用户名: 密码: 验证码:
老龄输油管道安全评估与维修决策方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家安全生产监督管理总局计划课题“油气管道结构安全运行数字化技术研究”。基于结构可靠性分析和维修决策理论,系统开展了老龄输油管道安全评估与维修决策关键技术研究,在管道模糊风险分析与安全评估新方法、老龄管道系统安全综合评估、老龄管道腐蚀可靠性分析、老龄穿跨越管道结构安全分析,以及老龄管道结构检测及维修规划等方面取得了较大的研究进展,主要的研究成果总结如下:
     1老龄输油管道系统安全综合评估体系研究
     鉴于老龄输油管道系统的高维性、复杂性、开放性及动态性等特征,从系统观点出发,提出了老龄输油管道复杂大系统的概念,按照孕育事故环境、事故致因和事故后果等理论进行老龄管道系统安全分析。基于老龄输油管道人--机--环境的系统安全问题,探讨了老龄输油管道的风险特征及安全综合评估的基本内容,确定了涵盖老龄管道系统的5大主要因素:第三方破坏、腐蚀、安全余量、误操作和自然灾害,构建了一个适于老龄输油管道较完整的安全指标体系。其中,从水文地质、地震和腐蚀方面,进行了老龄管道穿跨越工程的安全因素分析。基于老龄管道系统自然灾害的种类、影响与失效模式,将风险分析方法与结构的抗灾害能力相结合,探讨了集自然灾害、管内介质、人因环境以及预防和响应分析于一体的基线风险评估系统,从而有助于老龄管道系统自然灾害评估模式向新评估模式转变,为定量评估老龄管道结构安全可靠性奠定基础。
     2老龄输油管道系统安全可靠性评估方法研究
     鉴于目前管道安全可靠性分析方法存在的不足,提出了基于SCGM的模糊风险分析方法,为管道模糊风险分析的精细评估创造了新途径;综合考虑共性因素和个性因素,提出了一种基于故障树的管道安全模糊综合评价集成方法;通过将SPA引入管道安全系统评价领域,提出了一种全新的基于SPA安全综合评价模型。针对传统的平面静态评估方法所存在的不足,提出了基于CN综合评估及其PCN的发展趋势评估是一种立体的、单样本的、动态的和可再评估方法。
     从内部检测信息获取方式的不同,提出了将老龄管道分为不可用内部检测装置的管道和可用内部检测装置的管道。综合当前所提出的最新的动态安全评估方法,针对上述两类老龄管道分别提出了“合于使用”的两类可靠性评估方法。
     基于老龄管道各种失效模式,开展了老龄管道腐蚀可靠性分析,对各参数间的相互作用对老龄管道系统可靠性的影响及其敏感性分析;建立了腐蚀疲劳寿命模型;综合考虑在线检测数据的不精确性与管道材料特性、操作载荷以及由腐蚀增长率导致管线状态的不确定性,提出了一种基于模糊概率人工神经网络的老龄输油管道可靠性评估模型。采用可靠性分析方法,结合“合于使用”评估,给出了腐蚀管道动态失效概率评估方法。
     3老龄输油管道穿跨越段的结构安全分析研究
     考虑到在地质不稳定区受滑坡、沉陷、坍塌等自然灾害破坏性影响,根据弹性地基梁理论建立了土壤沉陷形成管跨段力学计算模型,其中管土交互作用通过非线性弹簧单元模拟,采用有限元分析方法计算出了在不同跨长、不同埋深、不同壁厚和不同外径等情况下应力分布状况,并由此给出了管道失效的临界长度。考虑埋地管道与土壤之间的非线性交互,建立弯头地段埋地管道模型,对弯管的弯头、过渡段和公路埋设段进行了应力分析;建立了考虑管土交互的地震载荷作用下管道响应有限元计算模型,并从地震断裂带和地震波作用下的管道进行结构分析,为陆上埋地管道抗震性能安全评估提供了重要的参考依据。
     4老龄输油管道结构检测及维修规划研究
     考虑检测与维修效果的可靠性分析模型是老龄管道时变可靠性分析的基础,提出了多种考虑检测与维修效果的可靠性分析模型:寿命模型、失效率模型和寿命可靠性模型等,对老龄管道的维修效果进行分析。
     描述和对比老龄管道结构衰退和维修模型,考虑结构衰退过程所存在的不确定性,从不完备性考虑,将半Markov模型、统计过程或与时间相关的可靠性指标作为失效率函数建立了动态衰退模型,提出了一个有助于优化评估老龄管道的修复、更换、检测和条件评估的整体框架。
     考虑检测仪器和维修准则所存在的不确定性,采用Markov过程给出了新缺陷的检测与维修规划,同时结合“合于适用”评估方法,开展了老龄输油管道完整性条件评估下的费--效分析,提出优化老龄管道较完整的维修方案,从而确保老龄管道经济安全的运行。
The techniques for aging oil pipeline including risk analysis, safety comprehensive assessment, reliability analysis, and decision-making for maintenance, et al, were studied in this dissertation; and the safety assessment technique was introduced in the safety inspection and management for aging oil pipeline, which provided a kind of powerful safety assurance technology for the safe operation of aging oil pipeline. In this paper, structural safety assessment technique and decision-making for maintenance technology of aging long distance oil pipeline were lucubrated based on the project“Research on Digitized Technology of Safe Operation of Oil&Gas Pipeline Structure”listed by STATE ADMINISTRATION OF WORK SAFETY. Considering the randomness, fuzziness, nondeterminacy, et al; based on stochastic reliability theory; an integrated technology system of structural safety reliability analysis and control decision of aging oil pipeline was established primarily, including pipeline structural corrosion damage, dynamic reliability analysis, durability assessment, residual life prediction, inspection, and maintenance decision&control, et al. It could be an guidance for the aging oil pipeline safe operating management; and under its help, pipeline inspection cycle be optimized, life-span cost be reduced, the aging pipeline’s safety, reliability, fitness, durability and integrity be ensured, and aging pipeline real-time risk supervision be achieved, and as a result it helps to improve pipeline safety and reliability during the service life. The main work is summarized as follows now:
     1 Research on Safety Comprehensive Assessment System for Aging Oil Pipeline Considering such characters of aging oil pipeline system as super-dimensionality, complexity, opening, dynamic, et al, the concept of great complex system of aging oil pipeline system was provided, and aging pipeline system safety was analyzed according to those theory: pregnanting accident-environment, accident-cause, accident-result, et al. The basic content of the character of aging oil pipeline’s risk and safety comprehensive assessment were discussed based on the human-machine-environment system safety of aging oil pipeline; and five main factors which cover nearly all aspects of aging pipeline system were determined, including the third-party damage, corrosion, safety allowance, false operation and natural disaster; and an integrated safety index system for aging oil pipeline was set up. An engineering assessment index system of aging oil pipeline’s spanning section was presented in the view of hydrogeology, earthquake and corrosion. The factors that influence the aging pipeline including types of natural disasters, effect mode and failure mode were introduced, the risk assessment methods were discussed and the system framework considering Natural Disaster, Content, Human/Environment and Prevention Assessment is given. Natural disaster assessment technique for aging pipeline system was studied systemically in this paper, and a natural disaster(such as flood, subsidence, landslide, wave-current, ice force, seism, fire, explosion, et al) assessment technique framework was founded. Doing research on comprehensive disaster assessment technology by combining the risk analysis method with the structural ability to resist disaster, which helped to convert the traditional assessment model of the aging pipeline natural disaster safety assessment into the modern one, and set up the foundation of quantitative assessment of aging pipeline structural reliability.
