用户名: 密码: 验证码:
挟沙水流数值模拟中若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对挟沙水流数值模拟发展过程中遇到的若干关键性技术难题,论文采用理论分析和数值计算相结合的方法对多沙河流水深平均的平面二维数学模型和三维水流泥沙数值模拟进行了研究,主要内容如下:
     (1)综述了河道泥沙运动规律和数学模型的发展概况,指出泥沙数学模型发展中遇到的技术难点及其解决方法。
     (2)通过多次人工神经网络训练发现:当多沙流体宾汉剪应力大于或小于某一数值组次的资料占训练总数的绝大多数时,这些组次训练结果与实测值符合较好;而另外组次的符合程度很差。这说明流体流变特性转变时对应的宾汉剪应力有一个临界值,对电木粉高含量的流体该临界值约为3.2×10~(-1)Pa。
     (3)对37组包括高、中、低含沙水流的水槽试验挟沙力资料进行神经网络训练,发现高、中、低含沙水流的挟沙规律有类似之处,可用同一个公式来表达;对计算挟沙力的多家公式进行比较后在数学模型中推荐采用窦国仁公式,并论证了在数值模拟中使用该公式是很方便的。
     (4)基于冲淤基本平衡河流的河床形态与来水来沙之间应满足河相关系的规律,提出一种新的多沙河流断面概化模式,以宽水槽试验资料和黄河支流实测水文资料验证了其正确性,并以实例说明了该方法在数学模型中的应用过程。
     (5)建立多沙河流水深平均的平面二维泥沙数学模型,将水沙耦合求解以适应多沙河流特殊的演变规律;给出了计算时段应满足的关系式;提出在判断数学模型收敛特性时,除了满足流场收敛外,还应满足含沙量场和挟沙力场均稳定的条件;计算得出了恢复饱和系数随着水库淤积的发展呈减小趋势的结论,与前人的经验公式比较吻合;前文的理论分析成果在模型中得到应用。计算得到的黄河小浪底坝区河床演变过程基本上能反映物理模型实测地形的变化,说明所建立的数模能够对多沙河流进行较好的模拟。
     (6)采用有限体积法对三维水流泥沙的控制方程和相应的边界条件进行了数值离散,给出了离散过程、离散结果以及求解的方法和步骤;对近底浓度、推移质与悬移质的交换进行了分析,为下文的数值计算提供基础和背景。
     (7)分析了SIMPLE格式计算时引起发散的几个原因,提出采用异步修正方法来避免迭代过程的发散,说明了采用该方法的步骤;对异步修正在数学上的解释和物理意义作了简要说明,以计算实际例论证了该方法能避免迭代发散。
     (8)说明了现有计算自由水面方法存在的问题,指出:由于已将压力分解为静水压力与动水压力之和,在计算自由水面时也应考虑动水压力水深平均值梯度的影响,给出了计算步骤,并推导了计算近底平均流速的关系式。通过对水槽试验计算结果表明了考虑动水压力梯度项的合理性。
     (9)采用建立的三维水流数学模型,对明渠水流、复式断面水流、挖入式港池内水流特性进行了计算,得到的水流流态与理论分析或实测资料比较符合,表明了该模型正确性;将Schmidt数取为0.8,分别计算了纯冲刷、纯淤积水槽沿程泥沙浓度变化,与实测资料比较接近,表明了泥沙计算模块的有效性。
In this dissertation, theoretical and numerical analysis have been carried out in the research on the depth-integrated 2-dimensional hyperconcentration river and 3-dimensional flow and sediment mathematical models. The main contents are summarized as following:(1) Advancements of the basic theory on river dynamics and sediment mathematical model are summarized. Technical difficulties of the mathematical model are pointed out as well as the solutions are proposed.(2) Data of Bingham shear stress of hyperconcentration flow have been used for training for several times by artificial neural net. The result shows that if in most runs the Bingham shear stress of the hyperconcentration flow is greater or less than a critical value, the training results accord well with the measured data, while others do not. Several training tests give nearly the same results. It can be deduced that there indeed exists a critical value of Bingham shear stress, and when the shear stress exceeds this critical value, flow performs as Bingham fluid. For flow with a hyperconcentration of powdered phenolic, this critical value is about 3.2 x 10-1 Pa.(3) 37 runs flume data of suspend sediment capacity containing hyperconcentration flow and middle concentration flow and lower concentration flow are trained by artificial neural net. All of the results showed much consistency with the measuring data. It is suggested that hyperconcentration flow and lower concentration flow may be expressed in a general suspend sediment capacity formula. Several formulas are compared and Dou Guoren's formula is verified most correctness and recommended in mathematical model.(4) Based on the fact that there exists an essential relationship between river morphology and the just upper stream discharge and sediment quantities when a dynamic equilibrium state is reached , that is, river regime, a postulate is put forward for hyperconcentration flow to generalize the river morphology. This postulate agrees well with both the flume data and the field data on a branch of the Yellow River. An example is also given to demonstrate its application in numerical simulation.