用户名: 密码: 验证码:
波—流共同作用下长江口二维悬沙数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了一个用于波—流共同作用下长江口平面二维悬沙计算的数值模型系统,主要由四部分组成,即考虑风、浪、潮、径流的二维复合流场模型、SWAN海浪模型、波—流相互作用的底边界层模型以及二维悬沙输运模型。采用三个不同大小的区域进行嵌套计算,三个计算区域分别为东中国海区域、长江口杭州湾区域和长江口区域。
     模型系统采用广义曲线坐标系下的形式,使用高精度的自适应网格拟合复杂岸界。复合流场学模型中考虑了波浪辐射应力的作用,底摩擦由波—流相互作用边界层模型提供。为了较高精度的模拟天文潮,在开边界加上了七个主要分潮。台风天气下,在东中国海区域计算由风产生的水位变化,插值到长江口杭州湾区域的外海开边界上作为余水位,这样就同时考虑了局地风和非局地风的影响。
     悬沙输运模型利用切应力方法来确定对流扩散方程中的泥沙源函数,其中的临界起动速度利用经典的泥沙起动流速公式前面增加一个局地系数得到,这个系数能反映河床底质结构及固结程度,通过系列数值试验和实测资料的统计分析确定。计算中的底部剪切应力由波流边界层模型给出波—流共同作用下的形式。泥沙颗粒絮凝沉降速度考虑了流速、盐度、含沙浓度的影响。
     将模型系统应用到长江口区域,经过了大量的实测资料的验证。其中复合流场模型中的天文潮利用众多测站的实测调和常数进行验证;波浪模型首先进行了水槽实验的检验,然后在台风过程中,进行了测站有效波高过程线的比较。复合流场模型的水位过程、流速过程,以及悬沙模型的含沙量过程则经过了洪、枯季及大、中、小潮的多个站点的实测过程验证。分析流场、波浪场以及正常和台风天气下的悬沙场的计算结果,表明该模型系统能合理地反映长江河口区域的水动力场和泥沙场的分布。
In order to calculate depth-averaged two-dimensional (2-D) suspended sediment transport under waves and currents in the Yangtze Estuary, a numerical model system is developed. Four models, a 2-D compound fluid model including wind, waves, tides and river runoff, a SWAN wave model, a wave-current bottom boundary layer model and a 2-D suspended sediment transport model are integrated. Three different calculating regions, East China Sea region, Yangtze Estuary and Hangzhou Bay region and Yangtze Estuary region, are defined for nesting computation.
    The model system is in the generalized curvilinear coordinates, using high precision self-adaptive grids to fit the complicated topographies and coastal shapes. The effect of wave radiation stress is considered in the compound fluid model. The value of bottom friction is offered by the wave-current bottom boundary layer model. Seven main constituents are added to the open boundaries for perfectly simulating astronomical tides. Under the typhoon weather, residual elevations at the open boundaries of the Yangtze Estuary and Hangzhou Bay region can be obtained by interpolating from the elevation varieties induced by wind in the East China Sea region. In this way, the local wind and the non-local wind can be taken into account simultaneously.
    In the suspended sediment transport model, the method of shear stress is adopted to determine the source function in the suspended sediment diffusion equation. Through a series numerical experiments and statistical analyses of observed field data, a local coefficient, which can reflect the bottom material and consolidation, is introduced into the classic critical erosion velocity of the sediment. In calculation, the bottom shear stress under the effect of waves and currents is supplied by the wave-current bottom boundary layer model. The floe settling velocity of sediment particles is taken as the function of current velocity, salinity and suspended sediment concentration.
    The model system is verified by lots of observed data when applied to the Yangtze Estuary. Observed tidal harmonic constants in many stations are used to verify the astronomical tides in the compound fluid model. The wave model is tested
    
    
    by a set of wave flume data at first. Then the results are compared by the actual processes of significant wave height in gauging stations. The processes of surface elevation, current velocity in the compound fluid model and suspended sediment concentration in the suspended sediment transport model are verified by observed data of many stations in flood/dry season and in spring/middle/neap tide. The analyses of the calculated current fields, wave fields and suspended sediment distributions under normal or typhoon weather show that the model system can preferably reflect hydrodynamic fields and sediment distributions in the Yangtze Estuary.
引文
[1] 陈吉余,胡辉,朱慧芳.21世纪长江三角洲经济区港口群建设的构想.华东师范大学学报长江口深水航道治理与港口建设专辑,1995,80-91
    [2] Dyer, K. R., 1989. Sediment processes in estuaries: future research requirements. Journal of Geophysical Research 94, 14327-14339
    [3] 钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1991,p120
    [4] Bagnold, R.A., 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Royal Soc., London, England, 225 A
    [5] Bagnold, R.A., 1956. The flow of cohesionless grain in fluids. Proc. Royal Soc., London, England, 249
    [6] Bagnold, R.A., 1973. The nature of saltation and of bed-load transport in water. Proc. Royal Soc., London, England, A 332
    [7] Einstein, H.A., 1944. Bed-load transportation in Mountain Creek. U.S. Department of Agriculture, Washington, D.C.
    [8] Einstein, H.A., 1950. The bed-load function for sediment transportation in open channel flow. United States Department of Agriculture, Washington, D.C., Technical Bulletin No. 1026, 25
    [9] Owens, P.H., 1986. Mathematical modeling of sediment transport in estuaries. Ph.D. Thesis, Department of Civil Engineering, University of Birmingham, Birmingham, 1-220
    [10] Garcia, M. & Parker, G, 1991. Entrainment of bed sediment into suspension. Journal of Hydraulic Engineering 117, 414-435
    [11] van Rijn, L.C., 1984. Sediment transport. Part Ⅱ: Suspended load transport. Journal of Hydraulic Engineering 110(11) : 1613-1641
    [12] Smith, J.D. & Mclean, S.R., 1977. Spatially averaged flow over a wavy surface. Journal of Geophysical Research 82, 1725-1746
    [13] van Rijn, L.C., 1984. Sediment transport. Part Ⅰ: Bed load transport. Journal of Hydraulic Engineering 110( 10) : 1431-1456
    [14] Falconer, R.A. & Owens, P.H.. 1990. Numerical modeling of suspended fluxes in estuarine waters. Estuarine, Coastal and Shelf Science 31, 745-762
    [15] Lin, P.N., Han, Z.C., Sun, H.B. et al, 1986. Two-D simulation of sediment transport and bed deformation by tides. Proceedings of the Third International Symposium on River Sedimentation, The University of Mississippi, U.S.A., 227-240
    
