用户名: 密码: 验证码:
少层石墨的制备及Raman光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯(graphene)是迄今为止世界上最薄的一种新型二维碳材料。石墨烯具有高的载流子迁移率,其电子具有亚微米尺度的弹道传输特性,常温下具有极快的电子传输速率,这些优异的性质使得它在纳米电子器件方面具有广泛的应用前景。本文主要采用撕胶带法和氧化还原法制备了少层石墨,并通过Raman光谱对样品进行了系统研究。
     利用高定向热解石墨(HOPG)优异的层状结构,通过反复撕胶带法分别在300nm SiO2/Si和Si衬底上得到了少层石墨。通过不同厚度样品的Raman光谱对比,可以辨别出少层石墨;从光学显微图片看,少层石墨在300nm SiO2/Si衬底上的光学对比度更好,通过Raman光谱测试也证实了这点,并在300nm SiO2/Si衬底上获得了单层石墨,即石墨烯。
     以高纯石墨粉为原料,利用改进的Hummers法制备得到了氧化石墨(GO),样品的Raman光谱测试显示:氧化后石墨的2D峰消失,D峰与G峰变宽,且强度比变大,表明其结构发生了变化,缺陷增多。XRD测试结果显示,石墨的(002)峰消失,GO的(100)和(001)衍射峰出现,表明石墨被氧化了。
     分别采用高压釜热还原和水合肼化学还原对GO进行了还原,通过Raman光谱分析得出:(1)石墨2D峰的重新出现表明GO的结构发生了变化。(2)通过ID/IG值的比较,可以得出高压釜热还原方法在一定程度上对石墨氧化过程中产生的缺陷进行了修复,还原效果优于水合肼还原。XRD测试显示石墨(002)特征衍射峰增强,GO的(100)和(001)衍射峰减弱,GO被还原。还原产物在水中和NMP中的分散性研究表明还原后GO中的亲水基团大量消失。
     GO及其还原产物的PL谱测试显示,GO粉末发绿光,还原产物发蓝光,这也说明GO还原后结构发生了变化。
     Raman光谱是一种无损的、快速的、准确的判断石墨烯的有效手段,在GO及还原产物的结构表征方面也具有重要的意义。
Graphene is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, and can travel for micrometers without scattering at room temperature. These unique properties hold great promise for potential applications in nanoelectronics. In this paper, few-layer graphene was prepared by micromechanical cleavage and reduction of GO, respectively. The structure of the sample were characterized systemly by Raman spectroscopy.
     Single- and few-layer graphene taken from freshly cleaved HOPG surfaces by the scotch-tape technique can be readily transferred on to silicon wafer. It is interesting that single-layer graphene placed on a Si wafer with a 300nm thick layer of SiO2 becomes visible in an optical microscope. Results of Raman and optical microscopy measurement showed that few-layer graphene was presence.
     GO were produced using a modified Hummers' method from high-purity graphite powder. It was found that graphite were oxided completely, which was demonstrated by Raman spectroscopy and XRD. Dispersions of GO was carried out in water and NMP, respectively. It was found that GO can be dispersed uniformly.
     Herein, hydrothermal dehydration by using of teflonlined autoclave and hydrazine were used to reduced GO. It is found that hydrothermal dehydration had a better effect on reduction of GO compared to hydrazine. Dispersions of GO-reduced was also carried out in water and NMP, respectively. It was found that GO-reduced can not be dispersed in warer by bath ultrasonication and it may be because of hydrophilic groups' absent on GO.
     PL spectra of the sample showed that the luminescence of GO and GO-reduced were found to occur in the visible wavelengths range.
     Raman spectroscopy can be used as a quick, lossless and unambiguous method to determine the number of graphene layers. It has also played an important role in the structural characterization of GO.
引文
[1]B. T. Kelly, Physics of Graphite, Applied Science Publishers, London,1981.
    [2]A. Thess, R. Lee, P. Nikolaev, H. J. Dai, et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science,273(1996)483.
    [3]Lu-Chang Qin, Xinluo Zhao, Kaori Hirahara, et al., The smallest carbon nanotube, Nature,408(2000)50.
