用户名: 密码: 验证码:
蛋白质在金刚石和玻碳表面的共价修饰及电化学生物传感
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为电化学生物传感器的研究中应用最广泛的固定化生物功能试剂,生物大分子蛋白质或酶参与生命体系中的新陈代谢等许多生理过程,这些过程中都要经历电子转移的过程,因此采用电化学方法来研究蛋白质或酶的电子传递过程有着特殊的优越性。对蛋白质分子的直接电化学的研究有助于获得蛋白质的热力学和动力学性质,为揭示生物氧化还原过程奠定了基础,对开发新型生物传感器、生物燃料电池等生物电子器件具有十分重要的理论及应用指导意义。然而,由于生物大分子的分子体积比较庞大,生物活性中心包埋于大分子内部不易暴露,从而造成使蛋白质或酶等生物分子在电极上的直接电化学反应难以实现,从而使蛋白质的电化学研究存在着诸多困难。另一方面,近几年来,碳电极在电化学生物传感器研究中应用受到了广泛关注。碳电极自身有着高于传统材料的诸多优点,如:良好的生物兼容性,稳定的形态,较好的化学和电化学稳定性,良好的机械加工性能以及较低的背景电流等;而且由于碳晶体独特的特点,使得对其表面易于进行化学修饰;也使得具有p键共轭结构的有机分子或配合物更容易被修饰到碳电极的表面,为该电极上的化学修饰提供了更多的途径。而特别值得关注的是,近二、三年来,对具有独特性能的金刚石膜电极(Boron-Doped Diamond Film Electrode,BDD)在生物电分析领域中的研究已经成为人们关注的焦点和研究的重要领域之一。然而,由于金刚石膜本身独特的化学及电化学惰性使得在其表面的共价修饰具有一定的难度,而这将金刚石膜作为电化学生物传感器基底材料的研究工作在国际上刚刚兴起。
     本论文的研究工作采用芳香分子重氮盐的电化学还原反应修饰方法,对比了玻碳(Glassy Carbon Electrode,GC)和金刚石电极的修饰情况,实验结果表明,共价键合在电极上的芳香分子膜对探针分子Fe(CN)_6~(3-/4-)的电子传递反应具有明显的阻碍效应,表现为芳香分子共价修饰的GC(或BDD)电极的阻抗R_(ct)值比未修饰的GC电极(或BDD)电极的R_(ct)值明显增大。其中与GC电极以及芳香分子共价修饰的GC电极相比,BDD电极以及芳香分子共价修饰的BDD电极均表现出更大的R_(ct)值,说明Fe(CN)_6~(3-/4-)电子传递反应在BDD电极以及芳香分子共价修饰的BDD电极上较为缓慢。
As a most widely-used biofunctional reagent for immobilization in the field of electrochemical biosensor, biomacromolecules, such as protein, enzyme and et al, are involved in metabolism and other important physiological processes which are characteristics of electron transfer. So there must be advantage for electrochemistry method to be adopted for the investigation of the electron-transfer processes of protein and enzyme. Moreover, the investigation of the direct electrochemistry of protein can help us comprehend the dynamic and thermodynamic properties of protein, establish a solid foundation to explore the biological oxidation and reduction processes, and be vitally significant for the theoretical and applicational research of new-generation biosensors, biological fuel batteries and et al. However, due to the huge dimension of bio-macromolecules' structure, their bio-active centre is usually buried deeply inside the bio-macromolecules, which must cause difficulty in the realization of the direct electrochemistry of the bio-macromolecules, such as protein or enzyme. On the other hand, carbon electrode has been broadly adopted as a kind of substrate material for the investigation of electrochemical biosensors. There are many good properties of carbon electrodes, such as perfect biological affinity, stable morphology, high chemical and electrochemical stability, good machining property, low background current and et al. Besides, due to carbon crystal's unique property and carbon materials' conjugate structure of p bond, the surface modification of carbon material can be achieved more easily. And especially, a lot of attentions have been paid for the investigation of Boron-Doped Diamond Film Electrode (BDD) which is a kind of new material with many perfect and unique properties. Despite the unique chemical and electrochemical inertness of BDD causes difficulty in its surface modification, the investigation of BDD for developing biosensors has just been carried out.
    In this paper, the surface pre-modification of Glassy Carbon Electrode (GC) and BDD electrode has been studied with a method named the electrochemical reduction of aromatic diazonium salts. The results show that the film monolayer of aromatic molecules covalently modified at the electrodes has an apparent blocking effect on the electron-transfer process of the redox system, Fe(CN)_6~(3-/4-) It was found that comparing with the R_(ct) value of GC or BDD electrode, the R_(ct) values of GC or BDD electrode covalently modified with aromatic molecules increased apparently. More than that, BDD electrode's R_(ct) value was found to be more than GC electrode's R_(ct) value, and the R_(ct) value of aromatic molecules-modified BDD electrode more than the one of aromatic molecules-modified GC electrode. So it indicates that the electron-transfer process of Fe(CN)_6~(3-/4-) at BDD electrode or aromatic molecules-modified BDD electrode is correspondingly slower than at GC electrode or aromatic molecules-modified GC electrode.
