用户名: 密码: 验证码:
纳米碳材料的制备及其薄膜透明导电和场发射性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳材料薄膜因其独特的结构和功能特性,成为纳米光电器件领域的研究热点之一。纳米碳管、石墨烯等纳米碳材料,具有很高的机械强度、优秀的导电性以及良好的导热性,作为理想的纳米光电材料,可广泛应用于透明导电薄膜和场发射阴极。
     本论文围绕纳米碳材料的制备和纳米碳材料薄膜光电器件的应用展开研究。总体目标在于研究二维纳米碳材料的新型制备方法,优化薄膜制备工艺,以研究纳米碳管、石墨烯薄膜的透明导电及场发射性能,实现纳米碳管薄膜的大屏幕场发射显示器相应的驱动系统。
     主要工作包括以下内容:
     1)首次发现脉冲激光剥离法制备二维纳米材料的实验现象,并进行了机理解释。
     真空中,脉冲激光作用于旋涂法制备的聚碳苯薄膜,产生等离子体羽辉,利用硅片等衬底收集羽辉中的物质并加以分析。通过控制激光能量、波长、腔体气压等因素,在衬底上可得到无定形碳、二维纳米碳片、纳米金刚石颗粒等纳米碳结构。通过分析,对实验现象进行了机理解释。利用激光剥离法制备二维纳米材料需要几个基本条件:被剥离物体表面要平整连续,激光的光子能量要小于物体内部的键能,以及适当的脉冲激光能量。
     利用脉冲激光制备二维纳米材料,之前未有相关报道,本工作首次发现并提出脉冲激光剥离法制备二维纳米碳片的实验现象和机理解释,为激光辅助纳米工程注入新的生机。
     2)首次利用脉冲激光剥离法制备石墨烯,发展了液相脉冲激光剥离法制备石墨烯及其透明导电薄膜的应用。
     真空中,脉冲激光作用于高定向热解石墨,产生等离子羽辉,利用硅片等衬底接收羽辉中的物质。系统分析在激光波长、腔体气压确定的条件下,通过改变激光能量,衬底上的产物依次为无定形碳、石墨烯、薄石墨片。在一定的激光能量范围内,石墨烯的纯度较高。对石墨烯的产生进行机理解释,激光对高定向热解石墨的机械作用,使得石墨表面石墨烯层间发生压缩和膨胀,从而导致表层石墨烯被剥离。
     液体中,被剥离的石墨烯有利于被液体收集,从而为进一步应用创造了条件。利用此方法制备的石墨烯制成的透明导电薄膜,显示出较好的透光性和导电性。
     3)真空抽滤法制备纳米碳管、石墨烯透明导电薄膜及特性研究。
     利用真空抽滤方法制备的薄膜,均匀性好、厚度可控。研究纳米碳管、石墨烯透明导电薄膜的制备、衬底转移、透明导电性能。薄膜在衬底之间的转移遵循界面能原理。真空抽滤制备的纳米碳管、石墨烯薄膜显示了较好的透光性和导电性,然而,与商业化应用要求还有一定距离,今后的研究方向在于纳米碳材料与金属、半导体材料的复合。
     4)真空抽滤、丝网印刷制备纳米碳管、石墨烯场发射阴极特性研究。
     将真空抽滤法制备的纳米碳管、石墨烯薄膜应用于场发射阴极。实验研究了不同体积纳米碳材料悬浊液制备的薄膜,对阴极形貌和场发射特性的影响,得到了最优的实验条件。与传统丝网印刷技术制备的薄膜相比,真空抽滤法制备的纳米碳管、石墨烯薄膜在开启电压、场增强因子、发光点密度分布、发射稳定性、与衬底的接触等方面都具有优势,从而对场发射阴极工艺的改进有积极意义。
     5)丝网印刷法制备的大屏幕纳米碳管场发射显示器的驱动电路研究。
     针对实验室采用丝网印刷法制备的40英寸纳米碳管场发射显示器,研究相应的驱动电路,实现了动态图像显示。二极管结构的场发射器件工作电压在300V左右。采用具有相应驱动电压的高压芯片,结合显示屏通用的低压驱动电路,实现了纳米碳管场发射显示器的专用驱动系统,得到了显示屏的动态图文显示。
Carbon nanomaterials, such as carbon nanotube (CNT), graphene, have attracted much attention, because of their unique structures and extraordinary mechanical, optical, thermal and electrical properties. CNT and graphene have been widely investigated for potential applications, such as transparent conductive films and field emission cathodes.
     This dissertation focused on the synthesis of carbon nanomaterials and their applications in photoelectric devices. The investigation contains the novel method for the synthesis of two-dimensional carbon nanomaterial, the fabrication of carbon nanomaterial films by vacuum filtration, the transparent conductive properties of the filtered carbon films, the field emission properties of the filtered and screen-printed carbon films, and the driving system for the CNT field emission display (FED).
