用户名: 密码: 验证码:
黄河中游不同区来水来沙变化与下游河道演变的响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以黄河数字流域模型平台为基础,完成了黄河流域泥沙全过程的模拟,为计算分析黄河流域上中游流域产水产沙与下游河道泥沙冲淤之间的响应关系提供了技术支持。
     黄河数字流域模型平台使模拟坡面的水沙过程及沟道的汇流、输沙成为可能,而要完成黄河全流域水沙过程的模拟,包括泥沙的侵蚀和输运,则需要建立主干河道内洪水输移的模型。本文的第一部分工作建立了河道一维水动力学模型,将模型应用于模拟黄河下游高含沙洪水的演进过程,并分析下游河道的演进特点。本论文的第二部分工作为:针对雨量资料时间分辨率不能满足计算需求的客观条件,根据流域内降雨特点,提出预测小时降雨序列的方法。模型生成的预测小时降雨序列不但能模拟小尺度降雨的统计特征值,而且也能用于水文模型模拟流域的产水产沙。
     根据黄河下游1950年至1960年、1969年至1985年间共152场洪水的资料,本文分析了下游洪水的水沙来源,以及不同来源区所产水沙对下游河段冲淤的影响。分析表明,河口镇站至龙门站区间流域,以及北洛河、马莲河流域所产水沙对下游河道洪水及河道洪水淤积具有较大影响。本文根据数值模拟的需要,修正了黄河流域产水产沙子系统的分区,使得分区结果中的II区范围包含了上述的河龙区、北洛河和马莲河。在分区的基础上,完善了II区的河网系统和编码系统,为用黄河数字流域模型模拟计算流域泥沙全过程提供了河网基础。
     在黄河流域产水产沙子系统修正分区的基础上,用黄河数字流域模型模拟计算中游流域的产水、产沙过程。模型预测出龙门站1977年的水沙过程,并将其作为本文所建立河道水动力学模型的入流水沙过程,用一维模型的方法模拟了黄河流域1977年洪水在龙门以下河道中的演进。通过将计算水沙过程与实际的演进过程进行对比分析,验证了将黄河数字流域模型与一维河道模型耦合计算流域泥沙全过程的可行性。
     本论文为进一步分析黄河流域不同来源区的来水来沙与下游河道演变之间的响应关系提供了基础。
Based on the Digital Yellow River Model (DYRM), the thesis focuses on the simulation of the whole process of sediment yield and transport in the Yellow River. This work would be helpful to analyze the response law between water/sediment variation in the middle source areas and fluvial response in the lower channel.
     The DYRM can simulate the runoff and sediment yielding process on slope and the transport process of sediment-laden flow in gullies and fine channels. For the simulation of the whole process of sediment yield and transport in a drainage basin, it still needs a model to simulate the flood propogation in the main channel. The first part of the present work was to build a one-dimensional model to simulate the propogation of hyperconcentrated flood in the Lower Yellow River, which is adopted to investigate the fluvial characteristics of the Lower Yellow River. The second part of the present work was to develop a downscaling method to reproduce rainfall series with one hour time step, as the temporal resolution of observed rainfall data at gauging stations can not satisfy the requirement of simulation. The proposed method was based on the statistics characters of rainfall in the drainage basin. And the generated hourly series of rainfall data by the proposed method has the same statistic characteristics with the observed hourly data, and can be used as the input data in simulating the rainfall-runoff and sediment erosion in hydrology simulation.
     The observed data of 152 flood events in the Lower Yellow River, occurred between 1950-1960 and 1969-1985, was analyzed to explore the relationship between the flood from the water/sediment source area in the middle reach and the degradation/aggregation characteristics in the lower channel. The analysis showed that, the water and sediment coming from the drainage area between Hekouzhen Hydrology station and Longmen Hydrology station, also including Beiluo River and Malian River, had significant influence on flood aggregation in downstream river channel. Based on the requirement of numerical simulation with DYRM, this thesis modified the division of drainage areas upper Huanyuankou Hydrology station in the Middle Yellow River basin. And the Zone II in the modified division covers the drainage area of area between Hekouzhen Hydrology station and Longmen Hydrology station, Beiluo River and Malian River. More efforts were focused on withdrawing and numbering of the river network in Zone II, as a preparation for the simulation of the whole sediment yield-and-transport process through using the DYRM.