(5) A depth-integrated 2-dimensional mathematical model for hyperconcentration sediment river is established in which coupling flow-sediment field is adopted. The relationship of the time step versus the space step is also presented. On the constringency condition, the author suggested that it should include both flow field constringency and sediment field constringency, while the latter requires the stability of sediment capacity. The calculation of this paper shows that primary recovery coefficient may reduce while the water depth of the river decreasing during the reservoir filling up, which keeps consistency with the existed experiential formulas. The theoretical results are also applied in the model. The measured data on the physical model of the Xiaolangdi reservoir verified the model well. After some simplifications the model can be popularized to apply on clear or lower sediment concentration river simulation.(6) The finite volume method (FVM) is adopted to solve the 3-D governing
    
    equations as well as their boundary conditions in the mathematical model. A 3-d suspended sediment module is accomplished on the former work. The boundary conditions such as inlet and outlet conditions, the sediment concentration near the bottom, the interaction between the suspended load and the bedload are also discussed.(7) Several reasons for iteration dissipation in SIMPLE algorithm are analyzed, and a method called unconventionality step correction is presented to solve this problem. Also its advantages and application steps have been presented. It's mathematical basis and physical nature are also discussed.(8) Some disadvantages of the present free water surface computation method are discussed. The paper demonstrated that the gradient of depth-averaged dynamic pressure should be brought into consideration in dealing with the free water surface, because t
引文
[1] 中国水利学会泥沙专业委员会,泥沙手册,北京:中国环境科学出版社,1992年。
    [2] 高俊才,水利建设可持续发展,水利水电科技进展,23(2),2003:6-10。
    [3] 水利水电科技进展编辑部等,’98抗洪纵横谈(一),水利水电科技进展,18(6),1998:8-16。
    [4] Chang H.H., Fluvial processes in river engineering, New York: John Wiley & Sons,1988.
    [5] 张瑞瑾、谢鉴衡、王明甫、等,河流泥沙动力学,北京:水利电力出版社,1989。
    [6] 韩其为、何明民,泥沙运动统计理论,北京:科学出版社,1984年3月。
    [7] 陆永军,航道工程泥沙数学模型研究与应用,南京:河海大学博士学位论文,1998年6月。
    [8] 王兆印、宋振琪,欧美泥沙运动研究述评,第二届全国泥沙基本理论研究学术讨论会论文集,北京:建材工业出版社,1995:3-27。
    [9] 王光谦,中国泥沙研究述评,水科学进展,10(3),1999:337-344。
    [10] 张红武,河工动床模型相似率研究进展,水科学进展,12(2),2001:256-263。
    [11] 周志德,20世纪的泥沙运动力学,水利学报,2002(11):74-77。
    [12] Barenblatt G.I., Scaling laws for fully developed turbulent shear flows, part Ⅰ, basic hypotheses and analysis, J. of Fluid Mech., Vol. 248,1993: 513-520.
    [13] 肖勇、金忠青,固壁紊流流速分布指数型公式和阻力规律(Ⅰ)——粗糙区,水科学进展,8(2),1997:148-153。
    [14] 肖勇、金忠青,固壁紊流流速分布指数型公式和阻力规律(Ⅱ)——过渡区,水科学进展,10(1),1999:64-68。
    [15] Martin W., Lucian, C., William K. G., A theory for turbulent pipe and channel flows, J. of Fluid Mech., Vol 421,2000:115-145,
    [16] Vito F., Giorgio B., Flow velocity profiles in gravel-bed rivers, J. of Hydraulic Engineering, 120(1),1994: 60-80.
    [17] Guo J. , Julien P. Y., Turbulent velocity profiles in sediment-laden flows, J. of Hydraulic Research, 39(1),2001: 11-24.