    With the characterization results obtained from the electrodes modified under different conditions of electrochemical reduction of aromatic molecules, the R_(ct)
引文
[1] Sigmundsson K., Masson G., Rice R., et al. Determination of active concentrations and association and dissociation rate constants of interacting biomolecules: an analytical solution to the theory for kinetic and mass transport limitations in biosensor technology and its experimental verification [J]. Biochemistry, 2002, Vol. 41(26): 8263~8276
    [2] 陆华,鲜跃仲,金利通.化学传感器,化学教学,1998,Vol.7:25~27
    [3] 钟艳艳,王贵波.生物传感器现状与展望.重庆医学,2005,Vol.5(34):659~662
    [4] 武宝利,张国梅,高春光等.生物传感器的应用研究进展.中国生物工程杂志,2004, Vol.7(24):65~69
    [5] 李景虹.自组装膜电化学.北京:高等教育出版社,2002
    [6] Delvaux M., Walcarius A., Demoustier-Champagne S. Bienzyme HRP-GOx-modified gold nanoelectrodes for the sensitive amperometric detection of glucose at low overpotentials. Biosen. Bioelectron., 2005, Vol. 20 (8):1587~1594
    [7] Karube I., Matsunaga T., Mitsuda S., et al. Microbial electrode BOD sensors. Biotech. Bioeng., 1977, Vol.19 (10):1535~1547
    [8] Dewettinck T., Van Hege K. Verstraete W. Development of a rapid pH-based biosensor to monitor and control the hygienic quality of reclaimed domestic wastewater. Applied Microbiology and Biotechnology, 2001, Vol.56 (5-6):809~815
    [9] Suzanne Leth, Susanna Maltoni, Remigijus Sirnkus, et al. Engineered Bacteria Based Biosensors for Monitoring Bioavailable Heavy Metals. Electroanalysis, 2002, Vol.14 (1):35~42
    [10] Wang Y.R., Wang X.R., Lee Frank S.C. Quantitative Analysis by Solid phase Microextraction in Nonequilibrium Situations Rapid Determination of Pollutant Compounds(PAHs) in Water. Gaodeng Xuexiao Huaxue Xuebao, 1999, Vol.20 (5):699~703
    [11] Peng Y.Y., Qin W., Zhang Z.J. Plant Tissue-based Chemiluminescence Flow Biosensor for the Determination of Oxalate. Gaodeng Xuexiao Huaxue Xuebao, 2001, Vol. 22(2):215~217
    [12] 许改霞,吴一聪,李蓉等.细胞传感器的研究进展.科学通报,2002,Vol.47(15):1126~1128
    [13] 谢平会,刘鹰,许春向.细胞传感器.传感技术学报,2000,Vol.3:237~239
    [14] 董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995
    [15] Yang W.S., Auciello O., Butler J.E., et al. DNA-modified nanocrystalline diamond thinfilms as stable, biologically active substrates. Nature Mater., 2002, Vol. 1:253~257
    [16] Haertl A., Schmich E., Garrido J.A., Hernando J., et al. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nature Mater., Vol. 2004, Vol. 3(10):736~742
    [17] Wang J., Firestone M.A., Auciello O., et al. Surface functionalization of ultranano crystalline diamond films by electrochemical reduction of aryldiazonium salts. Langmuir, 2004, Vol. 20(26):11450~11456
    [18] Kuo Tzu-Chi, McCreery Richard L., Swain Greg M. Electrochemical modification of boron-doped chemical vapor deposited diamond surfaces with covalently bonded monolayers. Electrochem. Solid-State Lett., 1999, Vol. 2(6):288~290
    [19] Allongue P., Delamar M., Desbat B., et al. Saveant Jean-Michel, Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc, 1997, Vol.119(1):201-207
    [20] Saby Coralie, Ortiz Bertha, Champagne Gilles Y., et al. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups. Langmuir, 1997, Vol. 13(25):6805-6813
    [21] Kariuki J.K., McDermott M.T. Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts. Langmuir, 2001, Vol. 17:5947-5951
    [22] Solak Ali Osman, Eichorst Laura R., Clark William J., et al. Modified carbon surfaces as "organic electrodes" that exhibit conductance switching. Anal. Chem., 2003, Vol. 75(2):296-305
    [23] Anariba Franklin, DuVall Stacy H., McCreery Richard L. Mono- and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy "scratching". Anal. Chem., 2003, Vol. 75(15):3837-3844
    [24] Kariuki James K., McDermott Mark T. Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir, 1999, Vol. 15(19):6534-6540
    [25] Downard Alison J. Potential-dependence of self-limited films formed by reduction of aryldiazonium salts at glassy carbon electrodes. Langmuir, 2000, Vol. 16(24):9680-9682
    
    [26] Liu Yi-Chun, McCreery Richard L. Raman spectroscopic determination of the structure and orientation of organic monolayers chemisorbed on carbon electrode surfaces. Anal. Chem., 1997, Vol. 69(ll):2091-2097
    [27] Liu Yi-Chun, McCreery Richard L. Reactions of organic monolayers on carbon surfaces observed with unenhanced raman spectroscopy. J. Am. Chem. Soc, 1995, Vol. 117(45):11254-11259