    
    [16] Galappatti, G. & Vreugdenhil, C.B., 1985. A depth-integrated model for suspended sediment transport. Journal of Hydraulic Research 23,359-375
    [17] 窦国仁,董风舞,窦希萍.河口海岸泥沙数学模型研究.中国科学(A辑),1995,25(9):995-1000
    [18] Gilbert, G.K., 1914. The transportation of debris by running water. U.S. Geol. Sur. Prof. Paper 86
    [19] Einstein, H.A., 1950. The bed-load function for sediment transportation in open channel flows. Technical Bulletin 1026, U.S. Department of Agriculture, Soil Erosion Conservation Service
    [20] 武汉水利电力学院水流挟沙力研究组.长江中下游水流挟沙力研究。泥沙研究,1959,(4)
    [21] Bagnold, R.A., 1966. An approach to the sediment transportation problem from general physics. U.S. Geol. Sur. Prof Paper 442-1
    [22] Yang, C.T., 1973. Incipient motion and sediment transport. ASCE 99 (HY10)
    [23] Yang, C.T. & Albert, M., 1992. Sediment transport and unit stream power function. ASCE 108 (HY6)
    [24] 曹文洪,舒安平.潮流和波浪作用下悬移质挟沙能力评述.泥沙研究,1999,(5):74-80
    [25] 窦国仁,董凤武,Dou,X.B.潮流和波浪的挟沙能力.科学通报,1995,40(5):443-446
    [26] 曹振轶,朱首贤,胡克林.感潮河段悬沙数学模型——以长江口为例.泥沙研究,2002,(3):64-70
    [27] Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of Hydraulic Engineering Division, ASCE 91, 105-139
    [28] Krone, R.B., 1962. Flume studies of the transport in estuarine shoaling processes. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley
    [29] 沙玉清.泥沙运动学引论.北京:中国工业出版社,1965
    [30] Shields, A., 1936. Anwendung der Ahnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, Mitt. Der Preuss. Versuchsanst. Für Wasserbau und Schiffbau, Heft 26, Berlin, Germany.
    [31] Meyer-Peter, E. & Muller, R., 1948. Formula for bed load transport. Proc. Int. Assoc., Hyd., Struct., 2nd Meeting, vol. 3, Stockholm.
    [32] Gessler, J., 1971. Critical shear stress for sediment mixture. Proc., 14th Cong., Inter. Assoc., Hyd. Res. 3, 1-8
    [33] Ackers, P. & Whim, W.R., 1973. Sediment transport: New approach and analysis. J. Hyd.,
    
    Div., ASCE, 99 (Hy11): 2041-2060
    [34] 窦国仁.泥沙起动流速.水利学报,1960,(4):44-59
    [35] 窦国仁.再论泥沙起动流速.泥沙研究,1999,(6):1-9
    [36] 武汉水利电力学院.河流动力学.北京:中国工业出版社,1960,44-60
    [37] 唐存本.论泥沙起动规律.水利学报,1963,(2):1-12
    [38] 沙玉清.泥沙运动力学引论.北京:中国工业出版社,1965,p302
    [39] 华国祥.泥沙的起动流速.成都工学院学报,1965,(1):1-12
    [40] 韩其为.泥沙起动规律及起动流速.泥沙研究,1982,(2):11-26
    [41] 钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1991,p254
    [42] Clarke, S. & Elliott, A.J., 1998. Modelling suspended sediment concentrations in the Firth of Forth. Estuarine, Coastal and Shelf Science 47, 235-250
    [43] Hsu, M.H., Kuo, A.Y., Kuo, J.T., Liu, W.C., 1999. Procedure to calibrate and verify numerical models of estuarine hydrodynamics. Journal of Hydraulic Engineering, ASCE 125, 166-182
    [44] Lin, B.N. & Falconer, R.A., 1996. Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research 34 (4): 435-456
    [45] 朱建荣,沈焕庭.长江冲淡水扩展机制.上海:华东师范大学出版社,1997,p31
    [46] van Rijn, L.C., 1989. Sediment transport by currents and waves. Report H461, Delft Hydraulics Laboratory
    [47] Bosman, J., 1982. Concentration measurements under oscillatory motion. Report M1695-Ⅱ, Delft Hydraulics, Delft, The Netherlands
    [48] van Rijn, L.C., 1987. Data base sand concentration profiles for currents and/or waves. Report M1695, Delft Hydraulics, Delft, The Netherlands
    [49] Homma, M. & Horikawa, K., 1962. Suspended sediment due to wave action. Proc. 8th Coastal Eng. Conf., Mexico
    [50] Bijker, E.W., 1971. Longshore Transport computations. Journal of Waterways, Harbour and Coastal Eng., 99, WW4
    [51] Lundgren, H., 1972. Turbulent currents in the presence of waves. Coastal Eng. Conf. Vancouver, Canada, 623-634
    [52] Swart, H., 1976. Predictive equations regarding coastal transport. Coastal Eng. Conference, Honolulu, Hawaii
    [53] Skafel, M.G. & Krishnappan, B.G., 1984. Suspended sediment distribution in wave field. Journal of Waterway, Port, Coastal and Ocean Engineering, 110 (2)
    [54] Kosyan, R.D., 1985. Vertical distribution of suspended sediment concentration seaward of
    
