Caughman S. W., Dancis A., Harford J. B., Klausner R. D. (1987) A cis-acting element is necessary and sufficient for translationa lregulation of human ferritin expression in response to iron. Proc. Natl. Acad. Sci. USA. 84: 6730-6734
    Hirling H., Henderson B. R., K(u|¨)hn L. C. (1994) Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 15: 453-461
    Hocking P. J., Pate J. S. (1978) Mobilization of minerals to developing seeds of legumes. Ann. Bot. 41: 1259-1278
    Huang J. S., Barker K. R. (1983) Influence of Heterodera glucines on leghe2 moglobins of soybean nodules. Phytopathology. 73:1002-1004
    Inaki Iturbe-Ormaetxe, Escuredo P. R., Arrese-Igor C., Becana M. (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116: 173-181
    Iwai K., Klausner R. D. and Rouault T. A. (1995) Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J. 14: 5350-5357
    
    Jaakola L., Pirtila A. M., Halonen M., Hohtola A. (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotech. 19:203-210
    John G S. (1993) Oxygen stress and superoxide dismutase. Plant Physiol. 101:7-12
    
    Kampfenkel K., Van Montagu M., Inze D. (1995) Effects if iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol. 107: 725-735
    
    Kaniuga Z, Saczynska V, Miskiewicz E. et al. (1999) The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol of Zea mays genotypes differing in chilling susceptibility. Plant Physiol. 154: 256 - 263
    Kaniuga Z., Saczynska V., Miskiewicz E. (1998) Galactolipase activity but not the level of high- melting- point phosphatidylglycerol is related to chilling tolerance in differentially sensitive Zea mays inbred lines. J. Plant Cell Reports. 17: 897 - 901
    Klausner R. D., Rouault T. A., Harford J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 72: 19-28
    Ko M. P., Huang P. Y., Huang J. S., Baker K. R. (1987) The occurrence of phytoferritin and its relationship to effectiveness of soybean nodules. Plant Physiol. 83: 299-305
    Laulhere J. P., Briat J. F. (1993) Iron release and uptake by plant ferritin as affected by pH, reduction and chelation. Biochem. J. 290: 693-699
    Laulhere J. P., Labouré A. M, Briat J. F. (1990) Photoreduction and incorporation of iron into ferritins. Biochem. J. 269: 79-84
    Laulhere J. P., Labouré A. M., Briat J. F. (1989) Mechanism of the transition from plant ferritin to phytosiderin. J. Biol. Chem. 264: 3629-3635
    Laulhere J. P., Labouré A. M., van Wuytswinkel O., Gagnon J., Briat J. F. (1992) Purification, characterization and function of bacterioferritin from the cyanobacyeria Synechocystis PCC 6803. Biochem. J. 281: 785-793
    Laulhere J. P., Lescure A. M., Briat J. F. (1988) Purification and characterization of ferritins from maize, pea and soyabean seeds. Distribution in various pea organs. J. Biol. Chem. 263: 10289-10294
    Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M. A., Livingston J. C, Treffry A. et al. (1991) Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 349: 541-544
    Lescure A. M, Proudhon D., Pesey H., Ragland M., Theil E. C, Briat J. F. (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc. Natl. Acad. Sci. USA. 88: 8222-8226
    Levi S., Luzzago A., Franceschinelli F., Santambrogio P., Cesareni G., Arosio P. (1989) Mutational analysis of the channel and loop sequences of human ferritin H-chain. Biochem. J. 264: 381-388
    Lobreaux S., Briat J. F. (1991) Ferritin accumulation and degradation in different organs of pea (Pisum satium) during development. Biochem. J. 274: 601-606
    Lobreaux S., Hardy T., Briat J. F. (1993) Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J. 12: 651-657
    Lobreaux S., Massenet O., Briat J. F. (1992) Iron induces ferritin synthesis in maize plantlets. Plant Mol. Biol. 19: 563-575
    Lobreaux S., Thoiron S., Briat J. F. (1995) Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. Plant J. 8: 443-449
    Lobreaux S., Yewdall S., Briat J. F., Harrison P. M. (1992) Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum satium) ferritin. Biochem. J. 288: 931-939
    Mann S., Williams J. M., Treffry A., Harrison P. M. (1987) Reconstituted and native iron-cores of bacterioferritin and ferritin. J. Mol. Biol. 198: 405-416
    Marc D.A., Tottempudi K.P., Cecil R. S. (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedling. Plant Physiol. 109:1247-1257
    Marentes E., Grusak M. A. (1998) Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum satium L.). Soil Science Res. 8: 367-375