     The DYRM was run to simulate the process of water and sediment yield on slopes in the Middle Yellow River basin, considering the drainage division of water and sediment source areas. The simulated water and sediment hydrographs at Longmen Hydrological Station were used as the upstream boundary condition in the developed one-dimensional model for simulation of flood routing in the Lower Yellow River. The comparison between the simulated results and the observed data of the flood events in 1977 demonstrated that the coupling of the DYRM and the developed one-dimensional model is feasible in simulating the whole sediment process.
     The present work was a foundation for analyzing the responses law between water/sediment yield from different source areas in the middle reach and the fluvial response in the lower reach in the Yellow River basin.
引文
[1] Liu C M, Zhang H X. Freshwater resources management in China: Case study of the Yellow River Basin. International Review for Environmental Stategies, 2002, 3(2): 284-293.
    [2]周佩华,吴普特.治黄之本在于水土保持.水土保持通报, 1994, 14(1): 1-11.
    [3]朱显谟.维护土壤水库确保黄土高原山川秀美.中国水土保持, 2006, (1): 4-7.
    [4]徐建华,牛玉国.水利水保工程对黄河中游多沙粗沙区径流泥沙影响研究.郑州:黄河水利出版社, 2000.
    [5]蔡为武.治黄的根本措施是下游河道整治.人民黄河, 1995, 1: 48-51.
    [6]高季章,胡春宏,陈叙坚.论黄河下游河道的改造与“二级悬河”的治理.中国水利水电科学研究院学报, 2004, 2(1): 8-18.
    [7]张瑞瑾.关于根治黄河的关键途径问题.武汉水利电力学院学报, 1979, (4): 1-3.
    [8]钱宁,王可钦,阎林德,等.黄河中游粗泥沙来源区对黄河下游冲淤的影响.第一次河流泥沙国际学术讨论会论文集.北京:光华出版社, 1980: 53-62.
    [9]许炯心.黄河上中游产水产沙系统与下游河道沉积系统的耦合关系.地理学报, 1997a, 52(5): 421-429.
    [10] Sampson A A. The assessment of suspended sediment inputs to Volta Lake. Lakes & Resrvoirs: Research and Management, 2005, 10: 179-186.
    [11] Owens P N, Batalla R J, Collins A J, et al. Fine-grained sediment in river systems: environmental significance and management issues. River Research and Applications, 2005, 21: 693-717.
    [12] Carling P A. Channel change and sediment transport in regulated U.K. rivers. Regulated Rivers: Research and Management, 1988, 2: 369-387.
    [13] Ashworth P J, Best J L, Jones M A. The relationship between channel avulsion, flow occupancy and aggradation in braided rivers: insights from an experimental model. Sedimentology, 2007, 54(3): 497-513.
    [14]师长兴.黄河河口延伸与下游淤积关系研究中的问题分析.地理科学, 2005. 25(2): 183-189.
    [15] Wang G Q, Wu B S, Li T J. Digital Yellow River model. Journal of Hydro-environment Research, 2007, 1(1): 1-11.
    [16]王光谦,李铁键,薛海,等.流域泥沙过程机理分析.应用基础与工程学报, 2006, 14(4): 455-462.
    [17] Surian N, Cisotto A. Channel adjustments, bedload transport and sediment sources in gravel-bed river, Brenta River, Italy. Earth Surface Processes and Landforms, 2007, 32: 1641-1656.
    [18] Nicola S, Massimo R. Morphological response to river engineering and management in alluvial channels in Italy. Gromotphology, 2003, 50: 307-326.
    [19] Fan H, Huang H J, Zeng Thomas Q, et al. River month bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow) River delta, China. Geomorphology, 2006, 74: 124-136.