     The work mainly includes the following aspects:
     1) The discovery of the formation of two-dimensional nanomaterials through pulsed laser exfoliation, and the mechanism description.
     When the pulsed laser interacted with the spin-coated poly(phenylcarbyne) film in a vacuum chamber, the laser plume occurred and a silicon substrate was used to collect the ablated materials. By controlling the laser energy, laser wavelength and pressure, different carbon nanostructures were obtained on the silicon substrates, such as amorphous carbon, two-dimensional carbon nanosheets, diamond-like carbon. The experimental parameters for the formation of two-dimensional nanomaterials were suggested as:a plane and continuous target surface, the photon energy of the laser smaller than the bond energy in the polymer, and an appropriate laser fluence.
     This study reveals a novel route of forming two-dimensional carbon nanosheets by pulsed laser for the first time, and has significantly contributed to the field of laser-assisted nanotechnology.
     2) The discovery of the synthesis of graphene by pulsed laser exfoliation. The formation of graphene by liquid-phase pulsed laser exfoliation and its application in transparent conductive films.
     Few-layer graphene was formed through pulsed laser exfoliation of highly ordered pyrolytic graphite (HOPG) in a vacuum chamber. The laser interacted with the HOPQ and a silicon substrate was used to collect the ablated material in laser plume. As the laser fluence increased, different carbon phases, amorphous carbon, few-layer graphene, and thin graphite films, were obtained. The mechanism was explained as the laser-induced mechanical process leaded to the compression and expansion of HOPG surface, resulting in the exfoliation of graphene sheets.
     Liquid-phase pulsed laser exfoliation offers an effective way to collect the graphene. Graphene suspension was obtained and transparent conductive graphene films were fabricated by vacuum filtration.
     3) The fabrication and properties of transparent conductive CNT and graphene films by vacuum filtration.
     The film fabricated by vacuum filtration has uniform surface, and the thickness is easy to control. Transparent conductive CNT and graphene films were fabricated by vacuum filtration. The film transfer process was explained by interfacial binding energy between different materials. To further improve the transparency and conductivity of the films, effort will be put into the modification and composition of the carbon materials.
     4) The investigations on the electron field emission properties of CNT and graphene films fabricated by vacuum filtration and screen printing.
     Electron field emission properties of CNT and graphene films fabricated by vacuum filtration were studied by changing filtration volumes. A comparative study on the electron field emission properties of carbon films prepared by vacuum filtration and screen printing was carried out. Comparing with the screen-printed carbon films, filtered carbon films showed lower turn-on field, higher enhancement factor, better emission spot density, longer lifetime, and greater adhesive strength to substrates. This study reveals a potential route of the filtered carbon films as field emission cathodes.
     5) The driving system for large-scale CNT FED.
     The driving system was designed for the40-inch CNT FED. The driving voltage for the diode-type FED is around300V. Based on digital visual interface, decoding system, field programmable gate array control system, and high voltage driving circuit, the driving system for the large-scale diode-type CNT FED was developed, and the dynamic display was realized.
引文
[1]潘功配.固体化学[M].南京大学出版社,2009.
    [2]陆栋.固体物理学[M].高等教育出版社,2011.
    [3]H. W. Kroto, J. R Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. C60: buckminsterfullerene [J]. Nature,1985,318(6042):162-163.
    [4]N. I Alekseyev, G. A Dyuzhev. Fullerene formation in an arc discharge [J]. Carbon,2003,41(7):1343-1348.
    [5]A. P. Semenov, I. A. Semenova, N. V. Bulina, A. S. Krylov, G. N. Churilov, A. A. Semenova. Fullerene films deposited by evaporation in vacuum using spot-focused annular electron beam [J]. Technical Physics Letters,2005,31(12):1036-1038.
    [6]H. Takehara, M. Fujiwara, M. Arikawa, M. D. Diener, J. M. Alford. Experimental study of industrial scale fullerene production by combustion synthesis [J]. Carbon, 43(2):311-319.
    [7]L. Chow, H. Wang, S. Kleckley, T. K. Daly, P. R. Buseck. Fullerene formation during production of chemical vapor deposited diamond [J]. Applied Physics Letters, 1995,66(4):430-432.
    [8]S. Iijima. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348): 56-58.
    [9]L. Li, F. Li, C. Liu, H. Cheng. Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge [J]. Carbon,2005,43(3):623-629.
    [10]M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal [J]. Chemical Physics Letters,1997,278(1-3):102-106.
    [11]K. Kwok, W. K. S. Chiu. Continuous deposition of carbon nanotubes on a moving substrate by open-air laser-induced chemical vapor deposition [J]. Carbon, 2005,43(12):2571-2578.
    [12]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [13]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology,2008,3(9):563-568.