    [18] Iehisa N. , Akihiro, Hiroji N., Turbulent structure in unsteady depth-varing open-channel flow, J. of Hydraulic Engineering, 123(9),1997: 762-763.
    [19] Song T., Chiew Y. M., Setting characteristic of sediments in moving Bingham fluid, J. of Hydraulic Engineering, 123(9), 1997: 812-815.
    [20] Muste M., Patel V.C., Velocity profiles for particles and liquid in open-channel flow with suspended sediment, J. of Hydraulic Engineering, 123(9), 1997: 742-751.
    [21] Jim B., Seam B., John B., et al, Turbulence modulation and particle velocities over flat sand and low transport rates, J. of Hydraulic Engineering, 123(12), 1997: 1118-1129.
    [22] Ca, Z., Zhang X., Xi H., Turbulent bursting-based diffusion model for suspended sediment in open channel flows, J. of Hydraulic Research, 34(4), 1996: 457-472.
    [23] Vladimin N., Derek G., Flow turbulence over fixed and weakly mobile gravel beds, J. of Hydraulic Engineering, 126(9),2000: 679-690.
    [24] Gyr A., Schmid A., Turbulent flows over smooth erodible sand beds in flumes, J. of Hydraulic Research, 35(4),1997: 525-544.
    [25] Karniadakis G.E., Choi K. S., Mechanisms on transverse motions in turbulent wall, Annual Review of Fluid Mechanics, vol. 35, 2003: 45-62.
    [2
    
    [26] 王光谦、张仁、惠遇甲、等,清华大学泥沙研究回顾,泥沙研究,1999(6):21-25.
    [27] 汤立群、唐洪武、陈国祥,河海大学泥沙研究进展及成果综述,泥沙研究,1999(6):29-32.
    [28] 余明辉、杨国录、刘高峰、等,非均匀水流挟沙力公式的初步研究,泥沙研究,2001(3):25-29。
    [29] Joseph E A., Athol D. A., Chitra K., et al, Shear stress partitioning and sediment transport by over/and flow, J. of Hydraulic Research, 38(1), 2000: 37-40.
    [30] 王国兵,水流挟沙能力的探讨,南京:南京水利科学研究院河港研究所,1997年。
    [31] 王士强、陈骥、惠遇甲,明槽水流的非均匀挟沙力研究,水利学报,1998(5):1-9。
    [32] Wu W. , Sam S. Y. W. , Jia Y. , Nonuniform sediment transport in alluvial rivers, J. of Hydraulic Research, 38(6), 2000: 427-434.
    [33] Patel P.L, .Ranga K.G, Fraetionwise calculation of bed load transport, J. of Hydraulic Research, 34(3), 1996: 363-379.
    [34] 左东启,中国水问题的思考,南京:河海大学出版社,2000年5月。
    [35] Pierre Y. J., Jayamurni W. , Alluvial channel geometry: theory and applications, J. of Hydraulic Engineering, 121(4), 1995: 312-325.
    [36] Hagerty D.J., Spoor M.E, Parola A.C., Near-bank impacts of river stage control, J. of Hydraulic Engineering, 121(2), 1995: 196-209.
    [37] Albert R., Aldule G., The hydraulic of sand streambeds under steady flow conditions, J. of Hydraulic Research, 38(1), 2000: 27-36.
    [38] 夏军强、王光谦、张红武、等,河道横向展宽机理与模拟方法的研究综述,泥沙研究,2001(6):71-78。
    [39] 王新宏,冲积河道纵向冲淤和横向变形数值模拟研究及应用,西安:西安理工大学博士学位论文,2000年。
    [40] Robert G. M., Grain and form resistance in gravel-bed rivers, J. of Hydraulic Research, 37(3), 1999: 303-312.
    [41] Cellino M., Graf W. H., Experiments on suspension flow in open channels with bed forms, J. of Hydraulic Research, 38(4), 2000: 289-298.
    [42] Sieben J., A theoretical analysis.on armouring of river beds, J. of Hydraulic Research, 37(3), 1999: 313-326.
    [43] Wang Z., Experimental study on scour and river bed inertia, J. of Hydraulic Research, 37(1), 1999: 17-37.
    [44] Myer W. R. C, Brennan E.K., Flow resistance in compound channels, J. of Hydraulic Research, 28(2), 1990: 141-153.
    [45] Lin B., Shiono K., Numerical modeling of solute transport in compound channel flows, J. of Hydraulic Research, 33(6), 1995: 773-788.