    [28] Karube I., Matsunaga T., Mitsuda S., et al. Microbial electrode BOD sensors. Biotech. Bioeng., 1977, Vol. 19(10): 1535-1547
    [29] Dewettinck T, Van Hege K., Verstraete W. Development of a rapid pH-based biosensor to monitor and control the hygienic quality of reclaimed domestic wastewater. Applied Microbiology and Biotechnology, 2001, Vol. 56(5-6): 809-815
    [30] Suzanne Leth, Susanna Maltoni, Remigijus Simkus, et al. Engineered Bacteria Based Biosensors for Monitoring Bioavailable Heavy Metals. Electroanalysis, 2002, Vol. 14(1): 35-42
    [31] 朱英杰,Thomas P.B.高取向热解石墨纳米孔的制备、控制及纳米结构的模板合成.世界科技研究与发展,2002,Vol.06:24~27
    
    [32] Nam Yun Suk, Kim Yousung, Shin Woonsup, et al. Electrochemical property of immobilized spinach ferredoxin on HOPG electrode. Journal of Microbiology and Biotechnology, 2004, Vol. 14(5): 1043-1046
    [33] Brett Ana Maria Oliveira, Chiorcea Ana-Maria. Atomic Force Microscopy of DNA Immobilized onto a Highly Oriented Pyrolytic Graphite Electrode Surface. Langmuir, 2003, Vol. 19(9) :3830-3839
    [34] Liu Jie, Wang Joseph. Plant tissue bioelectrode for environmental monitoring of tyrosinase inhibitor. Huanjing Huaxue, 2001, Vol. 20(4):398-404
    [35] Mailley P., Cummings E.A., Mailley S.C. Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. Anal. Chem., 2003, Vol. 75(20): 5422-5428
    [36] Wang Joseph, Lu Fang, Lopez David. Tyrosinase-based ruthenium dispersed carbon paste biosensor for phenols. Biosen. Bioelectron., 1994, Vol. 9(1):9-15
    [37] Tian Yang, Mao Lanqun, Okajima Takeyoshi. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. Biosen. Bioelectron., 2005, Vol. 21(4):557-564
    [38] Jiang Xiao-hua, Lin Xiang-qin. Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal. Chim. Acta, 2005, Vol. 537(1-2):145-151
    [39] Ju Huang-xian, Sun Hong-bin, Chen Hong-yuan. Properties of poly- -aminoanthraquinone modified carbon fiber electrode as a basis for hemoglobin biosensors. Anal. Chim. Acta, 1996, Vol. 327(2) : 125-132
    
    [40] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, Vol. 354(6348):56-58
    [41] Henning T.H., Salama F. Carbon in the Universe. Science, 1998, Vol. 282(5397): 2204-2210
    [42] Zhao Yuan-di, Zhang Wei-de, Chen Hong, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens. Actuators B., 2002, Vol. 87(11): 168-172
    
    [43] Wu Kang-bing, Fei Jun-jie, Wen Bai, et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal. Bioanal. Chem., 2003, Vol. 376(22):205-209
    [44] Yu X., Chattopadhya Y.D., Galeska I., et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun., 2003, Vol. 5(5):408-411
    [45] Wang J.X., Li M.X., Shi Z.J., et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem., 2002, Vol. 74(9):1993-1997
    [46] Cai C.X., Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem., 2004, Vol. 325(2):285-292
    [47] Zhao G.C, Zhang L., Zhang X.W., et al. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem. Commun., 2003, Vol. 5(9): 825-829
    
    [48] Guo M.L., Chen J.H., Liu D.Y., et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry, 2004, Vol. 62(1):29-35
    
    [49] Wang J.X., Li M.X., Shi Z.J., et al. Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis, 2004, Vol. 16(l-2):140-144
    [50] Kamau GN. Surface preparation of glassy carbon electrodes. Anal. Chem. Acta., 1988, Vol. 207:1-3
    [51] Barbero C, et al. Studies of surface-modified glassy carbon electrodes obtained by electrochemical treatment. Its effect on ruthenium bipyridine ion adsorption and the electron-transfer rates of the ferrous/ferric ion couple. J. Electroanal. Chem., 1988, Vol. 248(2):321~340
    [52] 纪华民,王尔康.电化学预处理玻碳电极上的电催化.化学学报,1989, Vol.47(9):867~870
    [53] 金文睿,张自忠,史爱军等.铜在11电极上的阴极伏安特性及其在铜矿分析中的应用.化学学报,1980,Vol.38(5):423~425
    [54] Evans J.F., Kuwana T. Introduction of Functional Groups onto Carbon Electrodes via Treatment with Radio-Frequency Plasmas. Anal. Chem., 1979, Vol. 51(2):358~359
    [55] Zhang Zhan-En, Zhang Li-Jun. Hydrogen peroxide biosensor based onimmobilization of horseradish peroxidase inelectropolymerized N,N-Diamethylaniline film. Journal of Suzhou Institute of Urban Construction and Environmental Protection, 1999, Vol. 12(3):17~19
    [56] SoichiYabuki, FumioMizutani, Yoshiki Hirata. Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrance for the detection of hydrogen peroxide. J. Electroanal. Chem., 1999, Vol. 468(1):117~120