     2 Research on Safety Reliability Method for Aging Oil Pipeline System
     Considering the deficiency of current safety reliability analysis methods, a fuzzy risk analysis method based on SCGM(Simple Center of Gravity Method) was presented, which created a new way for precise assessment of pipeline fuzzy risk analysis; and considering both common factors and individual factors, a integral method of the fuzzy comprehensive evaluation for oil pipeline failure based on fault tree was brought forward; a new safety comprehensive assessment model based on SPA(Set Pair Analysis) was offered by introducing SPA to the field of pipeline safety system assessment. Taking the disadvantage of traditional plane state evaluation method into account, comprehensive evaluation based on CN(Connection Number) and developing trend evaluation based on PCN(Partial Connection Number) were proposed firstly, and proven to be a three-dimensional, single specimen, dynamic, and reevaluating method.
     According to the difference of the internal inspecting information obtaining manner, the aging pipeline was classified for the first time as the non-internal inspection pipeline and the internal inspection one. Integrated with the up-to-date dynamic/variable weight safety assessment technique, two kinds of reliability assessment methods based on fitness for purpose were put forward separately for these two different kinds of aging pipelines. Based on aging pipeline various failure models, aging pipeline corrosion reliability analysis was carried out, and both the influence on aging pipeline system reliability by the reciprocity of all parameters and its sensitivity analysis was studied in detail. The corrosion fatigue life model was established. A fuzzy probabilistic neural network model for reliability assessment of aging long distance oil pipeline was put forward, considering the imprecision of the information provided by in-line inspection, uncertainties associated with pipeline material properties, operational loads, and the rate of corrosion growth. The dynamic failure probability assessment method for corrosion pipeline was given by the reliability analysis technique, combining the assessment method of“fitness for purpose”. 3 Research on the Structural Finite Element Analysis for Aging Oil Pipeline’s Crossing and Spanning Section
     Taking the fact into account that the devastating impact of such natural disaster as slope, subsidence, sedimentation, et al, in unsteady geologic region; based on the elastic foundation beam theory, the mechanical model of pipe-soil subsidence was established. The pipe-soil interaction was simulated as nonlinear spring element; and the stress distribution under such different circumstances as different spanning length, different buried depth, different wall thickness, different external diameter, et al, was calculated by the finite element analysis; by which both the maximum and the minimum Mises stresses and their corresponding positions were gained; therefore, the critical spanning length which would result in pipeline failure was gained, too. Considering the fact that the crossing highway was one of the dangerous belts for buried pipeline, the elbow part of buried pipeline was modeled, and the stress of the syphon’s elbow, transition and the highway’s buried part was analyzed; the finite element model of pipeline response to seismic load was set up by considering the pipe-soil interaction. And as a result, the safety assessment of onshore aging pipeline seism-resisting capability was well guided.
     4 Research on Structural Inspection and Maintenance Scheme of Aging Oil Pipeline The reliability analysis model with the effect of inspection and maintenance considered was the basis of aging pipeline time-dependent reliability analysis. Many reliability analysis models with the effect of inspection and maintenance considered were put forward including life model, failure rate model, life reliability model, et al, which help to the analysis of aging pipeline maintenance effect.
     Describing and contrasting the structural deterioration model and the maintenance model of aging pipeline, considering the uncertainties existing in the structural deteriorating process and the imperfectness, regarding the semi-Markov model, statistical process or the time-dependent reliability index as the failure function, the dynamic deterioration model was then established. A whole framework which helped to optimizing and evaluating the large aging pipeline’s maintenance, replacement, inspection and condition assessment was given.
     Considering the uncertainties of inspection instruments and maintenance rules, a new inspection and maintenance planning for defects was given by adopting the Markov process. At the same time, combining the“fitness for purpose”assessment, the optimum integrity management scheme which plans to repair the aging pipeline was established, through the cost-effect analysis based on the integrality assessment of aging oil pipeline. Therefore, the economical and safe operation of the aging pipeline would be guaranteed.