    [46] Thomas T.G., Williams J.J.R., Large eddy simulation of a symmetric trapezoidal channel at a Reynolds number of 430,000, J. of Hydraulic Research, 33(1), 1995: 825-842.
    [47] 周宜林,滩槽水流流速横向分布的研究,武汉水利电力大学学报,1994(6):678-684。
    [48] 张幸农、陈长英,冲积河流复式断面形态及行洪能力的研究,南京:南京水利科学研究院河港研究所,2002年1月。
    [49] Wren D. G., Barkdoll B. D., Kuhnle R. A., et al, Field techniques for suspend-sediment measurement, J. of Hydraulic Engineering, 126(2), 2000: 97-104.
    
    [50] Ulrich L. , Thierry R. , Acoustic velocity profiler for laboratory and field studies, J. of Hydraulic Engineering, 123(12), 1997: 1089-1098.
    [51] Song T., Chiew Y. M., Turbulence measurement in nonuniform open-channel flow using Acoustic Doppler Velocimeter, J. of Hydraulic Engineering, 127(3),2001: 219-232.
    [52] Kim S.C., Friedrich C. T., Maa J.P.Y., et al, Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data, J. of Hydraulic Engineering, 126(5),2000:399-406.
    [53] Akihtro K. , Lehisa N. , Three-dimensional structure of space-time correlation on coherent vortices generated behind dune crest, J. of Hydraulic Research, 37(1),1999: 59-80.
    [54] Lee H., Chen Y. H., You J., Lin Y., Investigations of continuous bed load saltating process, J. of Hydraulic Engineering, 126(9),2000: 691-700.
    [55] 禹明忠、王兴奎、庞东明、等,PIV流场量测中图象变形的修正,泥沙研究,2001(5):59-62。
    [56] Rhodes D. G, New A. P., Preston tube measurement in low Reynolds number turbulent pipe flow, J. of Hydraulic Engineering, 126(5),2000: 407-415.
    [57] S Wu., Rajaratnam N., A simple method for measuring shear stress on rough boundaries, J. of Hydraulic Research, 38(5),2000: 399-400.
    [58] 吴中如,高新测控技术在水利水电工程中的应用,水利水运工程学报,2001(1):13-21。
    [59] 左东启、俞国青,工程水动力学研究中的合交模型,河海科技进展,12(4),1992:1-23。
    [60] Marian M. , Ehab A. M., Larry J. W. , Coupled physical-numerical analysis of flows in natural waterways, J. of Hydraulic Research, 39(1),2001: 51-60.
    [61] 王协康、方铎、姚令侃,非均匀沙床面粗糙度的分形特征,水利学报,1999(7),70-74。
    [62] Yang C.T. , Variational theories in hydrodynamics and hydraulics, J. of Hydraulic Engineering, 120(6), 1994: 737-756.
    [63] Deng Z., Vijay P. S. , Mechanism and conditions for change in channel pattern, J. of Hydraulic Research, 37(4), 1999: 465-478.
    [64] Cao S., Donald W. K., Entropy-based design approach of threshold alluvial channels, J. of Hydraulic Research, 35(4), 1997: 505-524.
    [65] Jahangir M. , Jagath J. K. , Application of artifical neural network and genetic algorithm in flow and transport simulations, Advances in Water Resources, 22(2),1998: 145-158.
    [66] Yonas B. D. , Dimitri S. , Michael B. A. , On the encapsulation of numerical-hydraulic models in artifical neural network, J. of Hydraulic Research,37(2),1999: 189-198.
    [67] Nagy H. M., Watanabe K., Hirano M., Prediction of sediment load concentration in rivers using artificial neural network model, J. of Hydraulic Engineering,128(6), 2002: 588-595.
    [68] 张小峰、许全喜、谈广鸣、等,河道岸线变形的神经网络预测模型,泥沙研究,2001(5):19-26。
    [69] 李义天、李荣,具有河网水沙运动特点的人工神经网络模型,水利学报,2001(11):1-7。
    [70] 杨国录,河流数学模型,北京:海洋出版社,1993年10月。
    [71] 谢鉴衡、魏良琰,河流泥沙模型的回顾与展望,泥沙研究,1987(3):1-13。
    [72] 陈国祥、郁伟族,冲积河流数学模拟的进展,河海大学科技情报,9(3),1989:50-63。
    [73] 陈国祥、陈界仁、沙捞·巴里,三维泥沙数学模型的研究进展,水利水电科技进展,1998 (1):13-19。
    [74] Chen C., Shen Q., Fundamentals of turbulence modeling,Taylor & Francis, Washington D.C., 1998。
    [7
    
    [75] 金忠青,N-S方程的数值解和紊流模型,南京:河海大学出版社,1989。
    [76] Thin H. , Bruno T., Pierre S., et al, A navier-stokes solver for direct numerical simulation of incompressible flows, International J. for Numerical Methods in Fluids, 24(9), 1997:833-861.