    [57] 刘颜,袁若,柴雅琴等.聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感器.分析测试学报, 2005,Vol.24(4):24~27
    [58] 金松子,田文莉,沈含熙等.肌红蛋白在磷脂-月桂酸修饰的玻碳电极上的电化学行为及其分析应用.分析测试学报,2004,Vol.23(2):1~4
    [59] 王晓丽,张芬芬,李陈鑫等.铁氰化钴修饰玻碳电极尿酸生物传感器的研究.化学传感器,2004,Vol.24(3):18~22
    [60] 乔亚芬,张俊松,陆天虹等.纳米硫化镉修饰玻碳电极对血红蛋白的直接电化学和生物电催化.无机化学学报,2006, Vol.22(7):1282~1284
    [61] 张成林,刘梅川,李平等.纳米聚硫堇修饰电极的制备及其用于检测血红蛋白的研究.化学传感器,2004,Vol.24(4):17~24
    [62] 孙康,王丽平,陶玲等.Nation 膜固定的新亚甲基蓝为介体生物传感器.化学研究与应用,2004,Vol.16(2):191~194
    [63] G.M. Swain. The Susceptibility to Surface Corrosion in Acidic Fluoride Media: A Comparison of Diamond, HOPG,and Glassy Carbon Electrodes. J. Electrochem. Soc., 1994, Vol. 141:3382~3384
    [64] R.Ramesham. Differential pulse voltammetry of toxic metal ions at the boron-doped CVD diamond electrode. J. Mater. Sci., 1999, Vol. 34:1439~1445
    [65] Yu-Chen Tsai, Barry A. Coles, et al. Microwave-Enhanced Anodic Stripping Detection of Lead in a River Sediment Sample. A Mercury-Free Procedure Employing a Boron-Doped Diamond Electrode. Electroanalysis, 2001, Vol. 13:831~835
    [66] Andrew J. Saterlay, et al. Sonoelectrochemical investigation of silver analysis at a highly boron-doped diamond electrode. Talanta, 2000, Vol. 53:403~415
    [67] César Prado, Shelley J.Wilkins et al. Simultaneous Electrochemical Detection and Determination of Lead and Copper at Boron-Doped Diamond Film Electrodes. Electroanalysis, 2002, Vol. 14(4):262~272
    [68] Jishou Xu and Greg M. Swain. Oxidation of Azide Anion at Boron-Doped Diamond Thin-Film Electrodes. Anal. Chem., 1998, Vol. 70:1502~1510
    [69] Miles D. Koppang, Malgorzata Witek, et al. Electrochemical Oxidation of Polyamines at Diamond Thin-Film Electrodes. Anal. Chem., 1999, Vol. 71:1188~1195
    [70] Tata N. Rao, B.V. Sarada, et al. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. J. Electroanal. Chem., 2000, Vol. 491:175~181
    [71] O.Chailapakul, P.Aksharandana, T.Frelink, et al. The electrooxidation of sulfur-containing compounds at boron-doped diamond electrode. Sens. Actuators B, 2001, Vol. 80:193~201
    [72] Nicolae Spataru, Bulusu V. Sarada, et al. Voltammetric Determination of L-Cysteine at Conductive Diamond Electrodes. Anal. Chem., 2001, Vol. 73:514~519
    [73] Tata N. Rao, I. Yagi. Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes. Anal. Chem., 1999, Vol. 71:2506~2511
    [74] B. V. Sarada, Tata N. Rao, D. A. Tryk, et al. Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem., 2000, Vol. 72:1632~1638
    [75] Elena Popa, Yoshinobu Kubota, et al. Selective Voltammetric and Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes. Anal. Chem., 2000, Vol. 72:1724~1727
    [76] Frank Marken, Christopher A. Paddon, Dhinesh Asogan. Direct cytochrome c electrochemistry at boron-doped diamond electrodes. Electrochem. Commun., 2002, Vol. 4:62~66
    [77] Jishou Xu, Qingyun Chen, Greg M. Swain. Anthraquinonedisulfonate Electrochemistry: A Comparison of Glassy Carbon, Hydrogenated Glassy Carbon, Highly Oriented Pyrolytic Graphite, and Diamond Electrodes. Anal. Chem.,1998, Vol. 70:3146~3154
    [78] 何品刚,于雁灵,方禹之.硫辛酸修饰碳纤维微电极在抗坏血酸共存下选择性测定神经递质多巴胺.分析化学,1996,Vol.24(4):407~410
    [79] 张宏,桂学琴,金褒康.纳米金修饰玻碳电极在抗坏血酸共存下选择性测定多巴胺.分析科学学报,2002,Vol.18(3):194~198
    [80] Notsu Hideo, Tatsuma Tetsu, Fujishima Akira. Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J. Electroanal. Chem., 2002, Vol. 523: 86~92
    [81] C.E. Troupe, I.C. Drummond, C. Graham, et al. Diamond-based glucose sensors. Diamond Relat. Mater., 1998, Vol. 7(2-5): 575~580
    [82] Tatsuma Tetsu, Mori Hiroshi, Fujishima Akira. Electron Transfer from Diamond Electrodes to Heme Peptide and Peroxidase. Anal. Chem., 2000, Vol. 72(13):2919~2924
    [83] Yang J., Hu N., Rusling J.F. Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes. J. Electroanal. Chem. 1999, Vol. 463:53~62
    [84] Zhao J., Henkens R.W., Stonehuerner J. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes. J. Electroanal. Chem. 1992, Vol. 327: 109~119
    [85] Crumbliss A.L., Stonehuerner J.G., Henkens R.W., et al. A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosens. Bioelectron., 1993, Vol. 8:331~337
    [86] Xiao Y., Ju H., Chen H. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta, 1999, Vol. 391:73~82
    [87] Xiao Y., Ju H., Chen H. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal. Biochem., 2000, Vol. 278:22~28