引文
[1]郭章林. 油气管道系统安全风险分析方法研究[D]. 天津: 天津大学, 2000;
    [2]钱成文, 刘广文, 侯铜瑞等. 管道的完整性评价技术[J]. 油气储运, 2000, 19(7): 11~15;
    [3]王正涛, 李着信, 褚家荣. 含缺陷管道评价标准及方法研究[J]. 后勤工程学院学报, 2004, 4: 76~79, 83;
    [4]赵国藩. 工程结构可靠性理论与应用[M]. 大连: 大连理工大学出版社, 1996;
    [5]赵国藩, 贡金鑫, 赵尚传. 我国土木工程结构可靠性研究的一些进展[J]. 大连理工大学学报, 2000, 40(3): 253~258;
    [6]祁世芳, 王东. 工业管线安全评估模式的比较与分析[J]. 钢结构, 2002, 17(4): 53~56;
    [7]李鹤林. 天然气输送钢管研究与应用中的几个热点问题[J]. 中国机械工程, 2001, 21(3): 349~352;
    [8]钱成文, 侯铜瑞, 刘广文等. 管道的完整性评估技术[J]. 油气储运, 2000, 19(7): 11~15;
    [9]余建星, 祁世芳. 基于神经网络的长输管道综合可靠度评估方法[J]. 油气储运, 2001, 20(9): 1~7;
    [10]W. Kent Muhlbauer. Pipeline Risk Management Manual(First Edition)[M]. Gulf Publishing Company, Houston, Texas, 1992;
    [11]W. Kent Muhlbauer. Pipeline Risk Management Manual(Second Edition)[M]. Gulf Publishing Company, Houston, Texas, 1996;
    [12]Brain Grifin. Mike Zelensky. Basics of risk analysis, Accessment and management[A]. Banf/95Pipeline Workshop Conference[C], 1995;
    [13]Coulson K. E. W. Pipe Corrosion-conclusion, New Guidelines Promise More Accurate Damage Assessment[J]. Oil and Gas Journal, 1990, 88(15): 41~43;
    [14]潘家华. 油气管道的风险分析(待续)[J]. 油气储运, 1995, 14(3): 11~15;
    [15]潘家华. 油气管道的风险分析(续一)[J]. 油气储运, 1995, 14(4): 1~7;
    [16]潘家华. 油气管道的风险分析(续完)[J]. 油气储运, 1995, 14(5): 3~10;
    [17] Hovey D. J. Pipeline Accident Failure Probability Determined from Historical Data[J]. Oil and Gas Journal, 1993, 91(28): 194~107;
    [18]W. Kent Muhlbauer. A Proactive Approach to Pipeline Risk Assessment[J]. Pipeline Industry, 1992, 75(7): 37~39;
    [19]张鹏, 段水红. 长输管线风险技术的研究[J]. 天然气工业, 1998, 18(5): 72~76;
    [20]Zhang Peng. Fuzzy Assessment of Pipeline Risk[A]. The 1st inter, Conf On Computer Simulation in Risk Analysis& Hazard Mitigation[C]. Spain, 1998;
    [21]Meye., TA; 张鹏. 风险技术在压力容器和管道上的应用[J]. 油气储运, 1996, 15(5): 54~59;
    [22]廖柯熹, 姚安林, 张淮鑫. 长输管道失效故障树分析[J]. 油气储运, 2001, 20(1): 27~30;
    [23]阎凤霞, 董玉华, 高惠临. 故障树分析方法在油气管线方面的应用[J]. 西安石油学院学报, 2003, 18(1): 47~50;
    [24]董玉华, 高惠临, 周敬恩等. 长输管线失效状况模糊故障树分析方法[J]. 石油学报, 2002, 23(4): 85~89;
    [25]陈利琼, 张鹏, 马剑林. 油气管道风险的模糊综合评价方法探讨[J]. 天然气工业, 2003, 23(2): 117~119;
    [26]帅健. 油气管道完整性评价的数据支持系统[J]. 石油工业技术监督, 2005, 21(5): 83~88;
    [27]Biagiotti S F Jr, Guy P P. Software and inspection advances in pipeline integrity assessment, 2001;
    [28]胡兆吉, 李培宁. 复合加载条件下含缺陷结构Lr参量的研究及其在周向裂纹管中的应用[J]. 压力容器, 1998, 15(2): 9~16;
    [29]胡兆吉, 李培宁. 基于净截面垮塌(NSC)准则的周向裂纹管道塑性极限载荷分析[J]. 压力容器, 1998, 15(1): 1~9;
    [30]郭茶秀, 李培宁, 蒋晓东等. 拉、弯、扭及内压载荷下周向裂纹管的塑性极限载荷[J]. 压力容器, 1999, 16(2): 1~8;
    [31]郭茶秀, 李培宁. 拉、弯、扭、内压联合载荷作用下周向裂纹管的Lr参量[J]. 压力容器, 1999, 16(3): 5~10;
    [32]韩良浩. 内压作用下局部减薄管道的极限载荷分析[J]. 压力容器, 1998, 15(4): 1~4;
    [33]韩良浩, 柳曾典. 弯曲载荷作用下局部减薄管道的极限载荷分析[J]. 压力容器, 1998, 15(6): 1~4;
    [34]张建勋, 包利群. 计算机辅助焊接结构弹塑性断裂分析系统[J]. 压力容器, 1997, 14(4): 45~48;
    [35]业成, 黄文龙. 腐蚀疲劳裂纹扩展的在线监测及频率影响[J]. 压力容器, 1998, 15(3): 11~14, 24;
    [36]沉士明, 刘曦. 疲劳模糊评定图及其应用[J]. 南京化工学院学报, 1995, 17(2): 102~107;
    [37]Shu-He Dai. Failure analysis and life prediction of a set extra high pressure heat exchangers containing defects[J]. International Journal of Pressure Vessel& Piping, 1997, 70(3): 197~200;
    [38]Shu-Ho Dai. Methodology for predicting the occurrence of failure events for pressure vesselsused in the process industry[J]. International Journal of Pressure Vessel& Piping, 1998, 75(3): 221~228;
    [39]Shu-Ho Dai. The methodology or the assessment of the safety of pressurized components containingwelding defects and the related expert system[J]. International Journal of Pressure Vessel& Piping, 1994(60): 127~132;
    [40]姚海根. 压力容器安全性的模糊综合评判[J]. 压力容器, 1986, 3(6): 66~68;
    [41]Chen Guoming, Fang Huacan. Estimation of fuzzy reliability for offshore structures[A]. ISOPE'91[C], 1991;
    [42]Elishakoff I. Discussion on a non-probabilistic concept of reliability[J]. Structural Safety, 1995, 17(3): 195~199;
    [43]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J]. Structural Safety, 1995, 17(2): 91~109;
    [44]郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2001, 18(1): 56~60;
    [45]王光远. 未确知信息及其数学处理[J]. 哈尔滨建筑工程学院学报, 1990, 23(4): 1~9;
    [46]Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells[J]. Journal of Applied Mechanics. 1993, 60(3): 683;
    [47]Elishakoff I, Elisseeff P, et al. Non-probabilistic, convex-theoretic modeling of scatter in material properties[J]. AIAA Journal, 1994, 32: 843~849;
    [48]Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4): 227~245;
    [49]Cremona C, Gao Y. The possibilistic reliability theory: theoretical aspects and applications[J]. Structural Safety, 1997, 19(2): 173~201;
    [50]Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context[J]. Fuzzy Sets and Systems, 1991, 42(2): 145~172;
    [51]U tk in L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context[J]. Fuzzy Sets and Systems, 1996, 83(2): 203~213;
    [52]Sawyer J P, Rao S S. Strength-based reliability and fracture assessment of fuzzy mechanical and structural systems[J]. ALAA Journal, 1999, 37(1): 84~92;
    [53]Marco Savioa. Structural reliability analysis through fuzzy number approach, with application to stability[J]. Computers and Structures, 2002, 8: 1087~1102;
    [54]郭书祥, 吕震宙, 冯立富. 基于可能性理论的结构模糊可靠性方法[J]. 计算力学学报, 2002, 19(1): 89~93;
    [55]郭书祥, 吕震宙, 张陵. 结构的能度可靠性方法和随机可靠性方法的比较[J]. 计算力学学报, 2003, 20(4): 446~450;
    [56]郑贤斌, 陈国明, 袁超红. 油气管道缺陷检测的数据处理方法回顾与展望[J]. 压力容器, 2005, 22(10): 38~43;
    [57]ANSI/ASME(American National Standards Institute/American Society of Mechanical Engineers) B31G[S]. Manual for Determining the Remaining Strength of Corroded Pipelines, 1984;