    [14]Y. Xu, H. Bai, G. Lu, C. Li, G. Shi. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. Journal of the American Chemical Society,2008,130(18):5856-5857.
    [15]M. Qian, Y S. Zhou, Y. Gao, J. B. Park, T. Feng, S. M. Huang, Z. Sun, L. Jiang, Y F. Lu. Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite [J]. Applied Physics Letters,2011,98(17):173108.
    [16]A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R. Pinchaux, I. Forbeaux, J. M. Debever, M. Sauvage-Simkin, J. M. Themlin. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films [J]. Journal of Applied Physics 2002,92(5):2479-2484.
    [17]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J]. Science,2009, 324(5932):1312-1314.
    [18]J. Robertson. Mechanism of sp3 bond formation in the growth of diamond-like carbon [J]. Diamond and Related Materials,2005,14(3-7):942-948.
    [19]I. N. Kupriyanov, V. A. Gusev, Yu. N. Pal'yanov, Yu. M. Borzdov, A. G. Sokol. Photo luminescence excitation study of cobalt-related optical centers in high-pressure high-temperature diamond [J]. Diamond and Related Materials,2001,10(1):59-62.
    [20]G. Bogdan, M. Nesladek, J. D'Haen, K. Haenen, M. D'Olieslaeger. Freestanding (100) homoepitaxial CVD diamond [J]. Diamond and Related Materials,2006, 15(4-8):508-512.
    [21]S. M. Huang, Y. F. Lu, Z. Sun, X. F. Luo. Diamond-like films formed by pulsed laser irradiation of phenylcarbyne polymer [J]. Surface and Coatings Technology, 2000,125(1-3):25-29.
    [22]G P. Veronese, R. Rizzoli, R. Angelucci, M. Cuffiani, L. Malferrari, A. Montanari, F. Odorici. Effects of Ni catalyst-substrate interaction on carbon nanotubes growth by CVD [J]. Physica E,2007,37(1-2):21-25.
    [23]S. Wei, W. P. Kang, J. L. Davidson, J. H. Huang. Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas [J]. Diamond and Related Materials,2006,15(11-12):1828-1833.
    [24]M. Akbarzadeh Pasha, A. Shafiekhani, M.A. Vesaghi. Hot filament CVD of Fe—Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas [J]. Applied Surface Science,2009,256(5):1365-1371.
    [25]A. Gohiera, C. P. Ewelsa, T. M. Mineab, M. A. Djouadia. Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size [J]. Carbon,2008,46(10):1331-1338.
    [26]J. Dijon, P.D. Szkutnik, A. Fournier, T. Goislard de Monsabert, H. Okuno, E. Quesnel, V. Muffato, E. De Vito, N. Bendiab, A. Bogner, N. Bernier. How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition [J]. Carbon,2010,48(13):3953-3963.
    [27]M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G S. Duesberg, J. N. Coleman. Liquid phase production of graphene by exfoliation of graphite in surfactant/water Solutions [J]. Journal of the American Chemical Society,2009,131(10):3611-3620.
    [28]W. S. Hummers Jr., R. E. Offeman. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [29]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science,2006,312(5777): 1191-1196.
    [30]T. K. W. Fujita, C. Oshima. Novel structures of carbon layers on a Pt(111) surface [J]. Surface and Interface Analysis,2005,37(2):120-123.
    [31]T. I. A. Tanaka, K. Yamashita, E. Rokuta, C. Oshima. Heteroepitaxial system of h-BN/monolayer graphene on Ni(111) [J]. Surface Review Letters,2003,10(4): 697-703.
    [32]P. W. Sutter, J. I. Flege, E. A. Sutter. Epitaxial graphene on ruthenium [J]. Nature Materials,2008,7(5):406-411.
    [33]J. Coraux, A. T. N'Diaye, C. Busse, T. Michely. Structura coherency of graphene on Ir(111) [J]. Nano Letters,2008,8(2):565-570.
    [34]J. Vaari, J. Lahtinen, P. Hautojarvi. The adsorption and decomposition of acetylene on clean and K-covered Co(0001) [J]. Catalysis Letters,1997,44(1-2): 43-49.
    [35]C. Soldano, A. Mahmood, E. Dujardin. Production, properties and potential of graphene [J]. Carbon,2010,48(8):2127-2150.
    [36]M. Terai, N. Hasegawa, M. Okusawa, S. Otani C. Oshima. Electronic states of monolayer micrographite on TiC(111)-faceted and TiC(410) surfaces [J]. Applied Surface Science,1998,130-132(1-2):876-882.
    [37]Z. Sun, X. Shi, X. Wang, Y. Sun. Structure and properties of hard carbon films depending on heat treatment temperatures via polymer precursor [J]. Diamond and Related Materials,1999,8(6):1107-1113.