    [88] Gu H., Yu A., Chen H. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J. Electroanal. Chem., 2001, Vol. 516:119~126
    [89] Jia J., Wang B., Wu A., et al. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem., 2002, Vol. 74:2217~2223
    [90] Han X., Cheng W., Zhang Z., et al. Direct electron transfer between hemoglobin and a glass carbon electrode facilitated by lipid-protected gold nanoparticles, Biochim. Biophys. Acta, 2002, Vol. 1556:273~277
    [91] Wang L., Wang E. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun., 2004, Vol. 6:49~54
    [92] Bourdillon Christian, Bourgeois Jean Pierre, Thomas Daniel. Chemically modified electrodes bearing grafted enzymes. Biotech. Bioeng., 1979, Vol. 21 (10):1877~1879
    [93] Bourdillon Christian, Bourgeois Jean Pierre, Thomas Daniel. Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena. J. Am. Chem. Soc., 1980, Vol. 102 (12):4231~4235
    [94] Laval Jean Marc, Bourdillon Christian, Moiroux Jacques. Enzymic electrocatalysis: electrochemical regeneration of NAD+ with immobilized lactate dehydrogenase modified electrodes. J. Am. Chem. Soc., 1984, Vol. 106 (17):4701~4706
    [95] 董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995
    [96] 周颖琳,胡玉娇,曾泳淮.血红蛋白在双十二烷基二甲基铵聚乙烯硫酸盐多双层复合薄膜电极上的电化学与电催化.分析化学研究报告,2002,Vol.30(3):262~266
    [97] Liwen Wang, Naifei Hu. Direct electrochemistry of hemoglobin in layer-by-layer films with poly(vinyl sulfonate) grown on pyrolytic graphite electrodes. Bioelectrochemistry, 2001, Vol. 53(2):205~212
    [98] Christopher M. A. Brett, Ana Maria Oliveira Brett, Silvia H. P. Serrano. On the adsorption and electrochemical oxidation of DNA at glassy carbon electrodes. J. Electroanal. Chem., 1994, Vol. 366(1-2):225~231
    [99] Hongyun Liu, Liwen Wang, Naifei Hu. Direct electrochemistry of hemoglobin in biomembrane-like DHP-PDDA polyion-surfactant composite films. Electrochimica Acta, 2002, Vol. 47(15):2515~2523
    [100] Liwen Wang, Naifei Hu. Electrochemistry and Electrocatalysis with Myoglobin in Biomembrane-Like DHP-PDDA Polyelectrolyte-Surfactant Complex Films. Journal of Colloid and Interface Science, 2001, Vol. 236(1):166~172
    [101] Xiaojun Han, Weimin Huang, Jianbo Jia, et al. Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2. Biosens. Bioelectron., 2002, Vol. 17(9):741~746
    [102] Sagiv J. Organized monolayers by adsorption 1: Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc., 1980, Vol. 102:92~95
    [103] Wenrong Yang, J. Justin Gooding, D. Brynn Hibbert. Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper. J. Electroanal. Chem., 2001, Vol. 516(1-2):10~16
    [104] Yang Tian, Lanqun Mao, Takeyoshi Okajima, et al. Superoxide Dismutase Based Third-Generation Biosensor for Superoxide Anion. Anal. Chem., 2002, Vol. 74(10): 2428~2434
    [105] Qing-Min Xu, Li-Jun Wan, Chen Wang, et al. New Structure of L-Cysteine Self-Assembled Monolayer on Au(111): Studies by In Situ Scanning Tunneling Microscopy. Langmuir, 2001, Vol. 17(20): 6203~6206
    [106] Taeho Shin, Keun-Nam Kim, Chang-Woo Lee, et al. Self-Assembled Monolayer of L-Cysteine on Au(111): Hydrogen Exchange between Zwitterionic L-Cysteine and Physisorbed Water. J. Phys. Chem. B, 2003, Vol. 107 (42):11674~11681
    [107] 贾莉,孟娟,张修华等.L-半胱氨酸自组装膜修饰电极对对氨基酚电催化氧化及其分析应用.分析科学学报,2003,Vol.19(6):507~510
    [108] 王升富,杜丹,邹其超.磷铝杂多酸-L-半胱氨酸自组装超分子pH敏感膜电位传感器.应用化学,2002,Vol.19(3):255~258
    [109] Shengfu Wang, Dan Du. Differential pulse voltammetry determination of ascorbic acid with ferrocene-L-cysteine self-assembled supramolecular film modified electrode. Sens. Actuators B: Chem., 2004, Vol. 97(2-3):373~378
    [110] Sheng-fu Wang, Dan Du, Qi-Chao Zou. Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode. Talanta, 2002, Vol. 57(4): 687~692
    [111] 顾凯,朱俊杰,陈洪渊.血红蛋白在L-半胱氨酸微银修饰电极上的电化学行为.分析化学,1999,Vol.27(10):1172~1174
    [112] Elizabeth A. Bentley, Yann Astier, Wen Ming Ji, et al. The electrochemistry and scanning tunnelling microscopy of the flavoprotein putidaredoxin reductase on alkanethiol-modified gold. Inorg. Chim. Acta, 2003, Vol. 356:343~348
    [113] Tian Yang, Mao Lan-Qun; Okajima Takeyoshi, et al. Electrochemistry and Electrocatalytic Activities of Superoxide Dismutases at Gold Electrodes Modified with a Self-Assembled Monolayer. Anal. Chem., 2004, Vol. 76(14):4162~4168