    [58]CAN/CSA-Z184-M&6. Gas pipeline systems[S]. Canadian Standards Association, 1986;
    [59]Kiefner, J. F; Maxey, W. A; Eiber, R. J; et al. Failure stress levels of flaws in pressurized cylinders[R]. In Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536. American Society for Testing and Materials, 1973: 461~481;
    [60]Maxey, W. A; Kiefner, J. F; Eiber, R. J, et al. Ductile fracture initiation, propagation and arrest in cylindrical vessels. Fracture Toughness, Proc[A]. 1971 National Symposium on Fracture Mechanics,Part II, ASTM STP 514[C]. American Society for Testing and Materials, 1972: 70~81;
    [61]Mok, D. R. B; Pick, R. J; Glover, A. G. Behavior of line pipe with long external corrosion[R]. Mater. Performance, May 29, 1990: 75~79;
    [62]Coulson, K. E. W; Worthingham, R. G. Standard damage-assessment approach is overly conservative[J]. Oil and Gas Journal, 1990, 9: 54~59;
    [63]Coulson, K. E. W; Worthingham, R. G. New guidelines promise more accurate damage assessment[J]. Oil and Gas Journal, 1990, 16: 41~44;
    [64]Kiefner, J. F; Vieth, P. H. New method corrects criterion for evaluating corroded pipe[J]. Oil and Gas Journal, 1990, 6: 56~59;
    [65]Hopkins, P; Jones, D. G. A study of the behavior of long and complex-shaped corrosion in transmission pipelines[A]. In Proc. 11th Int. Con5 on Offshore Mechanics and Arctic Engineering[C], ASME, 1992, Vol. V, Part A: 211~217;
    [66]Bubenik, T. A; Olson, R. J; Stephens, D. R, et al. Analyzing the pressure strength of corroded Iine pipe[A]. In Proc. 11th Int. Conf. on Offshore Mechanics and Arctic Engineering[C]. ASME, 1992, Vol. V, Part A: 225~231;
    [67]蔡文军. 腐蚀管线的剩余强度及可靠性研究[D]. 东营: 石油大学, 1997;
    [68]兰建新. 计算管道极限压力的简易公式[J]. 国外油气储运, 1995, 13(6): 13~16;
    [69]ASME B 31G. Manual for determining the remaining strength of corroded pipelines[S]. A supplement to ANSI/ASME B 31G code for pressure piping, 1991;
    [70]DNV Recommended Practice, RP-F101. Corroded pipelines[S]. Det Norske Veritas. April, 1999;
    [71]初飞雪, 仇斌, 刘秀敏等. 应用修正的B 31G公式预测腐蚀管失效应力[J]. 油气储运, 2005, 24(8): 19~21;
    [72]Jiao Guoyang. Reliability analysis of crack growth with inspection planning[A]. Proceeding of the 14th OMAE[C]. Calgary, 1992: 227~235;
    [73]陈国明, 方华灿. 海洋钢结构的疲劳可靠性研究——进展及展望[J]. 中国海上油气(工程), 1992, 4(3): 1~7;
    [74]Paliou, C; Shinozuka, M; Chen, Y N. Reliability and durability of marine structures[J]. Journal of Structural Engineering, 1987, 113(26): 1297~1315;
    [757]Tom Lassen. Markov modeling of the fatigue damage in welded structures under in-service inspection[J]. Int J Fatigue, 1991, 13(5): 417~422;
    [76]Bogdano. JL, Kozin F. Probabilistic models of cumulative damage[M]. New York: John Wiley and Sons, 1985;
    [77]Thoft-Christensen P, Sorensen JD. Optimal strategies for inspection and repair of structural systems[J]. Civil Engineering Systems, 1987, 4: 94~100;
    [78]Madsen HO, Sorensen JD. Probability-based optimization of fatigure design inspection and maintenance[R]. Presented at Symp. On Offshore Structures, University of Glasgow, 1990;
    [79]Sorensen JD, Faber MH, Rackwitz R, et al. Modeling in optimal inspection and repair[A]. OMAE[C], 1991, II: 281~288;
    [80]Rodriguez III ES, Provan JW. Part II: development of general failure control system for estimating the reliability of deteriorating structures[J]. Corrosion, 1989, 45(3): 193~206;
    [81]Morrison TB, Worthingham RG. Reliability of high pressure linepipe under external corrosion[A].ASME, OMAE[C], 1992, V-B: 401~408;
    [82]Urednicek M, Coote RI, Coutts R. Optimizing rehabilitation process with risk assessment and inspection[A], Proceedings of the International Conference on Pipeline Reliability[C]. Calgary, 1992: 12-1~12~14;
    [83]Fearnehough GD, Corder I. Application of risk analysis techniques to the assessment of pipeline routing and design criterion[A]. Proceedings of the International Conference on Pipeline Reliability[C]. Calgary, 1992: 12-1-12-14;
    [84]Kulkarni RB, Conroy JE. Development of a pipeline inspection and maintenance optimization[R]. Report for Gas Research Institute, GRI-95/0181, 1995;
    [85]Sydberger T, Edwards JD, Mork KJ. A probabilistic approach to prediction of CO2-corrosion and its application to life cycle cost analyses of oil& gas equipment[A]. Corrosion '95, NACE International[C]. Houston, TX, paper no. 65, 1995;
    [86]Hong HP. Reliability based optimal inspection and maintenance for pipeline under corrosion[J]. Civil Engineering Systems, 1997, 14: 313~334;
    [87]Faber M H, Sorensen J D, Kroon I. Optimal inspection strategies for offshore structural systems[A]. 11th ASME ET AL Offshore Mech & Arctic Eng Int Conf[C]. CALGARY, CAN, 1992: 145~151;
    [88]Chen Guoming, Fang Huacan. Application of PFM to fatigue reliability analysis of offshore structures considering inspection and repair[A]. Proceeding of the 13th OMAE[C]. Houston, USA, 1991: 259~266;
    [89]王光远. 结构强度储备的评估及结构维修过程的跟踪决策[J]. 哈尔滨建筑工程学院学报, 1993, 26(2): 1~10;
    [90]陈国明, 方华灿. 海洋结构疲劳可靠性的定量评价方法[J]. 石油大学学报, 1992, 16(1): 100~107;
    [91]van Noortwijk, Jan M, Cooke, Roger M, et al. A Bayesian failure model based on isotropic deterioration[J]. European Journal of Operational Research, 1995, 82(2): 270~282;
    [92]程志虎. NDT可靠性研究的理论模型[D]. 上海: 上海交通大学, 1998;
    [93]赵学年. 海底管线检测大纲及相关问题的研究[D]. 东营: 石油大学, 1996;
    [94]陈勃, 鲍蕊, 张建宇等. 老龄管道结构检修一体化的实现与分析方法[J]. 北京航空航天大学学报, 2004, 30(6): 498~501.