    [38]G T. Visscher, D. C. Nesting, J. V. Badding, P. A. Bianconi. Poly(phenylcarbyne): a polymer precursor to diamond-like carbon [J]. Science,1993,260(5113): 1496-1499.
    [39]S. M. Huang, Z. Sun, C. W. An, Y. F. Lu, M. H. Hong. Electron field emission from polymer films treated by a pulsed ultraviolet laser [J]. Journal of Applied Physics,2001,90(5):2601-2605.
    [40]R. S. Das, Y. K. Agrawal. Raman spectroscopy:Recent advancements, techniques and applications [J]. Vibrational Spectroscopy,2011,57(2):163-176.
    [41]S. Reich, C. Thomsen. Raman spectroscopy of graphite [J]. Philosophical Transactions of the Royal Society A,2004,362(1824):2271-2288.
    [42]M. S. Dresselhausa, G Dresselhaus, R. Saito, A. Jorio. Raman spectroscopy of carbon nanotubes [J]. Physics Reports,2005,409 (2):47-99.
    [43]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman Spectrum of Graphene and Graphene Layers [J]. Physics Review Letters,2006,97(18),187401.
    [44]M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y Chen, Z. Sun. Electron field emission from screen-printed graphene films [J]. Nanotechnology,2009,20(42):425702.
    [45]M. G Beghi, C. E. Bottani. Low-frequency Raman and Brillouin spectroscopy from graphite, diamond and diamond-like carbons, fullerenes and nanotubes [J]. Philosophical Transactions of the Royal Society A,2004,362(1824):2513-2535.
    [46]S. Prawer, R. J. Nemanich. Raman spectroscopy of diamond and doped diamond [J]. Philosophical Transactions of the Royal Society A,2004,362(1824):2537-2565.
    [47]A. C. Ferrari, J. Robertson. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J]. Philosophical Transactions of the Royal Society A,2004,362(1824):2477-2512.
    [48]郑德海,郑军明,沈青.丝网印刷工艺[M].印刷工业出版社,2002.
    [49]Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler. Transparent, conductive carbon nanotube films [J]. Science,2004,305(5688):1273-1276.
    [50]W. J. Leng, C. R. Yang, H. Ji, J. H. Zhang, J. L. Tang, H. W. Chen, L. F. Gao. Electrical and optical properties of lanthanum-modified lead zirconate titanate thin films by radio-frequency magnetron sputtering [J]. Journal of Applied Physics,2006, 100(10):106102.
    [51]J. Lee, S. T. Connor, Y. Cui, P. Peumans. Solution-processed metal nanowire mesh transparent electrodes [J]. Nano Letters,2008,8 (2):689-692.
    [52]X. Wang, L. Zhi, K. Mullen. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Letters,2008,8(1):323-327.
    [53]Y. H. Ha, N. Nkolov, S. K. Pollack, J. Mastrangelo, B. D. Martin, R. Shashidhar. Towards a transparent, highly conductive Poly(3,4-ethylenedioxythiophene) [J]. Advanced Functional Materials,2004,14(6):615-622.
    [54]D. Hecht, L. Hu, G. Gruner. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks [J]. Applied Physics Letters,2006,89(13), 133112.
    [55]G Fanchini, H. E. Unalan, M. Chhowalla. Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films [J]. Applied Physics Letters,2006,88(19):191919.
    [56]F. Wang, G Dukovic, L. E. Brus, T. F. Heinz. The optical resonances in carbon nanotubes arise from excitons [J]. Science,2005,308(5723):838-841.
    [57]J. Li, L. Hu, L. Wang, Y. Zhou, G Gruner, T. J. Marks. Organic light-emitting diodes having carbon nanotube anodes [J]. Nano Letters,2006,6 (11):2472-2477.
    [58]L. Hu, D. S. Hecht, G Gruner. Infrared transparent carbon nanotube thin films [J]. Applied Physics Letters,2009,94(8):081103.
    [59]L. Wang, Y. Chen, T. Chen, W. Que, Z. Sun. Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition [J]. Materials Letters,2007,61(4-5):1265-1269.
    [60]C. A. Spindt. A thin-film field-emission cathode [J]. Journal of Applied Physics, 1968,39(7),3504-3505.
    [61]武怀玉,艾延平,赵富宝,王海军.场发射显示器阴极结构的发展[J].现代显示,2010,4:40-43.
    [62]K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofineister, B. K. Choi, M. Howell. Nanodiamond planar lateral field emission diode [J]. Diamond and Related Materials,2005,14(11-12):2099-2104.
    [63]Y. Liu, S. Fan. Field emission properties of carbon nanotubes grown on silicon nanowire arrays [J]. Solid State Communications,2005,133(2):131-134.
    [64]G Eda, H. E. Unalan, N. Rupesinghe, G A. J. Amaratunga, M. Chhowalla. Field emission from graphene based composite thin films [J]. Applied Physics Letters,2008, 93(23):233502.