    [114] Se Young Oh, Joon Kyu Park, Chan Moon Chung, et al. Electrochemical properties of self-assembled cytochrome c on gold substrate patterned with a photosensitive polyimide film. Optical Materials, 2003, Vol. 21(1-3):265~269
    [115] Su L., Qiu X.P., Guo L.H., et al. Amperometric glucose sensor based on enzyme- modified boron-doped diamond electrode by cross-linking method. Sens. Actuators B., 2004, Vol. 99:499~504
    [116] Nakamura T., Suzuki M., Ishihara M., et al. Photochemical modification of diamond films: introduction of perfluorooctyl functional groups on their surface. Langmuir, 2004, Vol. 20:5846~5849
    [117] Yang W.S., Auciello O., Butler J.E., et al. DNA-modified nanocrystalline diamond thinfilms as stable, biologically active substrates. Nature Mater., 2002, Vol. 1:253~257
    [118] Hartl A., Schmich E., Garrido J.A., et al. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nature Mater., 2004, Vol. 3:736~742
    [119] 张雷.氨基酸共价修饰玻碳电极及其在生物分析仲的应用:[博士学位论文].合肥: 中国科学技术大学,2001
    [120] 刘盛辉,孙长林,何品刚等.单链脱氧核糖核酸在石墨电极表面固定化的研究.分析化学,1999,Vol.27(2):130~134
    [121] 赵元弟,庞代文,张敏等.DNA修饰电极的研究(ix)—DNA探针在金基底上的固定、表征及其表面分子杂交.高等学校化学学报, 2001, Vol.22(5):744~748
    [122] Eddowes Mark J., Hill H. Allen O. Novel method for investigation on electrochemistry of metalloproteins: cytochrome c. J. Chem. Soc., Chem. Commn., 1977, Vol. 21:771~772
    [123] Gorton L., Lindgren A., Larsson T., et al. Direct electron transfer between heme-containing enzymes and electrodes at basis for third generation biosensors. Anal. Chim. Acta, 1999, Vol. 400 (1-3):91~108
    [124] Rivera Mario, Seetharaman Rajalakshmi, Girdhar Deepak, et al. The reduction potential of cytochrome b5 is modulated by its exposed heme edge. Biochemistry, 1998, Vol. 37 (6):1485~1494
    [125] Guidelli R., Aloisi G., Becucci L., Dolfi A., et al. Bioelectrochemistry at metal|water interfaces. J. Electroanal. Chem., 2001, Vol. 504 (1):1~28
    [126] Lu Zhong-Qing, Huang Qing-Dong, Rusling James F. Films of hemoglobin and didodecyldimethylammonium bromide with enhanced electron transfer rates 1. J. Electroanal. Chem., 1997, Vol. 423 (1-2):59~66
    [127] 鞠熀先.电分析化学与生物传感技术.北京:科学出版社,2006
    [128] Mauk A.G., Gray H.B. Analysis of the kinetics of electron transfer reactions of hemoglobin and myoglobin with inorganic complexs. Biochem. Biophys. Res. Commun., 1979, Vol. 86(1):206~210
    [129] Dryhurst G, Kadish K.M., Scheller F.W., et al. Biological Electrochemistry, Vol. 1. New York: Academic Press, 1982. 398~340
    [130] Faulkner Kevin M., Bonaventura Celia, Crumbliss Alvin L. A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobin and myoglobins. J. Biol. Chem., 1995, Vol. 270 (23):13604~13612
    [131] Fan Chun-Hai, Suzuki Iwao, Chen Qiang, et al. An unmediated hydrogen peroxide sensor based on a hemoglobin-SDS film modified electrode. Anal. Lett., 2000, Vol. 33 (13):2631~2644
    [132] Yu Jiu-Hong, Ju Huang-Xian. Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film. Anal. Chim. Acta, 2003, Vol. 486:209~216
    [133] Genxi Li, Hongyuan Chen, Dexu Zhu. A new method for the voltammetric response of hemoglobin. J. Inorg. Biochem., 1996, Vol. 63(3):207~214
    [134] K. L. Hanrahan, S. M. MacDonald, S. G. Roscoe. An electrochemical study of the interfacial and conformational behaviour of cytochrome c and other heme proteins. Electrochimica Acta, 1996, Vol. 41(15): 2469~2479
    [135] 李清文,高宏,黄吴等.血红蛋白与NO分子间相互作用的电化学表征.高等学校化学学报,2001,Vol.22(8):1373~1375
    [136] Fabiana Y. Oliva, Lucia B. Avalle, Vicente A. Macagno, et al. Study of human serum albumin-TiO2 nanocrystalline electrodes interaction by impedance electrochemical spectroscopy. Biophy. Chem., 2001, Vol. 91(2):141~155
    [137] Yeni Astuti, Emmanuel Topoglidis, Gianfranco Gilardi, et al. Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Bioelectrochemistry, 2004, Vol. 63(1-2):55~59
    [138] Xiang Ma, Xinjian Liu, Hart Xiao, et al. Direct electrochemistry and electrocatalysis of hemoglobin in poly-3-hydroxybutyrate membrane. Biosens. Bioelectron., 2005, Vol. 20(9): 1836~1842
    [139] Liu Hui-Hong, Tian Zhi-Quan, Lu Zhe-Xue, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens. Bioelectron., 2004, Vol. 20(2):294~304
    [140] Yuan-Di Zhao, Yan-Hua Bi, Wei-De Zhang, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta, 2005, Vol. 65(2): 489~494
    [141] He Huang, Pingli He, Naifei Hu, et al. Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry, 2003, Vol. 61(1-2):29~38