    [1]S. J. Chen and S. M. Chen. A new simple center-of-gravity method for handling the fuzzy ranking and defuzzification problems[A]. Prented at the 8th National Conf. Fuzzy Theory Applications[C], Taipei, Taiwan, 2000;
    [2]R. Kangari, L.S. Riggs. Construction risk assessment by linguistics[J]. IEEEE Trans. Eng. Manag, 1989, 36(2): 126~131;
    [3]K. J. Schmucker. Fuzzy Sets Natural Language Computations and Risk Analysis[M]. Rockville, MD: Computer Science, 1984;
    [4]S. M Chen. New methods for subjective mental workload assessment and fuzzy risk analysis[J]. Cybern. Syst: Int. J., 1996, 27(5): 449~472;
    [5]Crouch, A. E., Bubenik, T. A., and Barnes, B. Outlook on in-line inspection for stress corrosion cracking[A]. Pipeline Pigging & Integrity Monitoring Conference[C]. Houston, TX, 1994;
    [6]S. M. Chen. A new approach to handling fuzzy decision-making problems[J]. IEEE Trans. Sys., Man, Cybern, 1988, 18(12): 1012~1016;
    [7]W. R. Zhang. Knowledge representation using linguistic fuzzy relations[D]. (Ph. D. dissertation). Univ. South Carolina, Columbia, SC, 1986;
    [8]郑贤斌, 陈国明. 基于FTA油气长输管道失效的模糊综合评价方法研究[J]. 系统工程理论与实践, 2005, 25(2): 139~144;
    [9]沈定珠. 国民体质提高趋势的联系数分析[J]. 北京体育大学学报, 2005, 28(6): 711~713;
    [10]赵克勤. 基于集对分析同一度的方案综合评价[J]. 决策探索, 1994, 2: 14~15;
    [11]赵克勤. 集对分析及其初步应用[M]. 浙江: 浙江科技出版社, 2000;
    [12]赵克勤. 集对分析对不确定性的描述和处理[J]. 信息与控制, 1995, 35(2): 162~163;
    [13] 赵克勤. 联系数及其应用[J]. 吉林师范学院学报, 1996, 17(8): 50~52;
    [14]蒋云良. 基于SPA的学生成绩态势分析[J]. 数理统计与管理, 2003, 22(6): 5~8;
    [15]郭瑞林, 陈观臣. 品种区试的四元联系数多因素态势排序分析法[J]. 农业系统科学与综合研究, 2003, 19(3): 218~222;
    [16]余国详. 同异反教学评价模型及应用[J]. 绍兴文理学院学报, 1997(6): 35~39;
    [17]郑贤斌, 陈国明. 基于SPA安全评价方法及其应用. 哈尔滨工业大学学报, 2006, 38(2): 290~293;
    [18]赵克勤, 曾伟. 基于集对分析(SPA)的弃权问题研究[J]. 决策与决策支持系统, 1995, 5(3): 86~94;
    [19]郑贤斌, 陈国明. 一种基于模糊数算术运算的综合评价方法及其应用[J]. 系统工程与电子技术, 2004, 26(12): 1905~1908;
    [20]郑贤斌, 陈国明. 基于熵技术的石化企业安全模糊综合评价方法研究[J]. 中国安全科学学报, 2004, 14(2): 109~112;
    [21]赵显桥, 曹欣玉, 兰泽全. 基于粗集理论的煤灰结渣模糊综合评判权系数确定方法研究煤炭学报. 2004, 29(2): 222~225;
    [22]张清河, 张云波, 赵克勤. 工序作业时间实现可能性的新判定法[J]. 系统工程与电子技术, 2003, 25(10): 1225~1228;
    [23]王霞. 联系范数为4与6的四元联系数系统态势数值排序及应用[J]. 数学的实践与认识, 2004, 34(7):107~112;
    [24]赵克勤. 偏联系数[A]. 中国人工智能进展2005[C]. 北京: 北京邮电大学出版社, 2005: 884~886.