    [65]R. H. Fowler, L. Nordheim. Electron emission in intense electric fields [J]. Proceedings of the Royal Society of London Series A,1928,119(781):173-181.
    [66]J. M. Bonard, M. Croci, C. Klinke, F. Conus, I. Arfaoui, T. Stockli, A. Chatelain. Growth of carbon nanotubes characterized by field emission measurements during chemical vapor deposition [J]. Physics Review B,2003,67(8):085412.
    [67]K. Kamada, T. Ikuno, S. Takahashi, T. Oyama, T. Yamamoto, M. Kamizono, S. Ohkura, S. Honda, M. Katayama, T. Hirao, K. Oura. Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst [J]. Applied Surface Science,2003,212-213:383-387.
    [1]Q. Kuang, S. Xie, Z. Jiang, X. Zhang, Z. Xie, R. Huang, L. Zheng. Low temperature solvothermal synthesis of crumpled carbon nanosheets [J]. Carbon, 2004,42(8-9):1737-1741.
    [2]D. D. L. Chung. Review graphite [J]. Journal of Material Science,2002,37(8): 1475.1489.
    [3]T. J. Manning, M. Mitchell, J. Stach, T. Vickers. Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma [J]. Carbon,1999,37(7):1159-1164.
    [4]J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors [J]. Carbon,2010,48(6): 1731-1737.
    [5]C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films [J]. Advanced Functional Materials, 2009,19(16):2577-2583.
    [6]W. Shih, J. Jeng, J. Lo, H. Chen, I. Lin. Enhanced electron field emission characteristics of carbon nanoflakes prepared by modified RF sputtering [J]. Japanese Journal of Applied Physics,2009,48(8):081602.
    [7]R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, W. Wlodarski. Graphene-like nano-sheets for surface acoustic wave gas sensor applications [J]. Chemical Physics Letters,2009,467(4-6): 344-347.
    [8]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [9]I. Kholmanov, E. Cavaliere, M. Fanetti, C. Cepek, L. Gavioli. Growth of curved graphene sheets on graphite by chemical vapor deposition[J].Physics Review B 2009,79(23):233403.
    [10]Y Xu,H.Bai,G Lu,C.Li,G S hi.Flexible graphene films via the filtration of water-soluble noncovalent funetionalized geaphene Sheets[J].Journal of the American Chemical Society,2008,130(18):5856-5857.
    [11]A.B.Bourlinos,T A.Steriotis,R.Zboril,V Georgakilas,A.S tubos.Direct synthesis ofcarbon nanosheets by the solid-state pyrolysis ofbetaine[J].Journal ofMaterial Science,2009,44(5):1407-1411.
    [12]Y. F.Lu, S.M.Huang,Z.Sun.Raman spectroscopy ofphenylcarbyne polymer films under pulsed green laser irradiation[J].Journal of Applied Physics,2000, 87(2):945-951.
    [13]M.Qian,Y S.Zhou,Y. Gao,J.B.Park,T. Feng,S.M.Huang,Z.Sun,L.Jiang, Y F.Lu.Formation of freestanding two-dimensional Garbon nanosheets from poly(phenylcarbyne)through pulsed laser ablation[J].Carbon,2011,49(15): 5117-5123.
    [14]G. T. Visscher, D. C. Nesting, J. V Badding, P. A. Bianconi. Poly(phenylcarbyne):a polymer precursor to diamond-like carbon[J].Science, 1993,260(5113):1496-1499.
    [15]A.N.Obraztsov A.V Tyurnina,E.A.Obraztsova,A.A.Zobtukhin,B.Liu,K. C.Chin,A.T. S.Wee.Raman scattering characterization of CVD graphite films [J].Carbon,2008,46(6):963-968.
    [16]J.Wang,M.Zhu, R.A.Outlaw,X.Zhao,D.M.Manos,B.C.Holloway. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J].Carbon,2004,42(14):2867-2872.
    [17]H.P Scott,R.J.Hemle y,H.Mao,D.R.Herschbach,L.E.Fried,W.M.Howard, S.Bastea. Generation of methane in the Earth's mantle:in situ high pressure-temperature measurements of carbonate reduction[J].PNAS 2004, 101(39):14023-14026.
    [18]R. L. Li,J.P.Tu,C.F.Hong, D.G Liu,D.H.Zhou, H.L.Sun.Microstructure and tribological properties of Ti-contained amorphous carbon film deposited by DC magnetron sputtering [J]. Journal of Applied Physics,2009,106(12): 123508.
    [19]S. M. Huang, Z. Sun, C. W. An, Y. F. Lu, M. H. Hong. Electron field emission from polymer films treated by a pulsed ultraviolet laser [J]. Journal of Applied Physics,2001,90(5):2601-2605.