    the breaking zone. Coastal Engineering, 9, 171-187
    [55] Reynolds, O., 1894. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. London 186, 123-161
    [56] Keller, L.W. & Fridman, A.A., 1924. Differentialgleichungen fur die turbulente Bewegung einer kompressiblen Flussigkeit. Proceedings of the 1st International Congress on Applied Mechanics, Delft., 395-405
    [57] Kolmogorov, A.N., 1942. Equations of turbulent motion on an incompressible fluid. Izv. Akad. Nauk SSSR, Ser. Fiz. 1-2, 56-58, (English translation: Mechanical Engineering Department. Report ON/6, Imperial College, London, 1968)
    [58] Prandtl, L., 1945. Uber ein neues Formelsystem fur die ausgebildete Turbulenz. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl, 6-19
    [59] Mellor, GL. & Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics 20, 851-875
    [60] Mellor, G.L. & Herring, H.J., 1973. A survey of mean turbulent field closure models. AIAA Journal 11,590-599
    [61] Launder, B.E. and Spalding D.B., 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3, 269-289
    [62] Rodi, W., 1987. Examples of calculation methods for flow and mixing in stratified fluids. Journal of Geophysical Research 92, 5305-5328
    [63] Mellor, G.L., 1989. Retrospect on oceanic boundary layer modelling and second moment closure. In: Mutter, P. (Ed.), Parameterization of Small-Scale Processes, Proceedings of the Hawaiian "Aha Hulikoa" Winter Workshop. University of Hawaii, Honolulu, 251-272
    [64] Bijker, E.W., 1966. The increase of bed shear in a current due to wave motion. Proc. l0th Conf. Coastal Eng., ASCE 1, 746-765
    [65] Swart, D.H., 1974. Off shore sedment transport and equilibrium beach profiles. Publication 131, Delft Hydraulics Laboratory
    [66] Jonsson, I.G., 1966. Wave boundary layers and friction factors. Proc. 10th Int. Conf. Coastal Engineering, ASCE, 127-148
    [67] O'Connor B.A. & Yoo, D., 1988. Mean bed friction of combined wave/current flow. Coastal Engineering 12,1-21
    [68] Malarkey, J. & Davies, A.G., 1998. Modelling wave-current interactions in rough turbulent bottom boundary layers. Ocean Engineering 25(2-3) : 119-141
    [69] Grant, W.D. & Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research 84 (C4) : 1797-1808
    
    
    [70] Christoffersen, J.B. & Jonsson, I.G., 1985. Bed friction and dissipation in a combined current and wave motion. Ocean Engineering 12 (5) : 387-423.
    [71] Myrhaug, D. & Slaattelid, O.H., 1990. A rational approach to wave-current friction coefficients for rough, smooth and transitional turbulent flow. Coastal Engineering 14, 265-293
    [72] Soulsby, R.L., Hamm, L., Klopman, G, Myrhaug, D., Simons, R.R. and Thomas, GR, 1993. Wave-current interaction within and outside the bottom boundary layer. Coastal Engineering 21,41-69
    [73] Davies, A.G., 1990. A model of the vertical structure of the wave and current bottom boundary layer. In Modelling Marine Systems, ed. A.M. Davies, vol. 2, 263-297. CRC Press, Boca Raton, FL
    [74] Huynh-Thanh, S. & Temperville, A., 1991. A numerical model of the rough turbulent boundary layer in combined wave and current interaction. In Proceedings of EUROMECH 262-Sand Transport in Rivers, Estuaries and the Sea, ed. R.L. Soulsby and R. Bettess, 93-100, Balkema, Rotterdam
    [75] Freds0e, J., 1984. Turbulent boundary layer in wave-current motion. Journal of Hydraulic Engineering 110, 1103-1120
    [76] Yoon, S.B. & Liu, P.L.F., 1989. Interaction of currents and weakly nonlinear water waves in shallow water. Journal of Fluid Mechanics 205, 397-419
    [77] Pruser, H.H. & Zielke, W., 1990. Irregular waves on a current. In: Proc. 22nd Int. Conf. Coastal Eng., vol. 1, Delft, The Netherlands and ASCE, New York, 1088-1101
    [78] Chen, Q., Madsen, P.A., Schaffer, H.A. and Basco D.R., 1998. Wave-current interaction based on an enhanced Boussineaq approach. Coastal Engineering 33, 11-39
    [79] Grant, W.D. & Madson, O.S., 1986. The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech 18, 265-305
    [80] Davies, A.M. and Lawrence, J., 1995. Modelling the effect of wave-current interaction on the three-dimensional wind-driven circulation of the eastern Irish Sea. Journal of Physical Oceanography 25, 29-45
    [81] Grant, W.D., Williams, A.J. and Glenn, S.M., 1984. Bottom stress estimates and their prediction on the Northern California Continental Shelf during CODE-1: The importance of wave-current interaction. Journal of Physical Oceanography 14, 505-527
    [82] Brink, K.H., Chapman, D.C., Halliwell, Jr., 1987. A stochastic model for wind-driven currents over the continental shelf. Journal of Geophysical Research 92, 1783-1797
    [83] Odd, N.V.M. & Owen, M.W., 1972. A two-layer model of mud transport in the Thames
    
