用户名: 密码: 验证码:
基于油田压裂微地震监测的震相识别与震源定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在低渗油田进行压裂注水施工过程中,对由地下岩层错动引发的微地震事件进行实时监测是目前国内外新兴的热门研究课题。近年来,随着微地震监测理论的发展和成熟,在对低渗油田进行水力压裂改造时,微地震监测技术越来越广泛的应用于地下裂缝的勘探研究。微地震监测主要有两种方式:地面监测、井中监测。井中监测存在要求监测设备精密、施工操作复杂和成本较高等问题,但是与井中监测相比,由于微地震事件能量比较微弱、地下介质吸收和地面噪音干扰,地面监测存在能够监测到的有效微地震事件少、数据信号信噪比低、震源反演定位的精度较差等问题。综上所述,完善微地震数据处理方法,探索该方法的优化改善方式,提高震源位置反演精度就显得尤为重要。
     针对以上问题,本文对基于微地震震相识别与震源定位方法的研究。借助数据挖掘中的分类挖掘方法,对当前应用较为广泛的分类识别方法进行研究,在朴素贝叶斯分类的基础上提出了一种判别频率估计方法,并与当前公认分类效果较好的SVM和Boost方法进行比较。实验结果表明,该方法分类效果明显优于Boost方法,其分类精度与SVM方法基本一致,但是SVM在建模时所需时间是该方法的几十甚至几百倍;通过对震相模式识别方法的研究分析,针对微地震信号特点,提出了一种以STL/LTA序列为输入参数的震相模式识别方法,结合判别频率估计方法生成分类器,并通过实际数据对该方法进行验证,其分类精度相对传统的STL/LTA方法在精度上有10%的提高;研究了震源位置反演算法,分析了现存反演算法的局限性,针对其不足之处,在逆时偏移原理的基础上提出了基于震幅叠加的震源定位方法,该方法能对信噪比较低的地震记录能够进行较为精确的震源反演定位;研究了三维声波方程的正演算法,并根据通过正演模拟获得的地震数据进行震源位置反演计算。最后结合野外试验,进行了实地测试,在震源定位的效果上取得了令人满意的结果。
The oilfield water filling and real-time fracture microseismic monitoring arepopular research topic both at home and abroad; with the maturity of theoreticalresearch to microseismic monitoring technologies, microseismic monitoringtechnologies are widely applied in the crack exploration of hydraulic fracturemodification in the low seepage oilfield; therefore, research to the treatment methodsof seismic data is of vital significance. The microseismic monitoring is divided intoground monitoring and well monitoring. Given the stratum absorption andtransmission route complexity, the materials obtained by ground monitoring sufferfrom such defects as less microseismic events, low signal: noise ratio and poorinversion reliability compared with well monitoring; however, the well monitoringsuffers from such problems as equipment precision, complex construction andoperation and rather high cost. All in all, it is particularly important to improve thetreatment methods of seismic data, explore the optimization and improvement route ofthe methods and upgrade the source location and inversion precision.
     In the noise background, signal inspection is an important part of microseismicmonitoring. Once the microseismic event is automatically and accurately inspected inthe seismic signal, it can greatly upgrade the subsequent data treatment efficiency.However, frequency or identification methods have a rather slow calculation speed inthe frequent seismic phase identification methods and can not meet the demand forreal-time monitoring; the time domain identification methods have a rather lowprecision in the treatment of data with rather low signal: noise ratio. Therefore,research to the microseismic data treatment methods and seismic phase identificationmethods are main contents in this article.
     In the hydraulic fracture and storage layer monitoring, microseismic sourcelocation is a highly important research topic. The real-time monitoring of growth status of underground rock stratum crack in the hydraulic fracture can raise theoreticalbasis for the construction and adjustment of fractured oil reserve. The existing sourcelocation methods need precise judgment of arrival time of microseismic signal; duringthe monitoring by ground matrix method, it is difficult to identify seismic event in thesignal; the well monitoring is featured as relatively high cost and technical difficulties.Aimed at the features of microseismic signals, research to the seismic source locationmethods is another main content.