    [20] Gregory K J. The human role in changing river channels. Geomorphology, 2006, 79: 172-191.
    [21] Liebaylt F, Gomez B, Page M, et al. Land-use change, sediment production and channel response in upland regions. River Research and Applications, 2005, 21: 739-756.
    [22]徐建华,吕光祈,甘枝茂.黄河中游多沙粗沙区区域界定及产沙规律研究.郑州:黄河水利出版社, 2000a.
    [23]吴成基,甘枝茂,孙虎.黄河中游多沙粗沙区亚区划分.人民黄河, 1999, 21(12): 22-24.
    [24]刘家宏.黄河数字流域模型[博士学位论文].北京:清华大学水利系, 2005.
    [25]许炯心.黄河下游洪水的泥沙输移特征.水科学进展, 2002a, 13(5): 562-568.
    [26] Xu J X. Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration: the Yellow River basin, China. Catena, 2002b, 49(4): 289-307.
    [27] Xu J X, Chen D S. Relation between the erosion and sedimentation zones in the Yellow River, China. Geomorphology, 2002, 48: 365-382.
    [28]张欧阳,许炯心,张红武.不同来源区洪水对黄河下游游荡河段河床横断面形态调整过程的影响.泥沙研究, 2002, 6: 1-7.
    [29] Sutherland R A, Bryan R B. Sediment budgeting: a case study in the Katiorin drainage basin, Kenya. Earth Surface Processes and Landforms, 1991, 16: 383-398.
    [30] Gruszowski K E, Foster I D L, Lees J A, et al. Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrological Processes, 2003, 17: 2665-2681.
    [31] Gomi T, Moore R D, Hassan M A. Ended sediment dynamics in small forest streams of the Pacific Northwest. Journal of the American Water Resources Association, 2005: 877-898.
    [32] Schumm S A. The fluvial system. New York: John Wiley & Sons. A Wiley-Interscience Publication, 1977: 338.
    [33]张欧阳,许炯心.黄河流域产水产沙、输移和沉积系统的划分.地理研究, 2001, 21: 188-194.
    [34]叶青超,主编.黄河流域环境演变与水沙运行规律研究.山东:科学技术出版社, 1992: 17-50.
    [35]王玲,董雪挪,顾弼生,等.黄河历次洪水对下游河道冲刷资料的统计分析.左大康主编.黄河流域环境演变与水沙运行规律研究文集.北京:地质出版社, 1991: 149-155.
    [36]邵学军,王光谦.黄河上游水能开发对下游水量及河道演变影响初析.水力发电学报, 2002, (E01): 128-138.
    [37]李铁键,王光谦,刘家宏.数字流域模型的河网编码方法.水科学进展, 2006a, 17(5): 658-664.
    [38]邓利,李铁键,刘家宏,等.数字流域河网编码方法应用实例.泥沙研究, 2007, 3: 80-84.
    [39]石伟,王光谦,邵学军.不同来源区洪水对黄河下游流量-含沙量关系的影响.水科学进展, 2003, 14(2): 147-151.
    [40]胡春宏.黄河水沙过程变异及河道的复杂响应.北京:科学出版社, 2005a.
    [41]胡春宏,陈建国.黄河下游不同水沙过程与河床形态的响应关系分析.北京:中国水利水电科学研究院, 2005b.
    [42]景可,李钜章,李凤新.黄河多沙粗沙区产水产沙对中游来水来沙的贡献率.土壤侵蚀与水土保持学报, 1999, 5(1): 13-26.
    [43] Wu B S, Wang G Q, Xia J Q. Case study: delayed sedimentation response to inflow and operation at Sanmenxia Dam. Journal of Hydraulic Engineering, 2007, 133(5): 482-494.
    [44]许炯心.人类活动影响下的黄河下游河道泥沙淤积宏观趋势研究.水利学报, 2004a, 2: 8-16.
    [45]许炯心.流域因素与人类活动对黄河下游河道输沙功能的影响.中国科学D辑, 2004b, 34(8): 775-781.