    Estuary. Proc Inst of Civil Engrs, London, U.K. supplement DC, 175-205
    [84] De Vries, M., Klaassen, GJ., Striksma, N., 1989. On the use of movable bed models for river problems: state of art. Symposium of River Sedimentation, Beijing, China
    [85] Dry, K.R. & Evans, E.M., 1989. Dynamics of turbidity maximum in a homogeneous tidal channel. Journal of Coastal Research 5, 23-30
    [86] Ross, M.A. & Mehta, A.J., 1989. On the mechanics of lutoclines and fluid mud. Journal of Coastal Research 5, 51-62
    [87] Smith, T.J., Kirby, R., 1989. Generation, stabilization and dissipation of layered fine sediment suspensions. Journal of Coastal Research 5, 63-73
    [88] Li, M.Z. & Amos, C.L., 1995. SEDTRAN92: A sediment transport model for continental shelves. Computers & Geosciences, 21(4) : 533-554
    [89] Fassnacht, S.R., 1997. A multi-channel suspended sediment transport model for the Mackenzie Delta, Northwest Territories. Journal of Hydrology 197, 128-145
    [90] De Vriend, H.J., 1987. 2DH mathematical modelling of morphological evolutions in shallow water. Coastal Engineering 11, 1-27
    [91] Teisson, C., 1991. Cohesive suspended sediment transport: ability and limitations of numerical modeling. Journal of Hydraulic Research 29, 755-769.
    [92] Nairn, R.B. & Southgate, H.N., 1993. Deterministic profile modeling of nearshore process. Part 2: Sediment transport and beach profile development. Coastal Engineering 19, 57-96
    [93] Ziegler, C.K. & Nisbert, B., 1994. Fine-grained sediment transport in Pawtuxet River, Rhode Island. Journal of Hydraulic Engineering 120, 561-576
    [94] Wolannski, E., King, B. and Galloway, S., 1995. Dynamics of the turbidity Maximum in the Fly river Estuary, Papua New Guinea. Estuarine coastal and shelf science 40: 321-337
    [95] Barros, A.P., 1996. An evaluation of model parameterizations of sediment pathways: a case study for the Tejo estuary. Continental Shelf Research 16, 1725-1949
    [96] O'Connor, B.A., 1971. Mathematical model for sediment distribution. Proceedings of 14th IAHR Conference, Paper D23, Paris, France
    [97] van Rijn, L.C., 1986. Mathematical modelling of suspended sediment in nonuniform flows. Journal of Hydraulic Engineering 116, 433-455
    [98] Celik, I. & Rodi, W. Modeling suspended sediment transport in nonequilibrium situations. Journal of Hydraulic Engineering 114, 1157-1189
    [99] Kuo, A.Y., Nichols, M., Lewis, J., 1978. Modeling sediment movement in the turbidity maximum of an estuary. Bulletin 111, Virginia Water Resources Research Center. Blacksburg, Virginia.
    
    
    [100] Mead, C.T., 1999. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries. Journal of Hydraulic Research 37 (4) : 444-464
    [101] Yakirevich, A., Borisov, V, Sorek, S., 1998. A quasi three-dimensional model for flow and transport in unsaturated and saturated zones: 1. Implementation of the quasi two-dimensional case. Advances in Water Resources 21 (8) : 679-689
    [102] van Rijn, L.C., 1987. Mathematical modelling of morphological processes in the case of suspended sediment transport. Delft Hydraulics Communication No. 382, p127
    [103] van Rijn, L.C., 1990. Field verification of 2-D and 3-D suspended sediment models. Journal of Hydraulic Engineering, ASCE, 116(10) : 1270-1288
    [104] O'Connor, B.A. & Nicholson, J., 1988. A three-dimensional model of suspended paniculate sediment transport. Coastal Engineering 12, 157-174
    [105] Cancino, L. & Neves, R., 1999. Hydrodynamic and sediment suspension modeling in estuarine systems: Part I: Description of the numerical models. Journal of Marine Systems, 22(2) : 105-116
    [106] Lin, B.L. & Falconer, R., 1996. Numerical modelling of three-dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research, 34 (4) : 435-456
    [107] Wang, S.S.Y. & Adeff, S.E., 1986. Three-dimensional modelling of river sedimentation processes. Proceedings of the Third International Symposium on River Sedimentation, Eds. S.Y. Wang, H.W. Sheng and L.Z. Ding. The University of Mississippi, Mississippi, USA
    [108] Malcherek, A., Lenormant, C., Peltier, E., Teisson, C., Markofsky, M, Zielke, W., 1993. Three-dimensional modelling of estuarine sediment transport, estuarine and coastal modelling Ⅲ. Proceedings of the Conference, Eds. M.L. Spaulding, A. Blumberg, et al, ASCE, Illinois, September, 43-57
    [109] Lou, J. & Ridd, P.V., 1997. Modelling of suspended sediment transport in coastal areas under waves and currents. Estuarine, Coastal and Shelf Science 45, 1-16
    [110] Prandle, D., Hargreaves, J.C., McManus, J.P., Campbell, A.R., Duwe, K., Lane, A., Mahnke, P., Shimwell, S., Wolf, J., 2000. Tide, wave and suspended sediment modelling on an open coast-Holderness. Coastal Engineering 41, 237-267
    [111] McAnally, W.H., Letter, J.W. and Thomas, W.A., 1984. Application of Columbia River hybrid modeling system. Journal of Hydraulic Research, ASCE, 110 (3) : 300-311
    [112] Keiner, L.E. & Yan X.H., 1998. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sens. Environ. 66, 153-165
    