     This article is supported by the national scientific and technological topic:“monitoring technical research and equipment research and fabrication of coal bedgas” and based on microseismic monitoring and aims to launch out the research to themicroseismic signal and seismic phase identification methods and source locationmethods. The concrete research contents are as follows:
     (1) Discriminative frequency estimate algorithm based on naive bayesianclassification
     Naive bayesian classification is a typical method in the classified data excavation.It is featured as simple structure and swift calculation speed. As a generation learningmethod, the basic assumption is irrelevant to all the properties; in the real practice, theassumption is not always reasonable—the article depends on naive bayesianclassification and raises discriminative frequency estimate algorithm. This methodaims to calculate the occurrence frequency of data concentration and differentproperties and thus learn related parameters; at the same time, it has to introduce ajudgment parameter to enhance the association between different properties andclassified target value. This method can not only guarantee classification efficiency,but also greatly enhance classification precision. Test result has revealed thatdiscriminative frequency estimate algorithm raised in this article is much superior tothe traditional decision tree calculation method, naive bayesian classification methodand Boost method in the respect of classification precision and can realizeclassification precision supporting SVM. In the training time, it is much less thanSVM calculation methods; we can conclude from the test that SVM calculationmethods can reach20—50times of the discriminative frequency estimate algorithmin the respect of training time needed for most data set; in the individual propertyquantity and training concentration example, the training time of SVM calculationmethods with numerous quantity and concentrated data is100times of the calculationmethod in this article.
     (2) Pattern recognition method of seismic phase identification based onSTL/LTA
     Seismic phase identification is a key problem in the microseismic monitoring; atpresent, the most frequently used seismic phase identification method is STA/LTAenergy ratio method—it suffers from the following problem: once the signal is ratherweak, identification ability is rather low; it needs to set up the value of identificationvalve through artificial experience; once the valve value is too high, the realmicroseismic event will be lost; once the valve value is too low, numerousidentification errors will be emerged. Aimed at this problem, the article raised anidentification method of seismic phase mode—it adopts energy ratio sequencecalculated by STA/LTA method as the input parameter and applies discriminativefrequency estimate algorithm for classified identification. This method does not needmanual setup of valve value; it can effectively identify the signal with rather lowsignal: noise ratio. Test result has revealed that this method enjoys95%classificationprecision in the data set of this article; relative to the traditional STA/LTA method, ithas upgraded the precision for10%. Besides, it can implement training and produceclassification device before fracture construction; in the real monitoring, it only needsto input data calculated by STL/LTA method into the classification device withoutincrease of calculation time; it can meet the demand for real-time monitoring. Besides,the classification precision can further upgrade the classification precision with theincrease of training data concentration or addition of other properties as classificationparameters.
     (3) Research to source location methods based on overlapping of seismicamplitude
     Most of the existing microseismic source location methods need to make anaccurate calculation of the arrival time of microseismic event; once the microseismicground monitoring methods are adopted, it is difficult to accurately identifymicroseismic event in the collected data; therefore, the inversion location has a ratherlow precision. Aimed at this problem, the article borrowed the inverted displacementmethod theory in the seismic exploration to raise a seismic source location methodapplicable to low signal: noise ratio. It can displace the collected seismic dataaccording to different position of monitoring area and time difference of each detectorand then overlap data in various channels for calculation. Therefore, it can upgradethe signal: noise ratio of signal; displacement and overlapping can produce a great energy gathering in the real position of microseismic event. This article aims to verifythe calculation methods through simulation data and actual data; test result hasrevealed that once signal: noise ratio of simulation data is0.5, the error of locationprecision is between5—15m; during the location of hammering source, the locationerror is about15m. Therefore, the calculation method still enjoys a rather highlocation precision during the inversion location of seismic signal with rather lowsignal: noise ratio.