    [142] He Huang, Naifei Hu, Yonghuai Zeng, et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal. Biochem., 2002, Vol. 308(1):141~151
    [143] Li Shen, Naifei Hu. Heme protein films with polyamidoamine dendrimer: direct electrochemistry and electrocatalysis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2004, Vol. 1608(1):23~33
    [144] Songqin Liu, Zhihui Dai, Hongyuan Chen, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens. Bioelectron. 2004, Vol. 19(9): 963~969
    [145] 宋雅茹,吴红,邵会波.硝酸还原酶在巯基自组装膜上的电化学性质.电化学,2002,Vol.8(3):333~336
    [146] 顾仁敖,乔专虹,曲晓刚等.细胞色素C在糖及醇修饰金电极上的直接电化学.物理化学学报,1996,Vol.12(7):654~658
    [147] 汤国新,吴霞琴.几种促进剂作用下细胞色素C电子转移过程的研究.电化学,1995,Vol.1(2):181~185
    [148] Rong Huang, Nai-Fei Hu. Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films. Bioelectrochemistry, 2001, 54(1):75~81
    [149] Alsmeyer Y.W., McCreery R.L. Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition. Anal. Chem., 1991, Vol. 63(13):1289~1295
    [150] Bourdillon C., Delamar M., Demaille C., et al. Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts. J. Electroanal. Chem., 1992, Vol. 336(1-2) :113~123
    [151] Downard A.J., Roddick A.D. Protein adsorption at glassy carbon electrodes. The effect of covalently bound surface groups. Electroanalysis, 1995, Vol.7(4): 376~378
    [152] Downard A.J., Roddick A.D., Bond A.M. Covalent modification of carbon electrodes for voltammetric differentiation of dopamine and ascorbic acid. Anal. Chim. Acta, 1995, Vol. 317:303~306
    [153] Saby C., Champagne G.Y., Bélanger D. Meeting Abstracts, Electrochemical Society, Pennington, NJ: Electrochemical Society, 1996, Vol. 96-2:1120~1122
    [154] Giancarlo R. Salazar-Banda, Leonardo S. Andrade, Pedro A.P. Nascente, et al. On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments. Electrochimica Acta, 2006, Vol. 51 (22):4612~4619
    [155] Alexander Kraft, Manuela Stadelmann, Manfred Blaschke. Anodic oxidation with doped diamond electrodes---a new advanced oxidation process. Journal of Hazardous Material, 2003, Vol. 103(3): 247~261
    [156] N. Simon, H. Girard, D. Ballutaud, et al. Effect of H and O termination on the charge transfer of moderately boron doped diamond electrodes. Diamond Relat. Mater., 2005, Vol.14:1179~1182
    [157] Hugo B. Suffredini, Valber A. Pedrosa, Lucia Codognoto, et al. Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment. Electrochimica Acta, 2004, Vol.49:4021~4026
    [158] Hideo Notsu, Ichizo Yagi, Tetsu Tatsuma, et al. Surface carbonyl groups on oxidized diamond electrodes. J. Electroanal. Chem., 2000, Vol.492:31~37
    [159] 纪华民,王尔康.电化学预处理玻碳电极上的电催化.化学学报,1989,Vol.47(9):867~869
    [160] 金文睿,张自忠,史爱军等.铜在11电极上的阴极伏安特性及其在铜矿分析中的应用.化学学报,1980,Vol.38(5):423~425
    [161] Evans J.F., Kuwana T. Introduction of Functional Groups onto Carbon Electrodes via Treatment with Radio-Frequency Plasmas. Anal. Chem., 1979, Vol.51(2):358~360
    [162] Notsu Hideo, Tatsuma Tetsu, Fujishima Akira. Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J. Electroanal. Chem., 2002, Vol.523: 86~92
    [163] C.E. Troupe, I.C. Drummond, C. Graham, et al. Diamond-based glucose sensors. Diamond Relat. Mater., 1998, Vol.7(2-5): 575~580
    [164] Mathieu D'Amours, Daniel Bélanger. Stability of Substituted Phenyl Groups Electrochemically Grafted at Carbon Electrode Surface. J. Phys. Chem. B, 2003, Vol. 107:4811~4817
    [165] Abd-Elgawad Radi, Josep Maria Montornes, Clara K. O'Sullivan. Reagentless detection of alkaline phosphatase using electrochemically grafted films of aromatic diazonium salts. J. Electroanal. Chem., 2006, Vol.587:140~147
    [166] Jian Wang, Millicent A. Firestone, Orlando Auciello, et al. Surface Functionalization of Ultrananocrystalline Diamond Films by Electrochemical Reduction of Aryldiazonium Salts. Langmuir, 2004, Vol.20:11450~11456
    [167] Mahapatro Surendra N., Le Hont T., Pham Nhan V., et al. Arenediazonium Salts: Cyclic Voltammetry and Non-Bonded Electron Transfer Reaction with Cytochrome C. Abstracts, 39th Midwest Regional Meeting of the American Chemical Society, Manhattan, KS, United States: American Chemical Society, 2004, Vol.4:352~353
    [168] Marie-Claude Bernard, Annie Chausse, Eva Cabet-Deliry, et al. Organic Layers Bonded to Industrial, Coinage, and Noble Metals through Electrochemical Reduction of Aryldiazonium Salts. Chem. Mater., 2003, Vol. 15:3450~3462
    [169] 王清廉,沈风嘉.有机化学试验.高等教育出版社.1994,Vol.4:198~203.