    [4]N. Wang, Z. K. Tang, G D. Li, J. S. Chen, Single-walled 4 A carbon nanotube arrays, Nature,408(2000)51.
    [5]X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones, Y. Ando, Smallest Carbon Nanotube Is 3A in Diameter, Phys. Rev. Lett.,92(2004)125502.
    [6]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, et al., Science,306(2004)666.
    [7]S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single nanotubes, Nature,393(1998)49.
    [8]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature, 386(1997)377.
    [9]P. Chen, X. Wu, J. Lin, K. L. Tan, High H2 uptake alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science,285(1999)91.
    [10]TW Ebbesen, PM Ajayan, Large scale synthesis of carbon nanotubes, Nature, 358(1992)220.
    [11]H. J. Dai, A. G. Rinzler, P. Nikolaev, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., 260(1996)471.
    [12]A. K. Geim, K. S. Novoselov, The rise of graphene, Nature materials, 6(2007)183.
    [13]L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. F. Kelly, B. I. Yakobson, P. M. Ajayan, Controlled nanocutting of graphene, Nano.Res.,1(2008)116.
    [14]J. R. Williams, L. C. DICarlo, C. M. Mareus, Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene, Science,317(2007)638.
    [15]Edward McCann, Vladimir I. Fal'ko, Landau-Level Degeneracy andQuantum Hall Effect in a Graphite Bilayer, Phys. Rev. Lett.,96(2006) 086805(1-4).
    [16]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, A. K. Geim, et al., Room-Temperature Quantum Hall Effect in Graphene, Science,315(2007)1379.
    [17]H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, A. F. Morpurgo, Bipolar supercurrent in grapheme, Nature,446(2007)56.
    [18]Chong-an Di, Dacheng Wei, Gui Yu, Yunqi Liu, Yunlong Guo, Daoben Zhu, Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors, Advanced Materials,20(2008)3289.
    [19]Dacheng Wei, Yunqi Liu, Hongliang Zhang, et al., Scalable Synthesis of Few-Layer GrapheneRibbons with Controlled Mo-rphologies by a Template Method and Their Applications In Nanoelectromechanical Switches, J. Am. Chem. Soc.,131(2009)11147.
    [20]Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris,100-GHz Transistors from Wafer-Scale Epitaxial Graphene, Science,662(2010).
    [21]N. Tombros, C. Jozsal, M. Popinciuc, H. T. Jonkman, B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature,448(2007)571.
    [22]E. McCann, K. Kechedzhi, V. I. Fal'ko, H. Suzuura, T. Ando, B. L. Altshuler, Weak-Localization Magnetoresistance and Valley Symmetryin Graphene, Phys. Rev. Lett.,97(2006)146805.
    [23]Schedin F, Geim A K, Morozov S V, et al.,Detection of individual gas molecules adsorbed on graphene. Natural Material,6(2007)65.
    [1]Lu XK, Yu MF, Huang Hui, Ruoff RS, Tailoring graphite with the goal of achieving single sheets, Nanotechnology,10(1999)269.
    [2]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang.S. V. Dubonos, I. V. Grigorieva, et al., Science,306(2004)666.
    [3]刘首鹏,周锋,金爱子等,人工裁剪制备石墨纳米结构,物理学报, 54(9)(2005)34251.
    [4]Meyer JC, Geim AK, Katsnelson MI, The structure of suspended graphene sheets, Nature,446(2007)60.
    [5]Shioyama H, et al., Cleavage of graphite to grapheme, Journal of Materials Science Letters,20(2001)499.
    [6]Chen GH, Wu DJ, Weng WG, Wu CL, Exfoliation of graphite flake and its nanocomposites, Carbon,413(2003)619.
    [7]Liu P, Gong K, Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction, Carbon,37(1999)706.
    [8]Niyogi S, Bekyarova E, Itkis ME, JL Mc Williams, et al., Solution properties of graphite and grapheme. J Am Chem Soc,128(2006)7720.
    [9]Worsley KA, Ramesh P, Mandal SK, Niyogi S, et al., Soluble grapheme derived from graphite fluoride, Chemical Physics Letters,445(2007)51.
    [10]Horiuchi S, Gotou T, Fujiwara M, et al., Single graphene sheet detected in a carbon nanofilm, Applied Phys Lett.,84(20042)403.