引文
[1]李道品.低渗透砂岩油田开发[M].北京:石油出版社,1997:217-244
    [2]梁兵.油气田勘探开发中的微震监测方法[M]北京:石油工业出版社,2004.11
    [3]徐剑平.裂缝监测方法研究及应用实例[J].科学技术与工程,2011.411(11):2575-2577
    [4] Claerbout J F. Synthesis of a layered medium from its acoustic transmissionresponse[J]. Geophysics,1968,3:64-269
    [5] Daneshvar M R, Clay C S,Savage M K. Passive seismic imaging usingmicro-earthquake[J]. Geophysics,1995:60,1178-1186
    [6]张山,刘清林,赵群等.微地震监测技术在油田开发中的应用.石油物探,2002,41(2):226-231
    [7] Liu Jianzhong,Wang Chunyun, Liu Jimin, et al. Micro-seismic monitor on theoperation of oil fields[J]. Petroleum Exploration and Development.2004,31(2):71-73
    [8]董世泰,高红霞.微地震检测技术及其在油田开发中的应用[J].2004,18(5):5-8
    [9] Les Bennett, Joel Le Calvez, David R, Sarver Kevin Tanner, et al.水力压裂监测新方法[J].国外测井技术,2006,22(4):53-67
    [10] Les Bennett Joel Le Calvez David R, Sarver Kevin Tanner, et al. The source forhydraulic fracture characterization[J]. Oil field,2005-2006:42-75
    [11]胡文瑞.低渗透油气田开发概论[M].北京:石油工业出版社,2009
    [12]王爱国.微地震监测与模拟技术在裂缝研究中的应用[D].山东:中国石油大学(华东),2008
    [13]赵向东,陈波,姜福兴.微地震工程应用研究[J].岩石力学与工程学报.200220(增2):2609-2612
    [14] Sylvette Bonnefoy-Clauder, Fabrice Cotton, Pierre-Yves Bard. The nature ofnoise wavefield and its application for site effects studies[J]. Earth-ScienceReviews,200679:205-227
    [15] Li Zhengguang, Yang Runhai, Zhao Jinming, et al. Rock-braking test research onearthquake sequence type[J]. Journal of Seismological Research.200528(4):388-393
    [16] Hazzard J F, Yong R P. Seismic validation of micromechanical models[R], DCRocks[A]. In:38th U.S Rock Mechanics Symposium[C],2001:13.27-1334
    [17]宋元和,张少标,丁振红等.微震监测技术在濮城油田沙三上油藏的应用[J].石油仪器.2003,11(4):11-13
    [18] Segall P. Earthquakes triggered by fluid extraction[M]. Geology AmericanElasevier science,1989,17(10):942-946
    [19] Les Bennett, Joel Le Calvez, David R. Sarver, Kevin Tanner. The source forhydraulic fracture characterization [J]. Oil field,2005-2006:42-57
    [20]盛虞, Lynch R.高精度微震监测技术及在水电工程中的应用前景[A].全国大把安全监测技术信息网,2008年度技术信息交流会暨全国大把安全监测技术应用和发展研讨会论文集[C],2008.
    [21] C J de Pater, J Groenenboom, D B van Dam, R Romijn. Active seismicmonitoring of hydraulic fractures in laboratory experiments[J]. InternationalJournal of Rock Mechanics and Mining Sciences.2001,38(6):777-785
    [22] Maochen Ge. Efficient mine microseismic monitoring[J]. International Journal ofCoal Geology,.2005,6(1-2):44-5
    [23] Ren T X, Reddish D J, Styles P numerical modelling and microseismicmonitoring to improve strata behaviour[J]. Computer Applications in theMinerals Industries2001,5:1-10.
    [24] J.T.Rutledge, W.S.Phillips, M.J.Mayerhofer. Faulting induced bu forced fluidinjection and fluid flow forced by faulting: An interpretation of hydraulic fracturemicroseismic, Carthage Cotton Valley Gas Field[J]. Bulletin of the SeismologicalSociety of America,2004,94:1817-1830.
    [25] D. McCredy. Bakken Research Consortium[C]. Williston Basin PetroleumConference.2009.
    [26]刘建宏,崔勤元,丁振红等.微震监测技术在南泥湾油田长六油藏的应用[J].西北地质.2004,37(2):80-82.
    [27]姜福兴,Xun Luo.微地震监测技术在矿井岩层破裂检测中的应用[J].岩土工程学报.2002,24(2):147-149
    [28]陆菜平,窦林名,吴兴等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报.2005,27(4):18-22.