    [46]许炯心.黄河下游泥沙淤积的经验统计关系.地理研究, 1997b. 16(1): 23-30.
    [47]胡春宏,陈建国,刘大滨,等.水沙变异条件下黄河下游河道横断面形态特征研究.水利学报, 2006, 37(11): 1283-1289.
    [48]申冠卿.拦减粗泥沙对下游河道的减淤效果.人民黄河, 2000, 22(6): 13-15.
    [49]许炯心.黄河下游排沙比研究.泥沙研究, 1997c, (1): 49-54.
    [50]张欧阳.黄河下游花园口河段洪水涨落过程中河床横断面形态的调整.水科学进展, 2003. 14(4): 401-406.
    [51]吴保生,张原锋.黄河下游输沙量的沿程变化规律和计算方法.泥沙研究, 2007, (1): 30-35.
    [52]陈孝田,陈明非,宋晓景.黄河下游不同含沙量洪水对河道冲淤的影响.人民黄河, 2000, 22(11): 13-14.
    [53]许炯心.黄河下游游荡河段清水冲刷时期河床调整的复杂响应现象.水科学进展, 2001, 12(3): 291-299.
    [54]申冠卿,姜乃迁,李勇,等.黄河下游河道输沙水量及其计算方法研究.水科学进展, 2006, 17(3): 407-413.
    [55]高国甫,李学春,王平娃,等.黄河河口镇至龙门区间洪水特性分析.西北水资源与水工程, 2002, 13(2): 32-35.
    [56]张雪松,郝芳华,张建永.降雨空间分布不均匀性对流域径流和泥沙模拟影响研究.水土保持研究, 2004, 11(1): 9-12.
    [57] Loukas A, Vasiliades L, Dalezios N R. Climatic impacts on the runoff generation processes in British Columbia, Canada. Hydrology and Earth Systems. Science, 2002, 6(2): 211-227.
    [58] Froehlicb D C. Short-duration-rainfall intensity equations for drainage design. Journal of Irrigation and Drainage Engineering, 1995a, 119(5): 814-828.
    [59] Froehlicb D C. Long-duration-rainfall intensity equations. Journal of Irrigation and Drainage Engineering, 1995b, 121(3): 248-252.
    [60] Debele B, Srinivasanb R, Yves P J. Accuracy evaluation of weather data generation and disaggregation methods at finer timescales. Advances in Water Resources, 2007, 30(5): 1286-1300.
    [61]卢金发,刘爱霞.黄河中游降雨特性对泥沙粒径的影响.地理科学, 2002, 22(5): 552-556.
    [62] Rebora N, Ferraris L, Hardenberg JV , et al. RainFARM: rainfall downscaling by a filtered autoregressive model. Journal of Hydrometeorology, 2005a, 7: 724-738.
    [63] Gyasi-Agyei Y, Mahbub S M P B. A stochastic model for daily rainfall disaggregation into fine time scale for a large region. Journal of Hydrology, 2007, 347: 358-370.
    [64]周祖昊,贾仰文,王浩,等.大尺度流域基于站点的降雨时空展布.水文, 2006, 26(1): 6-11.
    [65]周祖昊,王浩,贾仰文,等.缺资料地区日均降雨时间上向下尺度化方法探讨——以黄河流域为例.资源科学, 2005, 27(1): 92-96.
    [66] Patrick A, Jacques L. Using a stochastic model for generating hourly hyetographs to study extreme rainfalls. Hydrological Science Journal, 1999, 44(3): 433-446.
    [67] Rebora N, Ferraris L, Hardenberg J Von, et al. Stochastic downscaling of LAM predictions: an example in the Mediterranean area. Advances in Grosciences, 2005b, 2: 181-185.
    [68] Olsson J. Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrology and Earth System Sciences, 1998, 2(1): 19-30.
    [69] Olsson J, Berndtsson R. Temporal rainfall disaggregation based on scaling properties. Water Science Technology, 1998, 37(11): 73-79.