    [20]N. M. J. Conway, A. C. Ferrari, A. J. Flewitt, J. Robertson, W. I. Milne, A. Tagliaferro, W. Beyer. Defect and disorder reduction by annealing in hydrogenated tetrahedral amorphous carbon [J]. Diamond and Related Materials, 2000,9(3-6):765-770.
    [21]M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Kol, Y. Chueh, Y. Zhang, R. Maboudian, A. Javey. Metal-catalyzed crystallization of amorphous carbon to graphene [J]. Applied Physics Letters,2010,96(6): 063110.
    [22]A. J. Gordon, R. A. Ford. The chemist's companion [M]. New York:Wiley, 1972.
    [23]E. Cappelli, S. Orlando, G Mattei, C. Scilletta, F. Corticelli, P. Ascarelli. Nano-structured oriented carbon films grown by PLD and CVD methods [J]. Applied Physics A,2004,79(8):2063-2068.
    [24]J. Kim, X. Xua. Excimer laser fabrication of polymer microfluidic devices [J]. Journal of Laser Applications,2003,15(4):255-260.
    [25]J. C. Conde, F. Lusquinos, P. Gonzalez, J. Serra, B. Leon, L. Cultrera, D. Guido, A. Perrone. Laser ablation of silicon and copper targets. Experimental and finite elements studies [J]. Applied Physics A,2004,79(4-6):1105-1110.
    [26]A. A. Voevodin, M. S. Donley. Preparation of amorphous diamond-like carbon by pulsed laser deposition:a critical review [J]. Surface and Coatings Technology,1996,82(3):199-213.
    [27]D. B. Chrisey, G. K. Hubler. Pulsed laser deposition of thin films [M]. New York: Wiley,1994.
    [28]M. Prasad, P. F. Conforti, B. J. Garrison. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials [J]. Journal of Chemical Physics,2007,127(8):084705.
    [29]D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, B. R. Ringeisen. Laser deposition of polymer and biomaterial films [J]. Chemical Review,2003,103(2): 553-576.
    [30]T. Lippert, J. T. Dickinson. Chemical and spectroscopic aspects of polymer ablation:special features and novel directions [J]. Chemical Review,2003, 103(2):453-485.
    [31]P. A. Bianconi, S. J. Joray, B. L. Aldrich, J. Sumranjit, D. J. Duffy, D. P. Long, J. L. Lazorcik, L. Raboin, J. K. Kearns, S. L. Smulligan, J. M. Babyak. Diamond and diamond-like carbon from a preceramic polymer [J]. Journal of the American Chemical Society,2004,126(10):3191-3202.
    [32]Z. Sun, X. Shi, B. K. Tay, X. Wang, Y. Sun. Growth of flake-like diamond crystal using polymer precursor [J]. Thin Solid Films,1997,308-309:159-162.
    [33]A. Miotello, P. M. Ossi. Laser-surface interactions for new materials production [M]. Berlin:Springer,2010.
    [1]D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, B. R. Ringeisen. Laser deposition of polymer and biomaterial films [J]. Chemical Review,2003,103(2): 553-576.
    [2]Y. F. Lu, S. M. Huang, Z. Sun. Raman spectroscopy of phenylcarbyne polymer films under pulsed green laser irradiation [J]. Journal of Applied Physics,2000,87(2): 945-951.
    [3]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman spectrum of graphene and graphene layers [J]. Physics Review Letters,2006,97(18):187401.
    [4]J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, M. S. Dresselhaus. G' band Raman spectra of single, double and triple layer graphene [J]. Carbon,2009, 47(5):1303-1310.
    [5]M. S. Dresselhaus, A. Jorio, M. Hofinann, G Dresselhaus, R. Saito. Perspectives on carbon nanotubes and graphene Raman spectroscopy [J]. Nano Letters,2010,10(3): 751-758.
    [6]J. C. Conde, F. Lusquinos, P. Gonzalez, J. Serra, B. Leon, L. Cultrera, D. Guido, A. Perrone. Laser ablation of silicon and copper targets. Experimental and finite elements studies [J]. Applied Physics A,2004,79(4-6):1105-1110.
    [7]Z. Sun, S. M. Huang, Y. F. Lu, J. S. Chen, Y. J. Li, B. K. Tay, S. P. Lau, G Y. Chen, Y. Sun. Field emission from polymer-converted carbon films by ultraviolet radiation [J]. Applied Physics Letters,2001,78(14):2009-2011.
    [8]S. M. Huang, Y. F. Lu, Z. Sun. Conversion of diamond clusters from a polymer by Nd:YAG pulsed laser (532 nm) irradiation [J]. Applied Surface Science,1999, 151(3-4):244-250.
    [9]S. Houzumi, K. Takeshima, K. Mochiji, N. Toyoda, I. Yamada. Low-energy irradiation effects of gas cluster ion beams [J]. Electronics and Communications in Japan,2008,91(2):40-45.