    
    [113] Chen, H. & Dyke, P.P.G., 1998. Multivariate time-series model for suspended sediment concentration. Continental Shelf Research 18, 123-150
    [114] Vos, R.J., ten Brummelhuis, P.G.J., Gerritsen H., 2000. Integrated data-modelling approach for suspended sediment transport on a regional scale. Coastal Engineering 41, 177-200
    [115] 朱春耀,薛金平,李春雨.汾河水库泥沙冲淤计算数学模型.水利水电技术,1999,30(10):34-36
    [116] 余欣,安催花,郭选英,李福生.小浪底水库泥沙水动力数学模型研究及应用.人民黄河,2000,22(8):17-20
    [117] 张俊华,张红武,王严平,张柏山.多沙水库准二维泥沙数学模型.水动力学研究与进展,1999,14(1):45-50
    [118] 陈界仁,沙劳·巴里,陈国祥.二维水库水流泥沙数值模拟.河海大学学报,2000,28(5):11-15
    [119] 程文,曹如轩,钱善琪,郭崇.水库粗颗粒高含沙水流泥沙数学模型.水利学报,增刊,1998,84-87
    [120] 张红艺,杨明,张俊华,邓洪亮.高含沙水库泥沙运动数学模型的研究及应用.水利学报,2001,(11):20-25
    [121] 李义天,尚全民.一维不恒定流泥沙数学模型研究.泥沙研究,1998,(1):81-87
    [122] 梁国亭,高懿堂,梁跃平,龚坚.非恒定流泥沙数学模型原理及其应用.泥沙研究,1999,(4):44-48
    [123] 王双明,孙西欢,潘光在.复式断面河道水流泥沙数值模拟.太原理工大学学报,2000,31(1):60-63
    [124] 黄金池,万兆惠.多沙河流平面二维泥沙数学模型研究.水科学进展,1997,8(3):253-258
    [125] 张庆华,乐培九,杨细根。拟合坐标系下平面二维水流泥沙数学模型及其应用.水利学报,1998,(3):39-47
    [126] 于清来,窦国仁.高含沙河流泥沙数学模型研究.南京水利科学研究院水利水运科学研究,1999,(2):107-115
    [127] 陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟.泥沙研究,2000,(5):45-45
    [128] 林秉南,黄菊卿,李新春.钱塘江河口潮流输沙数学模型.泥沙研究,(2):16-29
    [129] 叶锦培,何焯霞,周志德.珠江河口潮流输沙数学模型.人民珠江,1986,(6):7-15
    [130] 曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型,水利学报,2001,(1):42-48
    [131] 陈虹,李大鸣.三维潮流泥沙运动的一种数值模拟.天津大学学报,1999,32(5):573-579
    
    
    [132] 李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟.水道港口,2000,(4):36-41
    [133] 江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅰ模式.海洋与湖沼,2001,31(6):682-688
    [134] 江文胜,孙文心。渤海悬浮颗粒物的三维输运模式Ⅱ模拟结果.海洋与湖沼,2001,32(1):94-100
    [135] 曹祖德,王桂芬,波浪掀沙潮流输沙的数学模型.海洋学报,1993,15(1):107-118
    [136] 辛文杰.潮流波浪综合作用下河口二维悬沙数学模型.海洋工程,1997,15(2):30-47
    [137] 马福喜,李文新.河口水流、波浪、潮流、泥沙、河床变形的二维数学模型.水利学报,1999,(5):39-43
    [138] 丁平兴,史峰岩,孔亚珍.波—流共同作用下的三维悬沙扩散方程.科学通报,1999,44(12):1339-1342
    [139] 朱志夏,韩其为,丁平兴.海岸悬沙运移数学模型.海洋学报,2002,24(1):101-107
    [140] 许卫忆,苏纪兰.杭州湾二维潮波计算及底质分布的动力成因.海洋与湖沼,1986,17(6):493-503
    [141] 董礼先,苏纪兰,王康增.黄渤海潮流场及其与沉积物搬运的关系.海洋学报,1989,11(1):102-114
    [142] 朱玉荣.潮流场对渤海黄海东海陆架底质分布的控制作用.海洋地质与第四纪地质,2001,21(2):7-13
    [143] 曹志先,泥沙数学模型近底边界条件Ⅰ:平衡输沙.水利学报,1997,(1):11-19
    [144] 曹志先.泥沙数学模型近底边界条件Ⅱ:非平衡输沙.水利学报,1997,(1):20-24
    [145] 王光谦,周建军,杨本均.二维泥沙异重流运动的数学模型,应用基础与工程科学学报,2000,8(1):52-60
    [146] 庞重光,杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报,2001,31(5):762-768
    [147] 章华生,倪培桐,吴超羽.河口最大浑浊带平面二维数值模型.人民珠江,2000,(6):10-12
    [148] 柳海涛,吉祖稳,胡春宏.悬移质泥沙有限元模型初探.泥沙研究,2001,(5):42-47
    [149] 张细兵,董耀华,殷瑞兰.河道平面二维水沙数学模型的有限元方法.泥沙研究,2002,(6):60-65
    [150] 张华庆,李华国,岳翠平.海河口潮流泥沙运动数值模拟及清淤方案研究.水动力学研究与进展,2002,17(3):318-326
    [151] 张修忠,王光谦.河道及河口一维及二维嵌套泥沙数学模型.水利学报,(10):82-87
    [152] 张华庆,吕忠华,沈汉堑,陈丽棠,珠江河口水沙数值模拟系统.水道港口,23(2):
    