    [77] Maurizio Q., Stefano S., Numerical simulation of turbulent flow in a pipe oscillating around its axis, J. of Fluid Mech., vol. 424,2000:217-241.
    [78] Li C., Mosyak A., Hetsroni G., Direct numerical simulation of particle-turbulence interaction, Interational J. of Multiphase Flow, vol. 25, 1999: 187-200.
    [79] Rogallo R. S. ,Moin P., Numerical simulation of turbulent flows, Annual Review of Fluid Mechanics, Vol.16, 1984: 99-137.
    [80] Bradbrook K. E, Lane S. N., Richards K. S., et al, Large eddy simulation of periodic characteristics at river channel confluences, J. of Hydraulic Research, 38(3), 2000:207-215.
    [81] Meselhe E. A., Sotiropoulos E, Three-dimensional numerical model for open-channels with free-surface, J. of Hydraulic Research, 38(2),2000:115-121.
    [82] Botella O., Peyret R., Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method, Intemational J. for Numerical Methods in Fluids, 36(2), 2001:125-163.
    [83] Matja R. , Leopold K. , Mixed boundary elements for laminar flows, International J. for Numerical Methods in Fluids, 31(5), 1999: 861-877.
    [84] 陈景仁,湍流模型及有限分析法,上海:上海交通大学出版社,1989。
    [85] Chen S. , Gary D. D., Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics, vol. 30, 1998: 329-364.
    [86] 董壮,三维水流数值模拟研究进展,水利水运工程学报,2002(3):66-73。
    [87] Tseng M. H., Chu C. R. , Two-dimensional shallow water flows simulation using TVD-MacCormack scheme, J. of Hydraulic Research, 38(2),2000:123-131.
    [88] 吴时强,剖开算子法解三维粘性流动问题的研究,南京:南京水利科学研究院博士学位论文,2001年7月。
    [89] 张红武、黄远东、赵连军、等,黄河下游非恒定输沙数学模型——Ⅰ模型方程与数值方法,水科学进展,13(3),2002:265-270.
    [90] 张红武、黄远东、赵连军、等,黄河下游非恒定输沙数学模型——Ⅱ模型验证,水科学进展,13(3),2002:271-277.
    [91] 陈界仁,高含沙水流立面二维数学模型,河海大学学报,22(4),1994:101-104。
    [92] 曹志先,水沙二相流立面二维数学模型及数值法研究,武汉:武汉水利电力学院博士学位论文,1991年。
    [93] 万洪涛、周成虎、吴应湘、等,黄河下游花园口~夹河滩河段二维洪水模型,水科学进展,13(2),2002:215-222.
    [94] O'Brien J.S., Julien P.Y., Fullerton R.C., Two-dimensional water flood and mudflow simulation, J. of Hydraulic Engineering, 119(2),1993: 244-261.
    [95] 张世奇,黄河下游游荡型河段的平面二维冲淤计算研究,泥沙研究,1994(1):53-63。
    [96] 于清来、窦国仁,高含沙河流泥沙数学模型研究,水利水运科学研究,1999(2):107-115。
    [97] 张红艺、杨明、张俊华、等,高含沙水库泥沙运动数学模型的研究及应用,水利学报,2002(11):20-25。
    [99] Fang H. W., Wang G. Q. , Three-dimensional mathematical model of suspend-sediment transport, J. of Hydraulic Engineering, 126(8), 2000:578-592.
    
    [99] 刘金梅、王士强、王光谦,河流冲刷过程中表层床沙粗化对不平衡输沙的影响,水科学进展,11 (3),2000:229-234。
    [100] 张红武、江恩惠、刘月兰、等,黄河河道数学模型的研究,第二届全国泥沙基本理论研究学术讨论会论文集,北京:建材工业出版社,1995:459-464。
    [101] Nils R.B.O. , Hilde M. K. , Three-dimensional numerical modeling for estimation of maximum local scour depth, J. of Hydraulic Research, 36(4),1998:579-590.