    [70] Guntner A, Olsson J, Calver A, et al. Cascade-based disaggregation of continuous rainfall time series: the influence of climate. Hydrology and Earth System Sciences, 2001, 5(2): 145-164.
    [71] Molnar P, Burlando P. Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmospheric Research, 2005, 77: 137-151.
    [72] Gaume E, Mouhous N, Andrieu H. Rainfall stochastic disaggregation models: calibration and validation of a multiplicative cascade model. Advances in Water Resources, 2007, 30(5): 1301-1319.
    [73] Menabde M, Sivapalan M. Modeling of rainfall time series and extremes using bounded random cascades and Levy-stable distribution. Water Resources Research, 2000, 36(11): 3293-3300.
    [74] Cowpertwait P S P, Lockie T, Davis M D. A stochastic spatial-temporal disaggregation model for rainfall. Res. Lett. Inf. Math. Sci., 2004, 6: 109-122.
    [75] Cernesson F, Lavabre J, Masson J M. Stochastic model for generating hourly hyerographs. Atmospheric Research, 1996, 42: 149-161.
    [76] Frost A J, Srikanthan R, Cowpertwait P S P. Stochastic generation of point rainfall data at sub-daily timescales: a comparison of DRIP and NSRP, Report 04/09. Cooperative Research Centre for Catchment Hydrology, 2004: 1813-1819.
    [77] Wu S J, Tung Y K, Yang J C. Stochastic generation of hourly rainstorm events. Stochastic Environmental Research and Risk Assessment, 2006, 21: 195-212.
    [78] Gyasi-Agyei Y, Willgoose G R. Generalisation of a hybrid model for point rainfall. Journal of Hydrology, 1999, 219 (3-4): 218-224.
    [79] Acreman M C. A simple stochastic model of hourly rainfall for Farnborough, England. Hydrological Sciences-Journal-des Sciences Hydrologiques, 1990, 35(2): 119-148.
    [80] Cowpertwait P S P. Further developments of the Neyman-Scoa clustered point process for modeling rainfall. Water Resources Research, 1991, 27(7): 1431-1438.
    [81] Onof C, Wheater H S. Modelling of British rainfall using a random parameter Bartlett-Lewis rectangular pulse model. Journal of Hydrology, 1993, 149: 67-95.
    [82] Cowpertwait P S P, O’Connell P E, Metcalfe A V, et al. Stochastic point process modelling of rainfall: single-site fitting and validation. Journal of Hydrology, 1996, 175: 17-46.
    [83] Gyasi-Agyei Y, Willgoose G R. Generalisation of a hybrid model for point rainfall. Journal of Hydrology, 1999, 219(3-4): 218-224.
    [84] Bo Z, Islam S, Eltahir E. Aggregation–disaggregation properties of a stochastic rainfall model. Water Resources Research, 1994, 30(12): 3423-3435.
    [85] Gyasi-Agyei Y. Identification of regional parameters of a stochastic model for rainfall disaggregation. Journal of Hydrology, 1999, 223: 148-163.
    [86] Gyasi-Agyei Y. Stochastic disaggregation of daily rainfall into one-hour time scale. Journal of Hydrology, 2005, 309: 178-190.
    [87] Gyasi-Agyei Y, Willgoose G R. A hybrid model for point rainfall modeling. Water Resources Research, 1997, 33 (7), 1699-1706.
    [88] Cowpertwait P S P. A spatial-temporal point process model of rainfall for Thames catchment, UK. Journal of Hydrology, 2006, 330: 586-595.
    [89] Kim S, Kavvas M L. Stochastic point rainfall modeling for correlated rain cell intensity and duration. Journal of Hydrologic Engineering, 2006, 11(1): 29-36.
    [90] Heneker T M, Lambert M F, Kuczera G. A point rainfall model for risk-based design. Journal of Hydrology, 2001, 247: 54-71.
    [91] Koutsoyiannis D, Pachakis D. Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series. Journal of Geophysical Research-Atmospheres, 1996, 101 (D21): 26441-26451.