    [10]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [11]Y. X. Xu, H. Bai, G. W. Lu, C. Li, G Q. Shi. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. Journal of the American Chemical Society,2008,130(18):5856-5857.
    [12]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Bo land, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology,2008,3(9):563-568.
    [13]M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions [J]. Journal of the American Chemical Society,2009,131(10):3611-3620.
    [14]M. Qian, Y. S. Zhou, Y. Gao, J. B. Park, T. Feng, S. M. Huang, Z. Sun, L. Jiang, Y. F. Lu. Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite [J]. Applied Physics Letters,2011,98(17):173108.
    [15]C. Chen, W. Chen, Y. Zhang. Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol [J]. Physica E,2005,28(2):121-127.
    [16]A. De Giacomo, A. De Bonis, M. Dell'Aglio, O. De Pascale, R. Gaudiuso, S. Orlando, A.Santagata, G S. Senesi, F. Taccogna, R. Teghil. Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures [J]. The Journal of Physics Chemistry C,2011,115(12):5123-5130.
    [17]L. Yang, P. W. May, L. Yin, J. A. Smith, K. N. Rosser. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid [J]. Diamond and Related Materials,2007,16(4-7):725-729.
    [18]C. Soldano, A. Mahmood, E. Dujardin. Production, properties and potential of graphene [J]. Carbon,2010,48(8):2127-2150.
    [19]H. O. Jeschke, M. E. Garcia, K. H. Bennemann. Theory for the ultrafast ablation of graphite films [J]. Physics Review Letters,2001,87(1):015003.
    [20]F. Carbone, P. Baum, P. Ruldolf, A. H. Zewail. Structural preablation dynamics of graphite observed by ultrafast electron crystallography [J]. Physics Review Letters, 2008,100(3):035501.
    [21]X. Mei, J. Ouyang. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature [J]. Carbon,2011,49(15):5389-5397.
    [1]L. Hu, D. S. Hecht, G. Griiner. Infrared transparent carbon nanotube thin films [J]. Applied Physics Letters,2009,94(8):081103.
    [2]X. Mei, J. Ouyang. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature [J]. Carbon,2011,49(15):5389-5397.
    [3]L. Hu, D. S. Hecht, G Gruner. Carbon nanotube thin films:fabrication, properties, and applications [J]. Chemical Reviews,2010,110(10):5790-5844.
    [4]M. Qian, T. Feng, K. Wang, H. Ding, Y. Chen, Q. Li, Z. Sun. Field emission of carbon nanotube films fabricated by vacuum filtration [J]. Physica E,2010,43(1): 462-465.
    [5]C. Y. Zhi, X. D. Bai, E. G Wang. Raman characterization of boron carbonitride nanotubes [J]. Applied Physics Letters,2002,80(19):3590-3592.
    [6]M. S. Dresselhaus, G Dresselhaus, R. Saito, A. Jorio. Raman spectroscopy of carbon nanotubes [J]. Physics Reports,2005,409(2):47-99.
    [7]Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G Rinzler. Transparent, conductive carbon nanotube films [J]. Science,2004,305(5688):1273-1276.
    [8]Y. X. Xu, H. Bai, G W. Lu, C. Li, G Q. Shi. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. Journal of the American Chemical Society,2008,130(18):5856-5857.
    [9]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman spectrum of graphene and graphene layers [J]. Physics Review Letters,2006,97(18):187401.
    [10]A. C. Ferrari. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Communications,2007,143(1-2):47-57.
    [11]J. S. Park, A. Reina, R Saito, J. Kong, G Dresselhaus, M. S. Dresselhaus. G' band Raman spectra of single, double and triple layer graphene [J]. Carbon,2009, 47(5):1303-1310.
    [12]V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner. High-throughput solution processing of large-scale graphene [J]. Nature Nanotechnology,2009,4(1):25-29.
    [13]G Eda, G Fanchini, M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J]. Nature Nanotechnology,2008,3(5):270-274.
    [14]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565.
    [15]M. Choucair, P. Thordarson, J. A. Stride. Gram-scale production of graphene based on solvothermal synthesis and sonication [J]. Nature Nanotechnology,2008, 4(1):30-33.
    [16]Z. S. Wu, W. C. Ren, L. B. Gao, B. L. Liu, C. B. Jiang, H. M. Cheng. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Carbon,2009, 47(2):493-499.
    [1]L. Hu, D. S. Hecht, G Gruner. Carbon nanotube thin films:fabrication, properties, and applications [J]. Chemical Reviews,2010,110(10):5790-5844.
    [2]M. Qian, T. Feng, K. Wang, H. Ding, Y. Chen, Q. Li, Z. Sun. Field emission of carbon nanotube films fabricated by vacuum filtration [J]. Physica E,2010,43(1): 462-465.