    [1]柴业森, 石永春. 埋地管道运行整体性评估[J]. 油气储运, 1999, 18(11): 38~41;
    [2]肖纪美. 腐蚀总论[M]. 北京: 化学工业出版社, 1994;
    [3]陈宝智. 安全原理[M]. 北京: 冶金工业出版社, 1995;
    [4]W. kent Muhlbauer(著), 杨嘉瑜, 李钦华等(译). 管道风险管理手册[M]. 北京: 中国石化出版社, 2005;
    [5]Hertz D B, et al. Risk analysis and its applications[M]. New York: John Wiley and Sons, 1983: 9;
    [6]Urban Kjellen. Adapting the application of risk analysis in offshore platform design to new framework conditions[J]. Reliability Engineering and System Safety, 1998, 60(2): 143~151;
    [7]陈新民, 夏 佳, 罗国煜. 黄河下游悬河决口灾害的风险分析与评价[J]. 水利学报, 2000, 10: 66~70;
    [8]李新运, 常勇, 李望等. 重大工程项目灾害风险评估方法研究[J]. 自然灾害学报, 1998, 7(4): 24~29;
    [9]Paté-Cornell, M. Elisabeth; Murphy, Dean M. Murphy. Human and management factors in probabilistic risk analysis: the SAM approach and observations from recent applications[J]. Reliability Engineering and System Safety, 1996, 53(2): 115~126;
    [10]Emerson, William, Norman Mineta. The Natural Disaster Protection Partnership Act-Legislative Outline, Letter and attachments, 1995, June 6th;
    [11]Campbell D J. User’s Guide for PRISIM A T Arkansas Nuclear One-Unit 1[M]. Volume 1: Program for Inspectors. NUREG/CR25021, Jan, 1988;
    [12]Gordon R. Moir On-line Use of PSA for Risk-Based Configuration Control, IAEA Technical[A]. Committee Meeting on “Procedures for Use of PSA for Optimizing NPP Operational Limits and Conditions”[C]. Barcelona, Spain, Sep, 1993;
    [13] 李洪兴. 因素空间理论与知识表示的数学框架——概念的反馈外延与因素的重合性[J]. 系统工程学报, 1996, 11(4): 7~16;
    [14] 汪培庄. 模糊集与随机集落影[M]. 北京: 北京师范大学出版社, 1985;
    [15]王明涛. 多指标综合评价中权系数确定的一种综合分析方法[J]. 系统工程, 1999, 17(2): 56~61;
    [16]Xue Dazhi, Xu Yaowu. The modeling approach for a real-time risk management system[A]. International Conference on “Probabilistic Safety Assessment Met hodology and Applications”[C]. PSA’95, Seoul, Korea, Nov. 26230, 1995;
    [17]Samanta P K, Kim I S. Handbook of Methods for Risk-Based Analyses of Technical Specifications[M]. NUREG/CR26141, Dec,1994;
    [18]Kulkarni, R. B; Conroy, J. E. Development of a Pipeline Inspection and Maintenance Optimization System(Phase I)[R]. Final Report, Gas Research Institute, Contract No. 5097-271-2988, December, 1991;
    [19]http://primis.phma.dot;
    [20]Nessim, Maher; Stehens, M. Risk-Based Optimization of Pipeline Integrity Maintenace[S]. Proc. Offshore Mechanics and Arctic Engineering, ASME V: 303~314, 1995;
    [21]Muhlbauer, W. K. Pipeline Risk Management[R]. Gult Publishing Co. Houston, Texas, 1992;
    [22]Sotberg, T. Application of Reliability Methods for the Safety Assessment of Submarine Pipelines[R]. D. Eng Dissertation, Norwegian Institute of Technology, 1990;
    [23]Bai, Y. Reliability Approach to optimise corrosion allowance[J]. Proc, Risk Reliability Limit State in Pipeline Design and Operation, Aberdeen, 1997, 11: 1~21;
    [24]Bea, R.G. Evaluation of Alternative Marine Structural Integrity Programs[J]. Journal of Marine Structures, 1994;
    [25]Kiefner, J.F; Vieth, P.H; Orban, J. Methods for Proritizing Pipeline Maintenance and Rehabilitation[R]. American Gas Association, AGA Report PR-3-919, 1990;
    [26]刘开第, 吴和琴, 庞彦军等. 不确定信息数学处理及应用[M] . 北京: 科学出版社, 1999.
    [1]T.A. Netto, U.S. Ferraz, S.F. Estefen. The effect of corrosion defects on the burst pressure of pipelines[J]. Journal of Constructional Steel Research, 2005, 61: 1185~1204;
    [2]M. Ahammed, R.E. Melchers. Reliability estimation of pressurized pipelines subject to localized corrosion defects[J]. International Journal of Pressure Vessels and Piping, 1996, 69: 267~272;
    [3]Mok DRB, Pick RJ, Glover AG. Behavior of line pipeline pipe with long external corrosion[J]. Materials Performance, 1990, May: 75~79;
    [4]Kiefner JF, Vierth PH. New method corrects criterion for evaluating corroded pipe[J]. Oiil and Gas Journal, 1990, August, 6: 56~59;
    [5]Hopkins, P; Jones, D.G. A study of the behavior of long and complex-shaped corrosion in transmission pipelines[A]. In Proc. 11th Int. Conf. on Offshore Mechanics and Arctic Engineering[C], Vol. V, Part a, ASME 1992: 211~217;
    [6]M. Ahammed. Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects[J]. International Journal of Pressure Vessels and Piping, 1998, 75(4): 321~329;
    [7]凌树森. 可靠性在机械强度设计和寿命评估中的作用[M]. 北京: 宇航出版社, 1988;
    [8]ASCE Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division Fatigue reliability[J]. Journal of Structural Engineering, 1982, 108(l): 83~88;
    [9]Byers WG, Marley MJ, Mohammadi J, et al. Fatigue reliability reassessment applications: state-of-the-art paper[J]. Journal of structural Engineering, ASCE, 1997, 123(3): 277~85;
    [10]Zheng R, Ellingwood B. Stochastic fatigue crack growth in steel structures subject to random loading[J]. Structural Safety, 1998, 20(4): 303~23;
    [11]Madsen HO, Krenik S, Lind NC. Methods of structural safety[M]. Eaglewood Cliffs (NJ): Prentice-Hall, 1986;
    [12]Zhao Z, Haldar A. Fatigue-reliability evaluation of steel bridges[J]. Journal of Structural Engineering, ASCE, 1994, 120(5): 1608~1623;
    [13]方华灿, 陈国明. 模糊概率断裂力学[M]. 东营: 石油大学出版社, 1999;
    [14]Goranson UG, Rogers JT. Elements of damage tolerance verification[A]. In:Proc.12th Symp. Int. Committee Aeronautical Fatigue (ICAF)[C], 1983: l~20;
    [15]Harris DO. A means of assessing the effects of NDT on the reliability of cyclically loading structures[J]. Materials Evaluation, 1977, 35(7): 57~69;
    [16]Zhao Z, Haldar A. Fatigue-reliability updating through inspections of steel bridges[J]. Journal of Structural Engineering, ASCE 1994, 120(5): 1624~1642;
    [17]Nessim, M.A; Pandey, M.D. (1996). Risk-based planning of inspection and maintenance of pipeline integrity[A]. Proceedings of the Ninth Symposium for Pipeline Research[C]. Pipeline ResearchInternational, Houston, TX: 10-1 to 10-18;
    [18]Brown, M; Nessim, M; Greaves, H.. Pipeline defect assessment: deterministic and probabilistic considerations[A]. Second International Conference on Pipeline Technology[C]. Ostend, Beigium, 1995;
    [19]Specht, D. F. Probabilistic Neural Networks[J]. Neural Networks, 1990, 8: 109~118;
    [20]Specht, D. F; ShaPiro, P. D. Generalization accuracy of probabilistic neural networks conlpared with back propagation[A]. Proc. International Joint Conference on Neural Networks(IJCNN)’91[C], 1991: 458~46l;
    [21]Dempster, A. P; Laird, N. M; Rubin, D.B. Maximum likelihood from inconlplete data via the EM algorithm[J]. Journal of the Royal Statistics Society, 1977, 39: l~38;
    [22]Dempster, P. Learning vector quantization for the probabilistic neural network[J]. IEEE Trans. Neural Networks, 1991, 2: 458~461;
    [23]Lin, S., Kung; S. Y; Lin, L. Face recognition/detection by probabilistic decision-based neural network[J]. IEEE Trans. Neural Nets, 1997, 8: 764~783;
    [24]Parzen, E. On estimation of a probability density function and mode[J]. Annals of Mathematics and Statistics, 1962, 33: 1065~1076;
    [25]Turley R; Johnston D. C; Kolovich C. E. Probability approach promises enhanced maintenance program[J]. Pipeline & Gas Industry, 2001, 84(1);
    [26]Melchers R. E. Structural reliability:Analysis and prediction[M]. Ellis Horwood, Chichester, UK, 1999;
    [27]T. J. E. Zimmerman; Q. Chen. Target Reliability Levels for pipeline limit state design[A]. Proc. of the International Pipeline Conference[C]. ASME 1996, Vol. 1: 110~130;
    [28]Melchers R. E. Structural reliability: Analysis and prediction[M]. Ellis Horwood, Chichester, UK, 1999;
    [29]J. L. Martinez, E. Rodriguez. Tolerable risk criteria for gas transmission pipelines[J]. Pipes & Pipelines International, Vol. 44(5): 30~36;
    [30]International Standard ISO 16708. Reliability based limit state methods[S]. The International Organization for Standardization, Revision No. 02, October 2001.