    [92] Koutsoyiannis D, Onof C, Wheater H S. Multivariate rainfall disaggregation at a fine time scale. Water Resources Research, 2003, 39 (7): 1-18.
    [93] Guenni L, Bardossy A. A two step disaggregation method for highly seasonal monthly rainfall. Stochastic Environmental Research and Risk Assessment, 2002, 16: 188-206.
    [94] Tan S K, Sia SY. Synthetic generation of tropical rainfall time series using an event-based method. Journal of Hydraulic Engineering, 1997, 2(2): 83-99.
    [95] Onof C, Wheater H S. Imprvoved fittling of the Bartlett-Lewis Rectangular puls model for hourly rainfall. Hydrological Science-Journal-des Science Hydrologiques, 1994, 39(6): 663-680.
    [96] Koutsoyiannis D, Onof C. Rainfall disaggregation using adjusting procedure on a Poisson cluster model. Journal of Hydrology, 2001, 246: 109-122.
    [97] Rodriguez-Iturbe I, Cox D R, Isham V. A point process model for rainfall: further developments. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 1988, 417(1853): 283-298.
    [98] Onof C, Chandler R E, Kakou A, et al. Rainfall modeling using Poisson-cluster processes: A review of developments. Stochastic Environmental Research and Risk Assessment, 2000, 14: 384-411.
    [99] Velghe T, Troch P A, Troch De F P, et al. Evaluation of cluster-based rectangular pulses point process models for rainfall. Water Resources Research, 1994, 30(10): 2847-2857.
    [100] Koutsoyiannis D. A stochastic disaggregation method for design storm and flood synthesis. Journal of Hydrology, 1994, 156: 193-225.
    [101]李志文,狄方洪,那景坤.小流域雨量站站网密度分析.黑龙江水专学报, 1992, 26(4): 13-14.
    [102] Hershenhorn J, Woolhiser D A. Disaggregation of daily rainfall. Journal of Hydrology, 1987, 95: 229-322.
    [103] Connolly R D, Schirmer J, Dunn P K. A daily rainfall disaggregation model. Agricultural and Forest Meteorology, 1998, 92: 105-117.
    [104]李铁键.流域泥沙动力学机理与过程模拟[清博士学位论文].北京:清华大学水利系, 2008.
    [105]王光谦,薛海,李铁键.黄土高原沟坡重力侵蚀的理论模型.应用基础与工程科学学报, 2005a, 13(4): 335-344.
    [106]王光谦,薛海,刘家宏.坡面产沙理论模型.应用基础与工程科学学报, 2005b, (S1): 1-7.
    [107] Fang H Y, Chen H, Cai Q G, Li Q Y. Scale effect on sediment yield from sloping surface to basins in hilly loess region on the Loess Plateau in China. Environmental Geology, 2007, 52: 753-760.
    [108] Duan J G, Nanda S K. Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a grogyne field. Journal of Hydrology, 2006, 327, 426-437.
    [109] Zoppou Z, Roberts S. Explicit schemes for dam-break simulations. Journal of Hydraulic Engineering, 2003, 129(1): 11-34.
    [110] Duan J G. Numerical analysis of river channel processes with bank erosion-Discussion. Journal of Hydrolaulic Engineering, 2001, 127(8): 702-702.
    [111] Duan J G, Juliern P Y. Numerical simulation of the inception of channel meandering. Earth Surface Processes and Landforms, 2005, 30, 1093-1110.
    [112] Wu W M, Vieira D A, Wang S S Y. One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks. Journal of Hydraulic Engineering, 2004, 130(9): 914-923.
    [113]赵业安,周文浩.“黄河下游河道演变基本规律”研究综述.人民黄河, 1996, (9): 4-9.
    [114] Richenmann D. Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering, 1991, 117(11): 1419-1439.
    [115] Ni J R, Huang X J, Borthwick A G L. Characteristics of hyperconcentrated sediment-laden flows. Journal of Engeering Mechanics, 2003, 129(12): 1489-1493.
    [116] Ni J R, Wang G Q, Borthwick A G L. Borthwick, Kinetic theory for particles in dilute and dense solid-liquid flows. Journal of Hydraulic Engineering, 2000, 126(12): 893-903.