    [3]L. Wang, Y. Chen, T. Chen, W. Que, Z. Sun. Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition [J]. Materials Letters,2007,61(4-5):1265-1269.
    [4]K. Kamada, T. Ikuno, S. Takahashi, T. Oyama, T. Yamamoto, M. Kamizono, S. Ohkura, S. Honda, M. Katayama, T. Hirao, K. Oura. Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst [J]. Applied Surface Science,2003,212-213:383-387.
    [5]J. M. Bonard, M. Croci, C. Klinke, F. Conus, I. Arfaoui, T. Stockli, A. Chatelain. Growth of carbon nanotubes characterized by field emission measurements during chemical vapor deposition [J]. Physics Review B,2003,67(8):085412.
    [6]I. Brodie, C. A. Spindt. Vacuum microelectronics [J]. Advances in Electronics and Elect-on Physics,1992,83:1-106.
    [7]R. H. Fowler, L. Nordheim. Electron emission in intense electric fields [J]. Proceedings of the Royal Society of London Series A,1928,119(781):173-181.
    [8]M. Qian, T. Feng, K. Wang, H. Ding, Y. Chen, Z. Sun. A comparative study of field emission properties of carbon nanotube films prepared by vacuum filtration and screen-printing [J]. Applied Surface Science,2010,256(14):4642-4646.
    [9]T. Feng, J. Zhang, Q. Li, X.Wang, K. Yu, S. Zou. Effects of plasma treatment on micro structure and electron field emission properties of screen-printed carbon nanotube films [J]. Physica E,2007,36(1):28-33.
    [10]B. Ulmen, V. K. Kayastha, A. DeConinck, J. Wang, Y. K. Yap. Stability of field emission current from various types of carbon nanotube films [J]. Diamond and Related Materials,2006,15(2-3):212-216.
    [11]S.Sethi,A.Dhinojwala.Superhydrophobic conductive carbon nanotube coatings for steel[J].Langnuir,2009,25(8):4311-4313.
    [12]A.A.Kuznetzov,S.B.Lee,M.Zhang,R.H.Baughman,A.A.Zakhidov. E1ectron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays[J].Carbon,2010,48(1):41-46.
    [13]G Eda,H.E.Unalan,N.Rupesinghe,G A.J.Amaratunga,M.Chhowalla.Field emission from graphene based composite thin films[J].Applied Physics Letters,2008, 93(23):233502.
    [14]M.Qian,T Feng,H.Ding,L.Lin,H.Li,Y Chen,Z.Sun. Electron field emission from screen-printed graphene films[J].Nanotechnology,2009,20(42):425702.
    [15]O.Groning,O.M.Kuttel,C.Emmenegger,P.Groning,L.Schlapbach.Field emission properties of carbon nanotubes [J]. Journal of Vacuum Science and Technology B,2000,18(2):665-678.
    [16]A.M.Rao,D.Jacques,R.C.Haddon,W.Zhu,C.Bower,S.Jin In situ-grown carbon nanotube array with excellent field emission characteristics[J].applied Physics Letters,2000,76(25):3813-3815.
    [17]Z.S.Wu,S.F.Pei,W.C.Ren,D.M.Tang,L.B.Gao,B.L.Liu,F.Li,C.Liu,H. M.Cheng.Field Emission of single-layer graphene films prepared by electrophoretic deposition[J].Advanced Materials,2009,21(17):1756-1760.
    [1]L. Lin, Y. Chen, M. Qian, T. Li, H. Ding, Z. Zhang, Z. Sun, T. Feng. Fabrication of diode-type field emission display module with carbon nanotube cathode [J]. Journal of Fuctional Materials and Deviecs,2009,15(1):97-100.
    [2]M. Qian, T. Feng, L. F. Lin, T. J. Li, H. Ding, Z. J. Zhang, Y. W. Chen, Z. Sun. Driving system of 40-inch carbon nanotube field emission display [J]. Chinese Journal of Electron Devices,2009,32(3):497-503.
    [3]宗耿,张晓兵,雷威,张宇宁.32×32矩阵式FED的驱动电路[J].电子器件,2004,27(3):436-439.
    [4]林志贤,郭太良.DVI接口技术在彩色FED显示系统中的应用[J].福州大学学报(自然科学版),2008,36(2):217-221.
    [5]Texas Instruments. Products, TFP201A TI PanelBus Digital Receiver, Datasheet [DB/OL]. http://focus.ti.com.cn/cn/lit/ds/symlink/tfp201a.pdf,2012.
    [6]宋炳生,花瑞.基于DVI接口的LED视频控制系统研究[J].可编程控制器与工厂自动化,2008,1:84-87.
    [7]Supertex. Products, HV507, Datasheet [DB/OL]. http://www.supertexcom/pdf/datasheets/HV507.pdf,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700