    [29]刘建安,马红星,暮立俊等.井下微地震裂缝监测技术在长庆油田的应用[J].油气井测试.2005,14(2):54-56
    [30]王惠清,刘进军,周高鹏等.微地震方法检测水力压裂改善措施效果[J].新疆石油学院学报.2004,16(4):41-43
    [31]姜福兴,冯涛,杨涛等.注水前缘监测及井周边应力状态[J].岩石力学与工程学报.2004,24(14):2409-2412.
    [32]王治中,邓金根,赵振峰等.井下微地震裂缝监测设计及压裂效果评价.大庆石油地址与开发.2006,25(6):76-78.
    [33] Volker Oye, Michael Roth. Automated seismic event location for hydrocarbonreservoirs[J]. Computers&Geosciences29(2003)851–863
    [34]王正蕾.基于小波变换的微地震信号检测方法研究[J].勘探地球物理进展.2009.632(3):182-185
    [35]刘继民,刘建中,刘志鹏等.用微地震法监测压裂裂缝专项过程[J].石油勘探与开发.2005.432(2):75-77
    [36] Geiger L. Probability method for the determination of earthquake epicenters fromarrival time only [J]. Bull.St.Louis.Univ,1912,8:60-71.
    [37] Shensa M. The deflection detector, its theory and evaluation on short periodseismic data[J]. Texas Instrument, Alexandria, Virginia.1977. TR.77-103.
    [38] Kanwaldip S,Farid U. Wavelet Transform Methods for Phase Identification inThree-Component Seismograms [J]. Bill. Seism. Soc. Am,1997,87:1598-1612
    [39]刘希强,周惠兰,沈萍等.用于三分向记录震相识别的小波变换方法[J].地震学报.2000a,22(2):125-131
    [40]刘希强.基于小波包变换的弱震相识别方法[J].地震学报.1998a,20(4):373-380
    [41]孙即祥.现代模式识别[M].长沙:国防科技大学出版社.2002
    [42]杨配新,邓存华,刘希强,等.数字化地震记录震相自动识别方法研究[J].地震研究,2004,27(4):308-313.
    [43]谈恒贵,王文杰,李游华.数据挖掘分类算法综述[J].微型机与应用.2005,2:4-7.
    [44] S.B.Kotsiantis. Supervised Machine Learning: A Review of ClassficationTechniques. Informatica,2007,31:249-268
    [45]史忠植.知识发现[M],北京:清华大学出版社,2002.1
    [46]马在田,曹景忠,王家林等著.计算地球物理学概论[M].上海:同济大学出版社.1997
    [47] Robert Clayton, Bjorn Engquist. Absorbing Boundary Conditions for Acousticand Elastic Wave Equations[J]. Bulletin of the Seismological Society of America.1977,67:1529-1540
    [48] X. H. Zhou, Obuchowski NA, Mcclish DK. Statistical methods in Diagnosticmedicine[M]. New York: Wiley&Sons.2002.
    [49]石昊苏,基于实例与Matlab的ROC曲线绘制与比较[J].电子设计工程.2009.9(18):36-39.
    [50] T. Fawcett. An introduction to ROC analysis[J]. Pattern Recognition Letters.2006,(27):861-874.
    [51]高淑芳,李山有,武东坡等.一种改进的STA/LTA震相自动识别方法[J].世界地震工程,2008,24(2):82-86
    [52] Saari, J. Automated phase picker and source location algorithm for local distancesusing a single three-component seismic station. Tectonophysics.1991.189:307-315.
    [53]宋维琪,杨晓东.单震相微地震事件识别与反演[J].地球物理学报,2011,54(6):1592-1599.
    [54] Guilherme Madureira, Antonio E. Ruano. A Neural Network Seismic Detector[J].Acta Technica Jaurinensis,2009,2(2):159-170.
    [55]郑江铃,李俊山. BP神经网络在地震震相识别中的应用[J].模式识别与人工智能,2001,14(3):356-359。
    [56]周彦文,刘希强.地震事件自动检测新方法[J].西北地震学报,2008,30(2):102-106
    [57] Wang Jin, Teng Ta-Liang. Identeification and picking of S phase using anartufucial neural network[J]. Bulletin of the Seismological Society of America,1997,87(5):1140-1149.
    [58]王继.地震事件和震相检测处理系统[M].中国地震局地质研究所,2005.