    51-53
    [153] 张世奇.二维动边界潮汐输沙及河床变形计算.泥沙研究,1988,(4):55-63
    [154] 陆永军,陈国祥.航道工程泥沙数学模型的研究Ⅰ——模型的建立.河海大学学报,1997,25(6):8-14
    [155] 孙琪,孙效功,李瑞杰.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼,2001,32(3):296-301
    [156] 诸裕良,严以新,贾良文,茅丽华.一维河网非恒定流及悬沙数学模型的节点控制方法.水动力学研究与进展,2001,16(4):503-510
    [157] 朱江,曾庆存,郭东建,刘卓.一个水动力泥沙数学模型的伴随算子法敏感性分析.泥沙研究,1998,(2):89-96
    [158] 吴加学,沈焕庭.黄茅海河口湾泥沙输运研究——兼论McLaren模型在河口中的应用问题,泥沙研究,1999,(3):26-32
    [159] 贺松林,丁平兴,孔亚珍,劳治声,陈全.湛江湾沿岸工程冲淤影响的预测分析Ⅰ动力地貌分析.海洋学报,1997,19(1):55-63
    [160] 丁平兴,贺松林,张国安,孔亚珍,劳治声.湛江湾沿岸工程冲淤影响的预测分析Ⅱ冲淤的数模计算.海洋学报,1997,19(1):64-72
    [161] 陈吉余,虞志英,恽才兴.长江三角洲的地貌发育.长江口动力过程和地貌演变,陈吉余,沈焕庭,恽才兴等著.上海:上海科学技术出版社,1988,1-18
    [162] 上海市海岛资源综合调查报告编写组.上海市海岛资源综合调查报告.上海:上海科学技术出版社,1996,p1
    [163] 陈吉余,徐海根.长江河口南支河道的河槽演变.华东师范大学学报,1981,(2):93-107
    [164] 陈吉余,潘定安,苏法崇,徐海根.长江口北港河糟演变分析.长江河口动力过程和地貌演变,陈吉余,沈焕庭,恽才兴等著.上海:上海科学技术出版社,1988,390-403
    [165] 陈吉余,恽才兴,徐海根,董永法.两千年来长江河口发育的模式.海洋学报,1979,1(1):103-111
    [166] 沈焕庭,贺松林,潘定安等.长江河口最大浑浊带研究.地理学报,1992,47(5):472-479
    [167] 程和琴,宋波,薛元忠,毛兴华.长江口粗粉砂和极细沙输移特性研究——幕式再悬浮和底形运动.泥沙研究,2000,(1):20-27
    [168] Shi, Z., Ren, L.F., Chen, J.Y., Zhang, S.Y., 1997. Acoustic imaging of cohesive sediment re-suspension and re-entrainment in the Changjiang Estuary, East China Sea. Geo-Marine Letters 17, 162-168
    [169] Shi, Z., Ren,L.F. & Hamilton, L.J., 1999. Acoustic profiling of fine suspension
    