    [11]Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology,3(2008)101.
    [12]Wang JJ, Zhu MY, Outlaw RA, et al., Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced CVD, Carbon, 42(2004)2867.
    [13]Srivastava SK, Shukla AK, Vankar V, et al., Growth, structure and field emission characteristics of petal like carbon nano-structured thin films, Thin solid films,492(2005)124.
    [14]Dedkov YS, Fonin M, Laubschat C. A possible source of spin-polarized electrons:The inert graphene/Ni (111) system, Applied Physics Letters, 92(2008)052506.
    [15]Borca B, et al., Reactivity of periodically rippled graphene grown on Ru(0001), Journal of physics:condensed matter,21(2009)134002.
    [16]Biedermann Laura B, et al., Insights into few-layer epitaxial graphene growth on 4H-SiC(0001) substrates from STM studies, Physical Review B, 79(2009)125411.
    [17]Virojanadara C, et al., Homogeneous large-area graphene layer growth on 6H-SiC(0001), Physical Review B,78(2008)245403.
    [18]Novolesov. K. S, et al., Two-dimensional atomic crystal, PNAS.,102(2005) 10451.
    [19]Luxmi, Shu Nie, P. J. Fisher, R. M. Feenstra, et al.,Temperature Dependence of Epitaxial Graphene Formation on SiC(0001), Journal of Electronic Materials,38(2008)718.
    [20]Berger C, Song Z, Li X et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science,312(2006)1191.
    [21]Sutter PW, Flege JI, Sutter EA, Epitaxial graphene on ruthenium, Nat Mater,7(2008)406.
    [22]Coraux J, N'Diaye AT, Busse C, Michely T, Structural Coherency of Graphene on Ir(111), Nano Lett.,8(2008)565-570.
    [23]Juang, Z-Y., Wu,C-Y., Lo,C-W., Synthesis of graphene on silicon carbide Substrates at low temperature, Carbon,47(2009)2026.
    [24]Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Large-scale pattern growth of graphene films for Stretchable transparent electrodes, nature,457(2009)07719.
    [25]Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim,et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science,324(2009)1312.
    [26]Seung Jin Chae, Ki Kang Kim, Eun Sung Kim, Gang Hee Han, et al., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition:Wrinkle Formation, Adv. Mater.,21(2009)2328.
    [27]Yenny Hernandez,Valeria Nicolosi, Mustafa Lotya, et al., High-yield production of grapheme by liquid-phase exfoliation of graphite, nature nanotechnology,3(2008)563.
    [28]Mustafa Lotya, Yenny Hernandez, Paul J. King, Ronan J. Smith, Valeria Nicolosi, Lisa S. Karlsson, et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, J. Am. Chem. Soc.,131(2009)3611.
    [29]Yuxi Xu, Hua Bai, Gewu Lu, et al., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc.,130(2008)5856.
    [30]Vincent C. Tung, Matthew J. Allen, Yang Yang, et al., High-throughput solution processing of large-scale grapheme, Nature, Nanotechnology,10(2008)329.
    [31]Xiaolin Li, Guangyu Zhang, Xuedong Bai, Hongjie Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, nature, nanotechnology, 3 (2008) 538.
    [32]Xiaobin Fan, Wenchao Peng, Yang Li, et al., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation, Adv. Mater.,20(2008)4490.
    [33]Yong Zhou, Qiaoliang Bao, Lena Ai Ling Tang, et al., Hydrothermal Dehydration for the "Green" Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties, Chem. Mater., 21(2009)2950.
    [34]Dmitry V. Kosynkin, Amanda L. Higginbotham, et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature,458(2009)872.
    [35]Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov, Hongjie Dai, Narrow grapheme nanoribbons from carbon nanotubes, Nature,458(2009)919.
    [36]Anton N Sidorov, et al., Electrostatic deposition of graphene, Nanotechnology, 18(2007)135301.
    [37]Chang-Duk Kima, Bong-Ki Minb, Woo-Sik Junga,Preparation of graphene sheets by the reduction of carbon monoxide,carbon,47(2009)1605.