    [59]高哲民,白应甫,徐筱冰.地震相模式识别[J].石油物探,1987,26(4):102-113
    [60]邱乐平,李德华.基于小波变换和核主成分分析的人脸识别算法[J].仪器仪表用户,2012,19(2):62-64.
    [61]沈萍,郑治真,刘希强,等.小震的综合识别研究[J].地震学报,2002,24(2):169-175.
    [62] Baer M, Kradolfer U. An automatic phase picker for local and teleseismicevents[J]. Bulletin of the Seismological Society of America,1987,77(4):1437-1445.
    [63] Allen Rex. Automatic phase pickers: Their present use and future prospects[J].Bulletin of the Seismological Society of America.1982,72(6B): S225-242.
    [64]朱剑兵,赵培坤.国外地震相划分技术研究新进展[J].勘探地球物理进,2009,32(3):167-171.
    [65]刘启元,沈立人,李志明.地震事件实时监测的模式识别算法[M].国家地震局地质所.1992,22-29.
    [66]刘启元,李志明,沈立人,等. GDS-1000宽频带通用流动数字地震观测系统[J].地球物理学报,1993,36(5):600-608.
    [67]邱宏茂,沈万春,孙煌.基于能量分布特征的地震事件自动识别[J].核电子学与探测技术,2004,24(6):698-701.
    [68]朱明.数据挖掘(第二版)[M].北京:中国科学技术大学出版社,2008.
    [69]刘红岩,陈剑,陈国青.数据挖掘中的数据分类算法综述[J].清华大学学报(自然科学版).2002,42(6):727-730.
    [70] Chopra S, Alexeev V. Applications of texture attribute analysis to3D seismicdata[J]. The Leading Edge,2006,25(8):934-940.
    [71] Mitchell T M. Machine Learning [M]. New York:McGraw-Hill Companies,1997.
    [72] Rich Caruana, Alexandru Niculescu-Mizil. An Empirical Comparison ofSupervised Learning Algorithms[C]//The23rd International Conference onMachine Learning. New York:ACM.2006:161-168.
    [73] Fusion J P, Propagation,and Structuring in Belied Networks [J]. ArtificialIntelligence,1986,29(3):241-288.
    [74] Uusitalo L. Advantages and Challenges of Bayesian Networks in EnvironmentalModelling [J]. Ecological Modelling,2007,203(3/4):312-318.
    [75]张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006.
    [76]周清,林拉,王红,杨红飞.基于贝叶斯网络的学生模型在测试系统的应用研究[J].计算机工程与科学,2008,30(3):21-31.
    [77]高妍方.判别贝叶斯网络的学习算法机器应用研究[D].长沙:国防科学技术大学,2008.
    [78]卢文喜,罗建男,鲍新华.贝叶斯网络在水资源管理中的应用[J].吉林大学学报:地球科学版,2011,41(1):153-158.
    [79]蒋良孝.朴素贝叶斯分类器及其改进算法研究[D].武汉:中国地质大学,2009.
    [80] Barbara F.I. Picters, Linda C. van der Gaag, Ad Feelders. When Learning NaiveBayesian Classifiers Preserves Monotonicity[J]. Lecture Notes in ComputerScience.2011, Volume(6717/2011):422-433.[Journal J]
    [81] Fei Zheng, G. I. webb, P. Suraweera. Subsumption Resolution: an Efficient andEffective Technique for Semi-naive Bayseian Learning[J]. Mach Learn.2012,87(1):93-125.[Jounal J].
    [82]曾黄麟,李娟.基于遗传算法的神经网络油水层识别[J].四川理工学院学报(自然科学版).2010,23(5):590-593.
    [83] Xiong-Yan Li, Hong-qi Li, Yu-jiang Shi et al. Methods and Models for RapidlyIdentifying and Finely Evaluating the Ultra-low Permeability oil layer[J]. Journalof Geophysics and Engineering.2011,8(1):13-20.
    [84] Witten I H, Frank E. Data Mining: Practical Machine Learning Tools andTechniques [M]. San Francisco: Morgan Kaufmann Publishers Inc,2005.
    [85] Xu Bo. Slope One in Collaborative Filtering [D]. Fredericton: The University ofNew Brunswick,2006.