    [1]李静, 李明, 银小兵. 对天然气管道穿越工程劳动安全卫生预评价的几点认识[J]. 石油与天然气化工, 2002, 31(6): 336~338;
    [2]余建星, 詹强, 吴海欣. 穿越管道的疲劳失稳风险评估方法的研究[J]. 地震工程与工程振动, 2001, 21(2): 58~63;
    [3]冯启民, 高惠瑛. 受沉陷作用埋地管道破坏判别方法[J]. 地震工程与工程震动, 1997, 17(2): 59~66;
    [4]李雯荣. 垂直载荷作用下折线形跨越管道结构的稳定分析[J]. 特种结构, 1994, 11(4): 3~9;
    [5]孟振虎, 陈毅忠, 钱建华等. 沧临管道大浪淀跨越段管壁皱折原因分析[J]. 油气储运, 1999, 18(6): 28~34;
    [6]冯启民, 赵林. 跨越断层埋地管道屈曲分析[J]. 地震工程与工程震动, 2001, 21(4): 80~87;
    [7]Hall W. J., Newmark N. M. Seismic Design Criteria for Pipelines and Facilities[J]. Journal. of the Tech. Council of ASCE, TCI, 1978: 91~107;
    [8]赵林. 跨越断层管道屈曲分析及模拟仿真技术研究[D]. 北京: 中国地震局工程力学研究所, 2000;
    [9]Kenendy R. P., Chow A. W, Williamson R. P. Fault Movement Effects an Buried Oil Pipelines[J]. Transp. Eng. Journal. ASME, TE5, 1977: 617~633;
    [10]0’Rouke T. D., Trantmann C. H. Buried Pipeline Response to Permanent Earthquake Ground Movements[A]. Pressure Vessel and Piping Division. ASME Century Conference[C]. 80-C2/PVP-78, San Francisco, Aug, 1980;
    [11]Ariman T. Muleski G E A review of the responses of buried pipelines under seismic excitations[J]. Earthquake Engineering and Structural Dynamics, 1981, 9: 133~151;
    [12]Wang IL R L, Cheng K M. SEISMIC response behavior of buried pipelines[J]. Journal of Pressure Vessel Technology, ASME, 1979: 101, 21~30;
    [13]Hindy A, Novak M. Earthquake response of underground pipelines[J]. Earthquake Engineering and Structural Dynamics, 1979, 7: 451~476;
    [14]Xie X, He YA. Calculation of earthquake response of underground pipelines[J]. Earthquake Engineering and Structural Dynamics, 1979: 451~476;
    [15]粱建文, 何玉敖. 通过不均匀土介质管线的三维地震反应[J]. 天津大学学报, 1994, 27(2) 200~204;
    [16]梁建文. 穿越三种土介质管线的动力分析[J]. 天津大学学报, 1998, 31(2): 163~168;
    [17]先智伟. 大型油气管道水下穿越事故及其防护[J ]. 天然气与石油, 2002, 20(2): 7~9;
    [18]宋庆杰, 陆颖舟, 彭少华. 黄夹克输油管道腐蚀原因分析与防护[J]. 河南化工, 2002, 7: 45~46;
    [19]雷威, 余建星. 埋地输油管线腐蚀风险分析方法研究[J]. 引进与咨询, 2000, 7(4): 23~25;
    [20]张延丰. 套管穿越处的阴极保护[J]. 腐蚀与防护, 2000, 21(4): 167~170;
    [21]董宝山. 输油管道腐蚀与保护[J]. 石油规划设计, 1998, 9(4): 19~20;
    [22]丁一刚, 王慧龙, 郭兴蓬等. 金属在液固两相流中的冲刷腐蚀[J]. 材料保护, 2001, 34(11): 6~8;
    [23]秦毅, 钱善琪, 王冰怀等. 高含沙河流管道穿越冲深设计与计算[J] . 油气储运, 2001, 20(4): 23~27;
    [24]罗金恒, 赵新伟, 白真权等. 输油管道的腐蚀剩余寿命的预测[J]. 石油机械, 2000, 28(2): 30~32;
    [25]王峰会, 赵新伟, 王沪毅. 高压管道黄土沉陷情况下的力学分析与计算[J]. 油气储运, 2004, 23(4): 6~8;
    [26]龙驭球. 弹性地基梁的计算[M]. 北京: 高等教育出版社, 1989; [27王成华. 土力学原理[M]. 天津: 天津大学出版社, 1998;
    [28]邓道明, 张庆元, 金劲松. 有/无固定墩跨越管道的内力和变形比较[J]. 油气储运, 1999, 18(6):17~20;
    [29]API RP 2A-LRFD. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design[S], 1995;
    [30]阿英宾杰尔, 卡麦尔什捷英. 干线管道强度及稳定性计算[M]. 北京: 石油工业出版社, 1988;
    [31]蒋云. 埋地管道应力分析与管道承压能力评估[D](硕士). 东营: 石油大学, 1997;
    [32]黄仰贤. 路面分析与设计[M]. 北京: 人民交通出版社, 1998;
    [33]柳金梅. 不良条件管道工程设计与施工手册[M]. 北京: 中国物价出版社, 1992;
    [34]Ariman, T; Muleski, G. E. A Review of the Response of Buried Pipelines Under Seismic Excitations[J]. Earthquake Engineering and Structural Dynamics, 1981: 133~151;
    [35]Hahn, G. D; Sritharan, S. Lateral Response of Underground Pipelines to Earthquakes[J]. Computers and Structures, 1994(3): 53, 601~611;
    [36]张进国, 吕英民. 地震裂缝错位作用时埋地管道的有限元分析[J]. 油气储运, 1997, 16(2): 28~30;
    [37]梁建文. 埋地管道地震反应和稳定性研究述评[J]. 天津大学学报, 1996, 29(3): 427~434;
    [38]张素灵, 许建东, 曹华明等. 地震断层作用对地下输油(气)管道的破坏分析[J]. 地震地质, 2001,23(3): 432~438;
    [39]毛建猛, 李鸿晶. 跨越断层地下管线震害因素分析[J]. 国际地震动态, 2005, 316(4): 27~31;
    [40]ABAQUS inc. ABAQUS Example Problems Manual[M]. 2004.