    concentration in the Changjiang Estuary. Estuaries 23 (3): 648-656
    [170] Hamilton, L.J., Shi, Z., Zhang, S.Y., 1998. Acoustic backscatter measurements of etuarine suspended cohesive sediment concentration profiles. Journal of Coastal Research 14(4): 1213-1224
    [171] 恽才兴,蔡孟裔,王宝全.利用卫星相片分析长江入海悬浮泥沙扩散问题.海洋与湖沼,1981,12(5):391-401
    [172] 陈鸣,李士鸿 刘小靖.长江口悬浮泥沙遥感信息处理和分析.水利学报,1991,(5):47-51
    [173] 胡嘉敏.长江河口表层水体悬沙分布与最大浑浊带遥感分析.河口最大浑浊带论文集,华东师范大学河口海岸研究所,1993,67-77
    [174] 益建芳,梅安新.长江河口最大浑浊带的遥感动态分析.河口最大浑浊带论文集,华东师范大学河口海岸研究所,1993,96-104
    [175] 何青,恽才兴,时伟荣.长江口表层水体悬沙浓度场遥感分析.自然科学进展,1998,9(2):160-164
    [176] 赵长海,恽才兴,郑新江等.利用气象卫星资料分析长江口通海航道泥沙分布.国土资源遥感,1999,(1):15-19
    [177] 时钟,周洪强.长江口北槽口外悬沙浓度垂线分布的数学模拟.海洋工程,2000,18(3):57-62
    [178] 徐建益,陶学为,方良田等.长江口南支非均匀沙垂向分层的数学模型.泥沙研究,1995,(2):74-79
    [179] 黄永健.长江口挖槽自然回淤的计算.泥沙研究,1997,(2):69-73
    [180] 周济福,王涛,李家春,刘青泉.径流与潮流对长江口泥沙输运的影响.水动力学研究与进展,1999,14A(1):90-100
    [181] 盛升国,施厚庆,于福生等.长江口北槽航道抛泥区泥沙扩散的试验研究.泥沙研究,1986,(3):37-45
    [182] 赵棣华,谭仁忠,谭维炎.长江口南支河段悬移质含沙量计算模型.泥沙研究,1990,(2):54-62
    [183] 徐建益,袁建中.长江河口局部区域内泥沙冲淤计算方法及应用.水利学报,1991,(12):63-69
    [184] 曹振轶,胡克林.长江口非均匀悬沙数值模拟.泥沙研究,2002,(6):66-73
    [185] 朱玉荣.古长江河口湾充填潮流作用机制的初步探讨.海洋学报,1999,21(3):73-82
    [186] 窦希萍,李禔来,窦国仁.长江口全沙数学模型.水利水运科学研究.1999,(2):136-145
    [187] 长江口南港冲淤灾害预测模型研究报告.华东师范大学河口海岸国家重点实验室.
    
    2001
    [188] Hu, K.L., Ding, P.X., Cao, Z.Y., 2001. 2-D numerical simulation of sediment transport under waves and currents in Yangtze Estuary. In: The Proceedings of the First Asian and Pacific Coastal Engineering, Vol. 2, 808-817
    [189] 丁平兴,胡克林,孔亚珍,朱首贤.长江河口波—流共同作用下的全沙数值模拟.海洋学报(已录用)
    [190] 周华君.长江口最大浑浊带特性研究和三维水流泥沙数值模拟.河海大学博士论文,1993
    [191] 匡翠萍.长江口拦门沙冲淤及悬沙沉降规律研究和水流盐度泥沙数学模型.南京水利科学研究院博士论文,1993
    [192] Shi, F.Y. & Sun, W.X., 1995. A variable boundary model of storm surge flooding in generalized curvilinear grids. International Journal for Numerical Methods in Fluids, 21, 641-651
    [193] Shi, F., Sun, W., Wei, G., 1997. A WDM method on a generalized curvilinear grid for calculation of storm surge flooding. Applied Ocean Research, 19 (5-6): 275-282
    [194] Johns, B., 1982. The simulation of a continuously deforming lateral boundary in problems involving the shallow water equations. Comput. Fluids, 10, 105-116
    [195] 史峰岩,孔亚珍,丁平兴.流速逆变张量隐式求解方法及其在航道港池流场计算中的应用.海洋学报,1998,20(4):17-24
    [196] Berkoff, J.C.W., 1972. Computation of combined refraction-diffraction. In: Proc. of the 13tn Conf. on Coastal Engineering, ASCE, New York, vol. 1,471-490
    [197] Radder, A.C., 1979. On the parabolic equation method for water-wave propagation. Fluid Mech., (1): 159-176
    [198] Kirby, J.T., 1986. A general wave equation for wave over rippled beds. J. Fluid Mech., 162, 171-186
    [199] Kirby, J.T. & Dalrymple, R.A., 1987. An approximate model for nonlinear dispersion in monochromatic wave propagation models. Coastal Engineering, 9, 545-561
    [200] Zhao, Y., & Anastasiou, K., 1993. Economical random wave propagation modeling taking into account nonlinear amplitude dispersion. Coastal Engineering, 20, 59-83
    [201] Nadaoka, K., Beji, S., Nakagawa, Y., 1994. A fully-Dispersive nonlinear wave model and its numerical solution. In: Proc 24th Int Conf Coastal Engineering, Kobe, Japan, New York: ASCE, 427-441
    [202] Isobe, M., 1994. Time-dependent mild-slope equation for random waves. In: Proc 24th Int Conf Coastal Engineering, Kobe, Japan, New York: ASCE, 285-299
    