    [86]张娜玲.基于微地震监测的油井压裂裂缝成像算法研究[D].吉林:吉林大学学位论文,2010.
    [87]陈祖斌,林君,张林行.新型数字式地震检波器的设计[J].石油仪器,1999,13(5):1-4.
    [88]杨泓渊.复杂山地自定位无缆地震仪的研究与实现[D].吉林:吉林大学,2009.
    [89]易鸣镝,顾鸿夫,陈广飞. GPS定位原理浅析及误差分析[J].中国数据通信,2005,3:25-27.
    [90]牟永光,陈小宏,李国发,等.地震数据处理方法[M].北京:石油工业出版社,2007.
    [91] Jinming Zhu, LR lines. Comparison of Kirchhoff and reverse-time migrationmethods with applications to prestack depth imaging of complex structures[J].Geophysics,1998,63(4):1166-1176.
    [92]陈可洋,杨微,吴清岭,等.几种地震波叠后深度偏移方法的比较[J].勘探地球物理进展,2009,32(4):257-260.
    [93]周瑞红,赵景霞.逆时偏移及其成像条件[J].内蒙古石油化工,2009,3:23-25.
    [94]陈可洋.时限时移相关法叠前逆时成像条件及其应用[J].石油物探,2011,50(1):22-27.
    [95] Frazer B, Anders B, Klaus B R, et al. Seismic inversion: Reading between thelines(Chinese)[J]. Oilfield Review,2008,20(1):42-63.
    [96] Uwe A, Jerry K, Richard R, et al. The time for depth imaging[J]. Oilfield Review,2002,14(1):1-15.
    [97] Claudio Bagaini, Tim Bunting, Adel El-Emam.高质量路上地震勘探技术[J].油田新技术,2010,22(2):28-39.
    [98]杨文东,金星,李山有,等.地震定位研究及应用综述[J].地震工程与工程振动,2005,25(1):14-25.
    [99]逢焕东,姜福兴,张兴民.微地震的线性方程定位求解机器病态处理[J].岩土力学,2004,25(supp):60-62.
    [100]时书丽.声发射原定为的测试方法[J].辽宁大学学报,1998,25(1):42-46.
    [101]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):58-61.
    [102]崔荣旺.微地震压裂监测应在井中进行[J].大庆石油地质与开发,2007,26(4):138-142.
    [103]田王月,陈晓非.地震定位研究综述[J].地球物理学进展,2002,17(1):147-155.
    [104] Waldhuaser F, Ellsworth W L. A dpin;e dofferemce earthquake location algorithm:method and application to the Northen Hyaward Fault, Caliofornia[J]. Bulletin ofthe Seismological of America,2000,90(6):1353-1368.
    [105]郭飙,刘启元,陈九辉,等.首都圈数字地震台网的微震定位实验[J].地震地质,2002,24(3):453-460.
    [106] Stephen J A, Leo E. A technique for identifying microseismic multiplets andapplication to the Valhall field, North Sea[J]. Geophysics,2006,71(2):31-40.
    [107]赵仲和.多重模型地震定位程序及其在北京台网的应用[J].地震学报,1983,5(2):242-254.
    [108] Leo Eisner, B J Hulsey, Peter Duncan, et al. Comparison of suface and boreholelocations of induced seismicity[J]. EAGE Geophysical Prospecting,2010,1-12.
    [109] P Duncan, J Lakings. Microseismic Monitoring with a Surface Array[C].//EAGEPassive Seismic: Exporation and Monitoring Applications. Dubai, United ArabEmirates,2006.
    [110] P M Duncan, L Eisner. Reservoir characterization using surface microseismicmonitoring[J]. Geophysics,2010,75(5):139-146.
    [111] D Gajewski, D Anikiev. B M Kashtan, et al. Localization of seismic events bydiffraction stacking[C].//The77the SEG Annual Meeting. San Antonio,2007,26:1287-1291
    [112] O Zhebel, D Gajewski, C Vanelle. Localization of seismic events in3D media bydiffraction stacking [C].//The80th SEG Annual Meeting. Denver,2010,29:2181-2185.