    [117] Ni J R, Zhang H W, Xue A, et al. Modeling of hypeconcentrated sediment-laden floods in Lower Yellow River. Journal of Hydraulic Engineering, 2004, 130(10):1025-1032.
    [118]韦直林,赵良奎,付小平.黄河泥沙数学模型研究.武汉水利电力大学学报, 1997, 30(5): 21-25.
    [119]王士强.黄河泥沙冲淤数学模型研究.水科学进展, 1996, 7(3): 193-199.
    [120]王新宏,程文,曹如轩,等.黄河中游龙潼河段一维悬移质泥沙数学模型.西安理工大学学报, 1996, 12(3): 251-256.
    [121] Zhang H W, Huang Y D, Zhao L J. A mathematical model for unsteady sediment transport in the Lower Yellow River. International Journal of Sediment Research, 2001, 16(2): 150-158.
    [122] Liu F, Feyen J, Berlamont J. Computation method for regulating unsteady flow in open channels. Journal of Irrigation and Drainage Engineering, 1992, 118(10): 674-689.
    [123] Bhallamudi S M, Chaudhry M H. Numerical modeling of aggradation and degradation in alluvial channels. Journal of Hydraulic Engineering, 1991, 117(9): 1145-1164.
    [124]王新宏,曹如轩,沈晋.非均匀悬移质恢复饱和系数的探讨.水利学报, 2003, 3: 120-128.
    [125]李义天,尚全民.一维不恒定流泥沙数学模型.泥沙研究, 1998, 1: 81-87.
    [126] Zhou J J, Lin B N. One-dimensional mathematical model for suspended sediment by lateral integration. Journal of Hydraulic Engineering, 1998, 124(7): 712-717.
    [127]方红卫,王光谦.一维全沙泥沙输移数学模型及其应用.应用基础与工程科学学报, 2000, 8(2): 154-164.
    [128] Marien J L, Vandewiele G L. A point rainfall generator with internal storm structure. Water Resources Research, 1986, 22(4): 475-482.
    [129] Cao Z X, Pender G, Carling P. Shallow water hydrodynamic models for hyperconcentrated sediment-laden floods over erodible bed. Advance in Water Resource, 2006, 29: 546-557.
    [130]于清来,窦国仁.高含沙河流泥沙数学模型研究.南京水利科学研究院.水利水运科学研究, 1996, 6(2): 107-115.
    [131] Guo Q C, Jin Y C. Modeling nonuniform suspended sediment transport in alluvial rivers. Journal of Hydraulic Engineering, 2002, 128(9): 839-847.
    [132] Wu W M, Wang S S Y. One-dimensional modeling of dam-break flow over movable beds. Journal of Hydraulic Engineering, 2007, 133(1): 48-58.
    [133] Cao Z X, Pender G, Wallis S, et al. Computational dam-break hydraulics over erodible sediment bed. Journal of Hydraulic Engineering, 2004, 7(1): 689-703.
    [134]谢鉴衡.河流模拟.北京:水利电力出版社, 1990: 8-13.
    [135]杨国录.河流数学模型.北京:海洋出版社, 1993, 10: 100-183.
    [136] Burguete J, Garcia-Navarro P, Murillo J, et al. Analysis of the friction term in the one-dimensional shallow-water model. Journal of Hydraulic Engineering, 2007, 133(9): 1048-1063.
    [137] Cao Z X. Equilibrium near-bed concentration of suspended sediment. Journal of Hydraulic Engineering, 1999, 125(12): 1270-1278.
    [138]钱意颖,曲少军,曹文洪,等.黄河泥沙冲淤数学模型.郑州:黄河水利出版社, 1998: 10-25.
    [139]张瑞瑾,谢鉴衡.泥沙研究.北京:水利水电出版社, 1993.
    [140] Kassem A A, Chaudhry M H. Comparison of coupled and semicoupled numerical models for alluvial channels. Journal of Hydraulic Engineering, 1998, 124(8): 794-802.