    Marinos N. G. (1967) Multifunctionnal plastids in the meristematic region of potato tuber buds. J. Ultrastr. Res. 17: 91-113
    Mittler R., Vanderauwera S., Gollery M., Breusegem F. V. (2004) Reactive oxygen gene network of Plants. TRENDS in Plant Science. 9(10):1360-1385
    Moller I. M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:561-591
    Moon B.Y., Higas hi S.I., Gombos Z. et al. (1994) Unsaturation of membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature in transgenic tobacco plants. Pro. Natl. Acad Sci. USA. 91: 8787 - 8791
    Murata N, Is hizaki-Nis hizawa O, Higas hi S. et al. (1992) Genetically engineered alteration in the chilling sensivity of plants. Nature. 356:710 - 712
    Okkes A., Barbaros N. (2003) Antifreeze proteins in higher plants. Phytochemistry. 64: 1187-1196
    Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. (1991) Abrupt increase in the level of hydrogen-peroxide in leaves of winter-wheat is caused by cold treatment. Plant Physiol. 97:1265-1267
    Peng X. X., Yamauchi M. (1993) Ethylene production in rice bronzing leaves induced by ferrousiron. Plant and Soil. 149: 227-234
    Petit J. M., Van Wuytswinkel O., Briat J. F., Lobreaux S. (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFerl and ZmFer1 plant ferritin genes by iron. J. Biol.Chem. 276:5584-5590
    Petit J. M., Briat J. R, Lobreaux S. (2001).Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem. J. 359: 575-582
    Peyret P., Perez P., Alric M. (1995) Structure, genomic organization and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase shows significant homology with mammalian iron-responsive element-binding protein. J. Biol. Chem. 270: 8131-8137
    Pinhero R.G., Paliyath G, Yada R.Y. et al. (1999 )Chloroplast membrane organization in chilling-tolerant and chilling-sensitive maize seedlings. J. Plant Physiol. 155: 691 - 698
    Ponnamperuma R N., Bradfield R., Peech M. (1955) Physiological disease of rice attributable to iron toxicity. Nature. 175: 265-275
    Prasad T. K., Anderson M. D., Martin B. A., Stewart C. R. (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6:65-74
    Proudhon D., Briat J. R, Lescure A. M. (1989) Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol. 90: 586-590
    Proudhon D., Wei J., Briat J. R, Theil E. C. (1996) Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J. Mol. Evol. 42: 325-336
    Ragland M., Briat J. F., Gagnon J., Laulhère J. P., Massenet O., Theil E. C. (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J. Biol. Chem. 265: 18339-18344
    Ragland M., Theil E. C. (1993) Ferritin (mRNA, protein) and iron concentrations during soybean nodule development. Plant Mol. Biol. 21: 555-560
    Ribas-carbo M., Aroca R., Gonzalez-meler M.A., et al.(2000) The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. J. Plant Physiol. 122: 199-204
    Rothenberger S., M(u|¨)llner E. W., K(u|¨)hn L. C. (1990) The mRNA-binding protein which controls ferritin and transferring receptor expression is conserved during evolution. Nucleic Acids Res. 18: 1175-1179
    Santis A.D., Landi P., Genc hi G.. (1999) Changesof mitoc hondrial properties in maize seedlings associated with selection for germination at low temperature, fatty acid composition, cytochrome coxidase and adenine nucleotide translocase activities. J. Plant Physiol. 119: 743 -754
    Savino G, Briat J. F., Lobréaux S. (1997) Inhibition of the iron-induced ZmFer1 maize ferritin gene expression by antioxidants and Ser/Thr phosphatase inhibitors. J. Biol. Chem. 272: 33319-33326
    Seckback J. J. (1982) Ferreting out the secret of plant ferritin - a review. J. Plant Nutr. 5:369-394
    Spence M. J., Henzl M. T., Lammers P. J. (1991) The structure of a Phaseolusulgaris cDNA encoding the iron storage protein ferritin. Plant Mol. Biol. 17: 499-504
    Tang C., Robson A. D., Dilworth M. J. (1990) The role of iron in nodulation and nitrogen fixation in Lupinus augustifolius L. New Phytol. 115: 61-67
    Theil E. C. (1994) Iron regulatory elements (IREs): a family of mRNA non-coding sequences. Biochem. J. 304: 1-11
    Theil E. C., Hase T. (1993) Plant and microbial ferritins. In: Iron Chelation in Plants and Soil Microorganisms, (Barton, L. L., Hemming B. C. eds), Academic Press, New York, pp:133-156
    Urban P. et al. (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J. Biol. Chem. 272:19176-19186
    Van der Mark F., Van der Briel W., Huisman H. G (1983) Phytoferritin is synthesized in vitro as a high-molecular-weight precursor. Biochem. J. 214: 943-950
    