    [113] D Presti, C Troise, G D Natale. Probabilistic location of seismic sequences inheterogeneous media[J]. Bulletin of the Seismological of America.2004,94(6):2239-2253.
    [114] D Gajewski, E Tessmer. Reverse modelling for seismic event characterization[J].Geophysical Journal International,2005,163(1):276–284
    [115] Yafei Wu, George A McMechan. Estimation of fracture height usingmicroseismicity associated with hydraulic fracturing [J]. Geophysics,63(3):908-917.
    [116] C I Trifu, V Shumila. Microseismic monitoring of a controlled collapse in field IIat Ocnele, Romania[J]. Pure and Applied Geophysics,2010,167:27-42.
    [117]张曦煌,杜俊俐.计算机图形学[M].北京:北京邮电大学出版社,2006.
    [118]陈佳鑫,贾英民.一种基于漫水填充法的实时彩色目标识别方法[J].计算机仿真,2012,29(3):4-9.
    [119]王斌,张卫钢.基于IEEE标准的电脑鼠走迷宫的智能算法研究[J].电子设计工程,2011,19(12):42-45.
    [120] Su Kou-Lan, Chang Chih-Hung, Zou Jie-Tong. Folld fill algorithm basedmultiple targets searching using mobile robots[J]. Advanced Science Letter,2012,8:457-462.
    [121] Xia Fan, Dong Liangguo, Ma Zaitian. The numerical modeling of3-D elasticwave equation using a high-order, staggered-grid, finite difference scheme[J].Applied Geophysics,2004,1(1):38-41.
    [122]许琨,王妙月.声波方程频率域有限元参数反演[J].地球物理学报,2001,44(6):852-864.
    [123]冯英杰,杨长春,吴萍.地震波有限差分模拟综述[J].地球物理学进展,2004,22(2):487-491.
    [124] Jacob Aboudi. Numerical simulation of seismic source[J]. Geophysics,1971,36(5):810-821.
    [125]邵秀民,蓝志凌.非均匀各向同性弹性介质中地震波传播的数值模拟[J].地球物理学报,1995,38(Supp.1):39-55.
    [126] R M Alford, K R Kelly, D M Boore. Accuracy of finite-difference modeling ofthe acoustic wave equation[J]. Geophysics,1974,39(6):834-842.
    [127]张金海,王卫民,赵连峰,等.傅里叶有限差分法三维波动方程正演模拟[J].地球物理学报,2007,50(6):1854-1862.
    [128] E H Saenger, N Gold, S A Shapiro. Modeling the propagation of elastic wavesusing a modified finite-difference grid[J]. Wave Motion,2000(31):77-92.
    [129] R W Graves. Simulating seismic wave propagation in3D elastic media usingstaggered-grid finite differences[J]. Bulletin of the Seismological Societt ofAmerica,1996,86(4):1091-1105.
    [130] Arben Pitarka.3D Elastic finite-difference modeling of seismic motion usingstaggered grids with nonuniform spacing [J]. Bulletin of the SeismologicalSociety of America,1999,89(1):54-68.
    [131]宁刚,熊章强,陈持逊.波动方程有限差分正演模拟误差来源分析[J].物探与化探,2008,32(2):203-206.
    [132]金胜汶,陈必远,马在田.三维波动方程有限差分正演方法[J].地球物理学报,1994,37(6):804-810.
    [133]周竹生,刘喜亮,熊孝雨.弹性介质中瑞雷面波有限差分正演模拟[J].地球物理学报,2007,50(2):567-573.
    [134]陈可洋.边界吸收中镶边法的评价[J].中国科学院研究生院学报.2010,27(2):170-175.
    [135]陈可洋,杨微.优化的三维地震波旁轴近似吸收边界条件[J].勘探地球物理进展,2009,32(3):179-181.
    [136] R Clayton, B Engquist. Absorbing boundary conditions for acoustic and elasticwave equations[J]. Bulletin of the Seismological Society of America,1977,67(6):1529-1540.
    [137] Wen-Fong Chang, G A McMechan. Absorbing boundary conditions for3-Dacoustic and elastic finite-difference calculations[J]. Bulletin of the SeismologicalSociety of America,1989,79(1):211-218.
    [138]董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探,1999,34(1):45-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700