    [141] Ying X, Khan A A, Wang S S Y. Upwind conservative scheme for the Saint Venant equations. Journal of Hydraulic Engineering, 2004, 130(10): 977-987.
    [142] Venutelli M. Stability and accuracy of weighted four-point implicit finite difference schemes for open channel flow. Journal of Hydraulic Engineering, 2002, 128(3): 281-288.
    [143]巨江,林劲松.非恒定悬移质不平衡输沙的研究.水利学报, 1995, 3: 77-83.
    [144] Cao Z X, Li Y T, Yue Z Y. Multiple time scales of alluvial rivers carrying suspended sediment and their implications for mathematical modeling. Advances in Water Resources, 2007, 30: 715-729.
    [145]钱宁,洪柔嘉,麦乔威,等.黄河下游的糙率问题.泥沙研究, 1959, 4(1): 1-15.
    [146]张红武,江恩惠,白咏梅,等.黄河高含沙洪水模型的相似率.河南:科学技术出版社, 1994: 69-76.
    [147]张红艺,周赤建,张欧阳,等.高含沙水流挟沙力计算公式研究.水力发电学报, 2004, 23(1): 74-78.
    [148]韩其为,何明民.恢复饱和系数初步研究.泥沙研究, 1997, (3): 32-40.
    [149] Saied S. Coupled modeling of alluvial flows. Journal of Hydraulic Engineering, 1997, 123(5): 440-446.
    [150] Soni J P, Garde R J, Raju K G R. Aggradation in streams due to overloading. Journal of Hydraulic Division, ASCE, 1980, 106(1): 117-132.
    [151] Beven K, Binley A. The future of distributed models: model clibration and unvertainty prediction. Hydrological Processes, 1992, 6: 279-298.
    [152] Roux H, Dartus D. Sensitivity analysis and predictive uncertainty using inundation observations for parameter estimation in open-channel inverse problem. Journal of Hydraulic Engineering, 2008, 134(5): 541-549.
    [153] Pappenberger F, Beven K, Horritt M, et al. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observation. Journal of Hydrology, 2005, 302: 46-69.
    [154] Burguete J, Garcia-Navarro P, Murillo J, et al. Analysis of the friction term in the one-dimensional shallow-water model. Journal of Hydraulic Engineering, 2007, 133(9): 1048-1063.
    [155] Neal J C, Atkinson P M, Hutton C W. Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurement. Journal of Hydrology, 2007, 336: 401-415.
    [156] Pinto L, Fortunato A B, Freire P. Sensitivity analysis of non-cohesive sediment transport formulae. Continental Shelf Research, 2006, 26: 1826-1839.
    [157] Roux H, Dartus D. Sensitivity analysis and predictive uncertainty using inundation observations for parameter estimation in open-channel inverse problem. Journal of Hydraulic Engineering, 2008, 134(5), 541-549.
    [158] Brunron D A, Bryan R B. Rill network development and sediment budgets. Earth Surface Processes and Landforms, 2000, 25: 783-800.
    [159]李新,程国栋,卢玲.空间内插方法比较.地球科学进展, 2000, 15(3): 260-265.
    [160] Olsson J, Niemczynowics J. Multifractal analysis of daily spatial rainfall distribution. Journal of Hydrology, 1996, (187): 29-43.
    [161] Xu J X. Hyperconcentrated flows in the slope-channel systems in gullied hilly areas on the Loess Plateau, China. Geografiska Annaler: Series A, Physical Geography, 2004c: 349-366.
    [162]李铁键,刘家宏,和杨,等.集群计算在数字流域模型中的应用.水科学进展, 2006b, 17(6): 841-846.
    [163]张金慧,李明芝,张林,等.黄河中游粗泥沙集中来源区现有治理措施拦泥效益分析.中国水土保持, 2006, (10): 50-51.
    [164]徐建华,吴成基,林银平,等.黄河中游粗泥沙集中来源区界定研究.水土保持学报, 2006, 20(1): 6-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700