    [38]Mohammad Choucair, Pall Thordarson, John A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nature, Nanotechnology,4(2009)365.
    [39]Dacheng Wei, Yunqi Liu, Hongliang Zhang, et al., Scalable Synthesis of Few-Layer GrapheneRibbons with Controlled Mo-rphologies by a Template Method and Their Applications in Nanoelectromechanical Switches, J. Am. Chem. Soc.,131(2009)11147.
    [40]S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram,The Optical Visibility of Graphene:Interference Colors of Ultrathin Graphite on SiO2, Nano Lett.,7(2007)2707.
    [41]P. Blakea,E. W. Hill,A. H. Castro Neto,K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Making graphene visible, APPLIED PHYSICS LETTERS,91(2007)063124.
    [42]Duhee Yoon, Hyerim Moon, Young-Woo Son, et al., Interference effect on Raman spectrum of graphene on SiO2/Si, PHYSICAL REVIEW B,80 (2009)125422.
    [43]傅玲,刘洪波等,Hummers法制备氧化石墨时影响氧化程度的工艺因素研究,碳素,4(2005)10.
    [44]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Graphene: The New Two-Dimensional Nanomaterial, Angew. Chem. Int. Ed.,48 (2009) 7752.
    [1]F. Tuinstra, J. L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970)1126-1130.
    [2]S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill, J. L. Peng, The Raman spectrum of nanocrystalline diamond, Chemical Physics Letters,332(2000)93.
    [3]Jinquan Wei, Bin Jiang, Xianfeng Zhang, Hongwei Zhu, Dehai Wu, Raman study on double-walled carbon nanotubes, Chemical Physics Letters,376 (2003)753-757.
    [4]A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, PHYSICAL REVIEW B,64(2001) 075414
    [5]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, et al., Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. lett.,97(2006)187401.
    [6]Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, et al., Raman spectroscopy of epitaxial graphene on a SiC substrate, Phys. Rev. B.,77(2008)115416.
    [7]Irene Calizo, Suchismita Ghosh, Wenzhong Bao, Feng Miao, et al., Raman nanometrology of graphene:Temperature and substrate effects, Solid State Communications,149(2009)1132.
    [8]Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen, Raman Spectroscopy and Imaging of Graphene, Nano Res.,1 (2008)273-291.
    [9]D. Grafa, F. Molitora, K. Ensslina, et al., Raman imaging of graphene, Solid State Communications,143(2007)44-46
    [10]M. Haluska, D. Obergfell, J. C. Meyer,et al., Investigation of the shift of Raman modes of graphene flakes, physica status solidi (b),244(2007)4143-4146.
    [11]Z. H. Ni, H. M. Wang, J. Kasim, et al., Graphene Thickness Determination Using Reflection and Contrast Spectroscopy, Nano Lett.,,7(2007)2758-2763.
    [12]A. Gupta, G Chen, P. Joshi,S. Tadigadapa, P. C. Eklund, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films, Nano Lett., 6(2006)2667-2673.
    [13]Stephanie Reich, Christian Thomsen, Raman spectroscopy of graphite, Phil. Trans. R. Soc. Lond. A,362(2004)2271-2288.
    [14]Duhee Yoon, Hyerim Moon, Young-Woo Son, et al., Interference effect on Raman spectrum of graphene on SiO2/Si, Phys. Rev. B.,80(2009)125422.
    [1]B. C. Brodie, On the atomic weight of graphite, Phil. Trans. Roy. Soc., 149(1859)249.
    [2]L. Staudenmaier, Verfahren Zur Darstellung Der Graphitsaure, Ber. Dtsh. Chem.Ges.,31(1898)1481~99
    [3]W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc.,80(1958)1339
    [4]Dmitriy A. Dikin, Sasha Stankovich, Eric J. Zimney,et al., Preparation and characterization of graphene oxide paper, Nature,448(2007)457.
    [5]Yuxi Xu, Hua Bai, Gewu Lu, et al., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 130(2008)5856-7.
    [6]X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res.,1(2008)203.
    [7]Goki Eda, Yun-Yue Lin, Cecilia Mattevi, et al., Blue Photoluminescence from Chemically Derived Graphene Oxide, Adv. Mater.,21(2009)1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700