    [1]Guida M, Giorgio M. Reliability analysis of accelerated life-test data from repairable system[J]. IEEE Transactions on Reliability, 1995, 44(2): 337~345;
    [2]Chan J, Shaw L. Modeling repairable systems with failure rates that depend on age and maintenance[J]. IEEE Transactions on Reliability, 1993, 42(4): 566~571;
    [3]Leemis L W. Reliability, probabilistic models and statistical methods[M]. Englewood Cliffs, NJ: Prentice Hall, 1995;
    [4]Martorell S, Munoz A, Serradell V S. Age-dependent models for evaluating risks and costs of surveillance and maintenance of components[J]. IEEE Transactions on Reliability, 1996, 45(3): 433~441;
    [5]Martorell S, Sanchez A, Serradell V. Residual life management of safety-related equipment considering maintenance and working conditions[A]. In: Balkema AA, editor, Proc. of the ESREL’98 Conf[C]. Trondheim, 16-19, June 1998, 2: 889~896;
    [6]Malik MAK. Reliable preventive maintenance scheduling[J]. AIIE Transactions, 1979, 11: 221~228;
    [7]Shin Y, Lim TJ, Lie CH Estimating parameters of intensity function and maintenance effect for repairable unit[J]. Reliability Engineering and System Safety, 1996, 54(1): 1~10;
    [8]Das, P C. Prioritization of bridge maintenance needs, Case Studies in Optimal Design and Maintenance Planning of Civil Infrastructure Systems[M]. D.M. Frangopol, editor, ASCE, Reston, Virginia, 1999: 26~44;
    [9]McCall, J J. Maintenance policies for stochastically failing equipment: a survey[J]. Management Science, 1965, 11: 493~524;
    [10]Barlow, R E; Proschan, F. Mathematical Theory of Reliability[M]. New York: John Wiley and Sons, 1965;
    [11]Dekker, R. Applications of maintenance optimization models: a review and analysis[J]. Reliability Engineering and System Safety, 1996, 51(3): 229~240;
    [12]Dekker, R; Scarf P A. On the impact of optimisation models in maintenance decision making: the state of the art[J]. Reliability Engineering and System Safety, 1998, 60(2): 111~119;
    [13]邓肯(著), 王梓坤(译). 马尔科夫过程论基础[M]. 北京: 科学出版社, 1962;
    [14]Jiang, Y; Saito M; Sinha K C. Bridge performance prediction model using Markov chain[R]. Transp. Res. Rec. 1180, Transportation Research Board, Washington DC, 1989: 25~32;
    [15]Madanat, S M; Mishalani R; Wan Ibrahim W H. Estimation of infrastructure transition probabilities from condition rating data[J]. Journal of Infrastructure Systems, ASCE, 1995, 1(2);
    [16]Madanat, S M; Karlaftis M G; Mcarthy P S. Probabilistic infrastructure deterioration models with panel data[J]. Journal of Infrastructure Systems, ASCE, Vol. 3, No. 1, Mar. 1995;
    [17]Guignier, F; Madanat S M. Optimization of infrastructure systems maintenance and improvement policies[J]. Journal of Infrastructure Systems, ASCE, 1999, 5(4);
    [18]Limnios, Nikolaos. Dependability analysis of semi-Markov systems[J]. Reliability Engineering and System Safety, 1997, 55(3): 203~207;
    [19]Lawless, J F. Statistical models and methods for lifetime data[R]. John Wiley and Sons, 1982;
    [20]Newby, M; Dagg R. Optimal inspection policies in the presence of covariates[A]. In Proceedings of the European Safety and Reliability Conference[C]. Lyon, France, 2002;
    [21]Van Noortwijk, J M. Optimal replacement decisions for structures under stochastic deterioration[A]. In A.S. Nowak, editor, Proceedings of the Eighth IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems[C]. Kraków, Poland, 1998, University of Michigan, Ann Arbor, 1998: 273~280;
    [22]Frangopol, D M; Kong J S; Gharaibeh E S. Reliability-based life-cycle management of highway bridges[J]. Journal of Computing in Civil Engineering, ASCE, 2001, 15(1): 27~34;
    [23]Jiang, Y; Saito M; Sinha K C. Bridge performance prediction model using Markov chain[R]. Transp. Res. Rec. 1180, Transportation Research Board, Washington DC, 1989: 25~32;
    [24]ISO/CD 16686-1, Buildings: Service life planning, part 1–general principles[S]. ISO/TC59/SC3, 1997;
    [25]Misra, K B. Reliability analysis and prediction[M]. Elsevier Science Publishers, 1992;
    [26]Rodriguez 111, E. S, Provan, J. W. Development of a general failure control system for estimating the reliability of deteriorating structures[J]. Corrosion, 1989, 45(3): 193~206;
    [27]Shibata T. Statistical and stochastic approaches to localized corrosion[J]. Corrosion, 1996, 52(11): 813~830;
    [28]Bogdano J L; Kozin F. Probabilistic models of cumulative damage[M]. New York: John Wiley and Sons, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700