    Van Wuytswinkel O., Briat J. F. (1995) Conformational changes and in vitro core formation modifications induced by site-directed mutagenesis of the specific N-terminus of pea seed ferritin. Biochem. J. 305: 959-965
    
    Van Wuytswinkel O., Savino G., Briat J. F. (1995) Purification and characterization of recombinant pea seed ferritins expressed in Escherichia coli: influence of amino terminus deletions on protein solubility and in vitro coreformation. Biochem. J. 305: 253-261
    Wade V. J., Treffry A., Laulhère J. P., Bauminger E. R., Cleton M. I., Mann S. et al. (1993) Structure and composition of ferritin cores from pea seed (Pisum satium). Biochim. Biophys. Acta 1161: 91-96
    Waldo G. S., Wright E., Wang Z. H., Briat J. F., Theil E. C., Sayers D. E. (1995) Formation of the ferritin iron mineral occurs in plastids: an X-ray absorption spectroscopy study. Plant Physiol. 109: 797-802
    Walker K., Croteau R. (2000) Taxol biosynthesis—molecular cloning of a benzoyl-CoA-taxane 2a-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 97:13591-13596
    Wicks R., Entsch B. (1993) Functional genes found for three different plant ferritin subunits in the legume Vignaunguiculata. Biochem. Biophys. Res. Commun. 192: 813-819
    Young T. F., Terry N. (1982) Transport of iron into leaves following iron resupply to iron-stressed sugar beet plants. J. Plant Nutr. 5: 1273-1283
    Zhang L.J., Zeng F.L. et al. (2003) Effect of La~(3+) on the reactive oxygen species scavenging enzymes in wheat leaves. Biol.Trace Ele. Res. 91:243-252
    阿依吐尔汗,谭敦炎,李志军,姚芳(1998)高山离子芥营养器官的结构与环境的关系研究,新疆农业大学学报,24(4):273-277
    安黎哲,刘艳红,冯国宁等(2000a)乌鲁木齐河源区高寒冰缘植被的生态特征研究,西北植物学报,20(1):98-105
    安黎哲,刘艳红,冯虎元等(2000b)乌鲁木齐河源区高寒冰缘植物化学元素的含量特征,西北植物学报,20(6):1063-1069
    费云标,孙龙华,黄涛等(1994)沙冬青高活性抗冻蛋白的发现,植物学报,36(8):649-659
    祭美菊,安黎哲,陈拓等(2001)天山寒区冰缘植物珠芽蓼叶片抗冻蛋白的发现,冰川冻土,23(4):342-346
    贾宝全,闫顺,李国旗,许英勤(2002)天山乌鲁木齐河源区高山植被带及其生物多样性初步研究,干旱研究,19(2):17-20
    李渤生,张经炜,王金亭,陈伟烈(1981)西藏高山冰缘植被的初步研究,植物学报,23(2):132-139
    林植芳,李双顺,林桂珠等(1988)衰老叶片和叶绿体中H_2O_2的积累与膜脂过氧化的关系植物生理学报,14(1):16-22
    刘璞,陈珈(2000)植物激素脱落酸的信号转导,植物生理学通讯,36(2):165-170
    卢存福,简令成,匡廷云(2000)低温诱导唐古特红景天细胞分泌抗冻蛋白,生物化学与生物物理进展,27(5):555-559
    王爱国,罗广华(1990)植物的超氧物自由基与羟胺反应的定量关系。植物生理学通讯,6:55-57
    王桂琴,赵岩,段亚军(2004)高山红景天解剖学研究,植物研究,24(1):93-96
    余光辉,李玲,曾福华(2002)水分胁迫的基因表达和信号转导亚热带植物科学,31(1):57-62
    周广泰,刘风琴,吴学明等(1992)青海高山植物解剖特征的研究,青海师范大学学报,4:45-60
    祖元刚,颜廷芬,周福军(1998)高山红景天遗传变异及其濒危机制的探讨,植物研究,3:304—310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700