    [102] Nils R.B.O. , Hilde M. K. , Three-dimensional numerical modeling of bed changes in a sand trap, J. of Hydraulic Research, 37(2),1999: 189-198.
    [103] Jia Y., Tadanori K., Sam S. Y. W., Simulation of scour process in plunging poor of loose bed-material, J. of Hydraulic Engineering, 127(3),2001: 219-230.
    [104] Sanjiv K. S., Foils S., Jacob O. A., Three-dimensional numerical model for flow through natural rivers, J. of Hydraulic Engineering, 124(1),1998:13 -24.
    [105] Kamil H.M.A. , Othman K. , Simulation of flow around piers, J. of Hydraulic Research, 40(2),2002: 161-174.
    [106] Emily A. Z. , Robert L. S. , Large-eddy simulation of sediment transport :current over ripples, J. of Hydraulic Engineering, 127(6),2001 : 444-453.
    [107] Li C. W., 3D simulation of deposiilon patterns due to sand disposal in flowing water, J. of Hydraulic Engineering, 127(3),2001: 209-218.
    [108] Wu W., Rodi W., Thomas W., 3D numerical modeling of flow and sediment transport in open channels, J. of Hydraulic Engineering, 126(1),2000:4-15.
    [109] 陆永军,三维紊流泥沙数学模型及其应用,南京:南京水利科学研究院博士后研究报告,2002年8月。
    [110] 夏云峰,感潮河道三维水流泥沙数值模型研究与应用,南京:河海大学博士学位论文,2002年4月。
    [111] 马福喜、李志伟,水中抛沙床面三维淤积形态研究,水利学报,2001 (10):72-77。
    [112] 张华庆,河道及河口海岸水流泥沙数学模型研究与应用,南京:河海大学博士学位论文,1998年8月。
    [113] 潘庆桑、杨国录、府仁寿,三峡工程泥沙问题研究,北京:中国水利水电出版社,1999年4月。
    [114] 闻新、周露、王丹力、等,MATLAB神经网络应用设计,北京:科学出版社,2000。
    [115] Minns A.W., Analysis of Experimental Data Using Artificial Neural, 26th IAHR Congress, London,1995: 218-223.
    [116] Trent R., Moninas A., Gagarin N., An artificial neural network for computing sediment transport, Proceedings of the 1993 National Conference of Hydraulic Engineering, ASCE, California, 1993,Vol.1 : 1049-1054.
    [117] 窦国仁、王国兵、王向明、等,黄河小浪底枢纽泥沙研究(报告汇编),南京:南京水利科学研究院,1993年。
    [118] Wang Z. , Peter L. , Wei X. , Rheological properties of sediment suspensions and their implications, J. of Hydraulic Research, Vol.32(4), 1994: 495-516.
    [119] Julien P. Y., Lan Y., Rheology of hyperconcentrations, J. of Hydraulic Engineering, Vol.117(3), 1991: 346-353.
    [120] Major J.J., Pierson T.C., Debris flow rheology: Experimental analysis of fine-grained slurries, Water Resources Research, Vol. 28(3), 1992: 841-857.
    [121] 舒安平,水流挟沙力公式的验证与评述,人民黄河,1993(1):7-9。
    
    [122] 黄才安,冲积河流泥沙运动基本规律的研究,南京:河海大学博士学位论文,2004年3月。
    [123] 张红武、张清,黄河水流挟沙力的计算公式,人民黄河,1992(11):7-9。
    [124] 李昌华,明渠水流挟沙能力初步研究,水利水运科学研究,1980(3):76-83。
    [125] 刘继祥、安新代、石春先、等,小浪底水库初期防洪减淤运用关键技术研究,郑州:黄河水利委员会勘测规划设计研究院,2002年10月。
    [126] 韦直林、谢鉴衡,黄河一维泥沙数学模型研究,武汉:武汉水利电力大学河流模拟教研室,1993。
    [127] 惠遇甲,黄河小浪底水库修建后下游河道的断面河相关系,第二届全国泥沙基本理论研究学术讨论会论文集,北京:建材工业出版社,1995:449-458。
    [128] 张仁、谢树楠、宋根培、等,黄河下游河相关系,黄河流域环境演变与水沙运动规律研究文集,第三集,北京:地质出版社,1992:104-111。
    [129] 徐士良,FORTRAN常用算法程序集(第2版),北京:清华大学出版社,1995。
    [130] 王国兵、于为信、王向明、等,河床形态的试验研究,南京:南京水利科学研究院河港研究所,1994。
    [131] 陈雄波、王国兵,高含沙河流河床形态的研究,水利水运科学研究,1998(1):82-89。
    [132] 汪德爟,计算水力学理论与应用,南京:河海大学出版社,1989年。
    [133] Rodi W., Turbulence models and their application in hydraulics, IAHR,1980.