    
    [203] Peregrine, D.H., 1965. Long wave on a beach. J. Fluid Mech., 27(4) : 815-827
    [204] Wei, G, Kirby, J.T., Grilli, S.T., Subramaanya, R., 1995. A fully nonlinear Boussinesq model for surface waves. Part I. Highly nonlinear unsteady waves. J Fluid Mech., 294, 71-92
    [205] Madsen, PA. & Schaffer, H.A., 1998. Higher order Boussinesq-type equations for surface waves-Derivation and analysis. Phil. Trans. Roy. Soc., London, A, 356, 1-60
    [206] WAMDI Group., 1998. The WAM model--a third generation ocean wave prediction model. Journal of Physical Oceanography, 18, 1775-1810
    [207] Tolman, H.L., 1989. The numerical model WAVEWATCH: a third generation model for the hindcasting of wind waves on tides in shelf seas. Report No. 89-2. Communication on Hydraulic and Geotechnical Engineering, Delhi University of Technology
    [208] Booij, N., Holthuijsen, L.H., Ris R.C., 1996. The SWAN wave model for shallow water. In: Proceedings of 24' International Conference on Coastal Engineering, Orlando, vol. 1. , 668-678
    [209] Holthuijsen, L.H., Booij, N., Ris, R.C., Haagsma, IJ.G, Kieftenburg, A.T.M.M., Kriezi, E.E., 2000. SWAN User Manual (Cycle Ⅲ version 40. 11) . Delft University of Technology, Delft
    [210] Hasselmann, K., 1974. On the spectral dissipation of ocean waves due to whitecapping. Bound.-layer Meteor., 6, 1-2, 107-127
    [211] Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl., 12, A8
    [212] Signell, R.P., Beardsley, R.C., Graber, H.C., Capotondi, A., 1990. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments. Journal of Geophysical Research, 95 (C6) : 9671-9678
    [213] Davies, A.M., Lawrence, J., 1994. Examining the influence of wind and wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave-current interaction. Journal of Physical Oceanography, 24, 2441-2460
    [214] Lou, J. & Ridd P.V., 1996. Wave-cuurent bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coastal Engineering, 29, 169-186
    [215] Choi, B.H., Eum, H.M., Woo, S.B., 2003. Modeling of coupled tide-wave-surge process in the Yellow Sea. Ocean Engineering 30, 739-759
    
    
    [216] Davies, A.G., Ribberink, J.S., Temperville, A., Zyserman, T.A., 1997. Coastal Engineering, 31,163-198
    [217] Antunes Do Carmo, J.S. & Seabra-Santos,F.J., 2002. Near-shore sediment dynamics computation under the combined effects of waves and currents. Andvances in Engineering Softeware, 33 (1): 37-48
    [218] 武汉水利电力学院.河流动力学.北京:中国工业出版社,1960,13-21
    [219] 彭润泽,蒋如琴,黄永健等.长江口泥沙絮凝沉速实验研究.水利水电科学研究院,北京,1987
    [220] 沈焕庭,潘定安著.长江河口最大浑浊带.北京:海洋出版社,2001,p16
    [221] 上海市海岛资源综合调查报告编写组.上海市海岛资源综合调查报告.上海:上海科学技术出版社,1996,20-21
    [222] 沈焕庭,李九发,朱惠芳,周福根.长江河口悬沙输移特性.长江河口动力过程和地貌演变,陈吉余,沈焕庭,恽才兴等著.上海:上海科学技术出版社,1988,205-215
    [223] 沈焕庭,谷国传,李九发.长江口潮波特性及其对河槽演变的影响.长江河口动力过程和地貌演变,陈吉余,沈焕庭,恽才兴等著.上海:上海科学技术出版社,1988,73-79
    [224] 沈焕庭,潘定安.长江口潮流特性及其对河槽演变的影响.长江河口动力过程和地貌演变,陈吉余,沈焕庭,恽才兴等著.上海:上海科学技术出版社,1988,80-90
    [225] 上海市海岸带和海涂资源调查报告,上海,1991
    [226] 陈吉余,沈焕庭,恽才兴等著.长江河口动力过程和地貌演变.上海:上海科学技术出版社,1988,绪论,1-5
    [227] 上海市海岛资源综合调查报告编写组.上海市海岛资源综合调查报告.上海:上海科学技术出版社,1996,12-14,30-31
    [228] 胡方西,胡辉,谷国传,韩明宝,汪思明,宋元平.长江口盐度锋.华东师范大学学报,长江河口最大浑浊带和河口锋研究论文选集,1995,84-91
    [229] 朱建荣,沈焕庭.长江冲淡水扩展机制.上海:华东师范大学出版社,1997,175-177
    [230] 曹沛奎,严肃庄.长江口悬沙锋及其对物质输运的影响.华东师范大学学报,长江河口最大浑浊带和河口锋研究论文选集,1995,118-127
    [231] 沈焕庭,潘定安著.长江河口最大浑浊带.北京:海洋出版社,2001,28-31
    [232] 沈焕庭,潘定安著.长江河口最大浑浊带,北京:海洋出版社,2001,p40
    [233] Brackbill, J.U. & Satzman, J.S., 1982 Adaptive zoning for singular problems in two dimensions. Journal of Computer Physics, 46, 342-368
    [234] 海洋图集编委会编.渤海黄海东海海洋图集.北京:海洋出版社,1993
    [235] Delft Hydraulics, 1996. Hangzhou Bay Environmental study, Final Report, Appendix B
    
    The hydrodynamic and water quality models: TRISULA and DELWAQ. Mott Macdonalds and Welsh Wate International
    [236] Smith, S.D., 1980. Wind Stress and heat flux over the ocean in gale force wind. Journal of Physical Oceanography, 10, 709-726
    [237] Price, J.F., 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11, 153-175
    [238] Bouws, E., Gunther, H., Rosenthal, W., Vincent, C., 1985. Similarity of the wind wave spectrum in finite depth water. Journal of Geophysical Research, 90, 975-986
    [239] Bergman, L.E., 1984. Directional spectrum estimation for Sxy gages. Technical Report, Coastal Engineering Research Center, Vicksburg, Miss
    [240] 朱首贤,沙文鈺,丁平兴,陈希.近岸非对称型台风风场模型.华东师范大学学报2002, (3) : 66-71
    [241] Fujita T., 1952. Pressure distribution in typhoon. Geophy. Mag., 23, 437-452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700