    [170] Bard A.J., Faulkner W.R., Edrs., Electrochemical Methods: Fundamentals and Applications [M], New York: Wiley, 1980
    [171] Laviron E. The use of linear potential sweep voltammetry and of AC voltammetry for the study of the surface electrochemical reaction of strong adsorbed systems and of redox modified electrodes. J. Electroanal. Chem. Interf. Electrochem., 1979, Vol. 100:263-270
    [172] Delamar Michel, Hitmi Rachid, Pinson Jean, et al. Covalent modification of carbon surfaces by grafting of functional aryl radical produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc, 1992, Vol.114 (14):5883-5884
    [173] Liu GZ., Liu J.Q., B. Till, et al. The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer. Chem. Phys., 2005, Vol.319:136-146
    [174] Bertha Ortiz, Coralie Saby, Gilles Y. Champagne, et al. Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenylmodified glassy carbon electrodes in aqueous media. J. Electroanal. Chem., 1998, Vol.455:75-81
    [175] Bourdillon Christian, Delamar Michel, Demaille Christophe, et al. Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts. J. Electroanal. Chem., 1992, Vol.336 (1-2): 113-123
    [176] Allongue Philippe, Delamar Michel, Desbat Bernard, et al. Covalent Modification of Carbon Surface by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. J. Am. Chem. Soc, 1997, Vol.119 (1):201-207
    [177] Chen Pei-Hong, McCreey Richard L. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal. Chem., 1996, Vol.68 (22):3958-3965
    [178] Liu Yi-Chun., McCreey Richard L. Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surface. Anal. Chem., 1997, Vol.69 (11):2091-2097
    [179] Alison J. Downard. Electrochemically Assisted Covalent Modification of Carbon Electrodes. Electroanalysis, 2000, Vol.12 (14): 1085-1096
    [180] Xin-hao Yang, Simon B. Hall, Swee Ngin Tan. Electrochemical Reduction of a Conjugated Cinnamic Acid Diazonium Salt as an Immobilization Matrix for Glucose Biosensor. Electroanalysis, 2003, Vol.l5(10):885-891
    [181] Bourdillon C, Bourgeois J.P., Thomas D. Covalent linkage of glucose oxidase on modified glassy carbon electrodes_Kinetic phenomena. J. Am. Chem. Soc, 1980, Vol.l02(12) :4231-4235
    [182] Laval Jean Marc, Bourdillon Christian. Modified glassy carbon electrode with immobilized enzyme. NAD/NADH lactic dehydrogenase. J. Electroanal. Chem., 1983, Vol. 152(1-2):125-141
    
    [183] Steve Baranton, Daniel Belanger. Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations. J. Phys. Chem. B, 2005, Vol.l09:24401-24410
    
    [184] H. Tsutsumi, S. Furumoto, M. Morita. Y. Matsuda, et al. Electrochemical behavior of a 4-nitrothiophenol modified electrode prepared by the self-assembly method. Interf. Sci., 1995, Vol. 171(2): 505-511
    
    
    [185] I. Rubinstein. Voltammetric study of nitrobenzene and related compounds on solid electrodes in aqueous solutions. J. Electroanal. Chem. Interf. Electrochem., 1985, Vol. 183(1-2): 379-386 Chem., 2004, Vol.566 (2):415-421
    [205] M.F.Perutz, H. Muirhead, J.M. Cox, et al. Three-Dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution. I. X-ray analysis. Nature, 1968, Vol.219 (5149):29~32
    [206] Laviron E. General expression of the linear potential sweep voltammetry in the case of diffusionless electrochemical systems. J. Electroanal. Chem., 1979b, Vol. 101:19~28
    [207] J.J. Feng, J.J. Xu, H.Y. Chen. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem. Commun., 2006, Vol. 8(1):77~82
    [208] Z.H. Dai, S.Q. Liu, H.X. Ju, et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens. Bioelectron., 2004, Vol. 19(8):861-867
    [209] Ralph A. Kamin, George S. Wilson. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem., 1980, Vol.52 (8):1198~1205
    [210] H.X. Ju, S.Q. Liu, B. Ge, et al. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis, 2002, Vol. 14(2):141~147
    [211] Z.H. Dai, S.Q. Liu, H.X. Ju. Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing. Electrochim. Acta., 2004, Vol. 49(13):2139~2144
    [212] Bancroft E.E., Blount H.N., Hawkridge EM. Derivative cyclic voltabsorptometry of cytochrome c. Biochem. Biophys. Res. Commun., 1981, Vol. 101(4):1331~1336
    [213] Allen P.M., Hill H.A.O., Walton N.J. Surface modifiers for the promotion of direct electrochemistry of cytochrome c. J. Electroanal. Chem. Interf. Electrochem., 1984, Vol. 178 (1):69~86
    [214] 蔡称心,陈洪渊,鞠烷先.纳米级微带金电极上葡萄糖氧化酶的固定、性质及应用.化学学报,1995,Vol.53(3):286~289
    [215] Chen Shi-hong, Yuan Ruo, Chai Yaqin, et al. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens. Bioelectron., 2007, Vol.22(7): 1268~1274
    [216] 戴志晖.蛋白质在无机多孔材料上的固定,电子传递与生物传感:[博士学位论文].南京:南京大学,2004
    [217] 刘松琴.固定化蛋白质在纳米仿生界面上的电子传递与生物传感:[博士学位论文].南京:南京大学,2003
    [218] Liu Song-Qin, Ju Huang-Xian. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal. Biochem., 2002, Vol. 307(1),110~116
    [219] 胡艺.基于纳米材料的生物传感器的研究:[博士学位论文].上海:华东师范大学,2006
    [220] 曹庆云.酶生物传感器及酶联荧光免疫技术的研究:[硕士学位论文].南京:湖南大学,20040520
    [221] 徐锦忠.功能纳米材料组装生物电化学传感器:[博士学位论文].南京:南京大学, 2003
    [222] 徐熠.血红素蛋白质的直接电化学及其催化性质的研究:[硕士学位论文].南京:南京大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700