    [134] 钱宁,高含沙水流运动,北京:清华大学出版社,1989。
    [135] 夏云峰、陈雄波,挖入式港池回流概化模型试验及数值模拟,南京:南京水利科学研究院,1999年。
    [136] 陈雄波、邓柳言、孔凡哲、等,邕宁邕江铁路大桥对行洪影响的分析,南京:河海大学,2002年12月。
    [137] 叶坚、单芳芳,水电站坝区的水沙数学模型,南京:南京水利科学研究院河港研究所,1994。
    [138] 南京水利科学研究所,1958~1962年研究报告汇编(河港分册),南京:南京水利科学研究所,1962。
    [139] http://www.aos.princeton.edu/wwwpublic/htdocs.pom/
    [140] Van R. L.C., Mathematics modeling of suspended sediment in non-uniform flows, J. of Hydraulic Engineering, Vol. 112(6), 1986: 435-455.
    [141] Celik I., Rodi W., Modeling suspended sediment transport in non-equilibrium situations, J. of Hydraulic Engineering, Vol. 114(8), 1988: 1157-1191.
    [142] Sylvain O., Bnoit et al, Modeling non-cohesive suspended sediment transport in 2-D vertical free surface flows, J. of Hydraulic Research, Vol.34(2),1996: 219-236.
    [143] Van R. L.C., Sediment transport, Part Ⅲ: Bed forms and alluvial roughness, J.of Hydraulic Engineering,Vol.110(12),1984: 1733-1754.
    [144] 陶文铨,数值传热学(第2版),西安:西安交通大学出版社,2001年5月。
    [145] 韩其为、何明民,论非均匀悬移质二维不平衡输沙方程及其边界条件,水利学报,1997(1):1-10。
    [146] Wang S.Y., Jia Y., Computational modeling and hydroscience research, Advances in Hydro-Science and Engineering, Proceedings of 2nd International Conference on Hydro-Science and Engineering, Tsmghua University Press,1995: 2147-2157.
    [147] 谭维炎,计算浅水动力学,北京:清华大学出版社,1998年。
    [148] 陶文铨,计算传热学的近代进展,北京:科学出版社,2000年6月。
    
    [149] Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington D.C., 1980.
    [150] 姚爱峰,开敞水域挖槽水流数值模拟,南京:河海大学硕士学位论文,1997年。
    [151] 刘超群,多重网格及其在计算流体力学中的应用,北京:清华大学出版社,1997。
    [152] 周思平,三维含自由水面紊流流动的数值模拟——HH-SIMPLE方法,南京:河海大学博士论文,1989年。
    [153] Coleman N. L., Velocity profiles with suspended sediment, J. of Hydraulic Research,Vol.19(3), 1981: 211-229.
    [154] 张远军,流体力学大全,北京:北京航空航天大学出版社,1991年5月。
    [155] Naot D., Rodi W., Calculation of secondary currents m channel flow, J. of the Hydraulics Division,ASCE,Vol. 108(8), 1982: 948-969.
    [156] Speziale C. G., On non-linear k-λ and k-ε model of turbulence, J. of Fluid Mechanics, Vol. 178, 1987: 459-475.
    [157] Akihiro T., Iehisa N., Turbulent structure in compound open channel flows, J. of Hydraulic Engineering, Vol. 117(1), 1991: 21-41.
    [158] 刘青泉,盲肠河段回流区及主回流过渡区的水沙运动规律,武汉:武汉水利电力大学博士论文,1993年4月。
    [159] 陈雄波、唐洪武,潮汐河段挖入式港池淤积的动力机制分析,水运工程,2002(11):6-9。
    [160] Wang Z.B., Ribberink J.S., The validity of a depth-integrated model for suspended sediment transport, J. of Hydraulic Research, Vol.24(1),1986: 53-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700