用户名: 密码: 验证码:
生物油低温催化加氢预处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验设计了一套处理能力为2kg/h的快速裂解装置,该装置由进料系统、反应系统、分离系统、冷凝系统和控制系统组成,进料系统采用两级螺旋进料,分离系统采用两级旋风分离,冷凝系统由三级冷凝:一级是管壁式冷凝,二级是蛇管式冷凝,三级除雾器。
     应用快速流化床反应器考察了反应温度、停留时间、进料量和冷凝温度等因素对液体产率的影响,生物质的停留时间是通过气体流速控制。当气体流速达到2.8m3/h、反应温度500℃时液体产率最高(70wt%)。冷凝温度对生物油产品分布也有一定的影响:一级冷凝液(温度>100℃、液体产率25%)主要是一些大分子的酸、酯;二级冷凝液(温度>50℃,液体产率17%)除了含有大量的水之外,还含有一些极性很强的有机化合物如一些小分子的酸、醛、酚;三级是除雾器(液体产率20%)主要是收集气体中的气溶胶。
     生物油因其高含水量、高含氧量、高粘度、低热值等不利因素限制了生物油的利用。实验应用高压釜反应器对生物油进行加氢脱氧预处理。实验主要考察了反应条件(温度、时间、催化助剂和催化剂)对加氢脱氧效果的影响,在最优条件下(Pt/γ-Al2O3催化剂、反应温度240℃,氢压6MPa,反应1h)下,生物油脱氧率为50wt%,生物油的热值增到33.45MJ/kg,生物油发生油水分离。GC-MS分析显示生物油中的醛、酮和酸大量减少,酚不变,酯和碳氢化合物的含量有所增加。为了进一步脱除生物油中的氧,提高生物油品质,实验在低温处理的基础上继续进行高温(<350℃)加氢脱氧,高温段的加氢催化剂选择传统石油加氢催化剂RN32V,实验同时考察了温度、时间和催化助剂对生物油精制的影响。结果显示当温度330℃、反应1h,生物油在1%三乙胺催化助剂的催化作用下的脱氧率达到84wt%。
A fast pyrolysis experimental unit with a treatment capacity of 2kg/h is designed firstly. The experimental device consists of a feeding system(two-stage spiral feeding), a reaction system, a separation system(two-stage cyclone), a condensate system(the wall condensation snake-shaped tube condenser and a mist eliminator) and a control system.
     The fast pyrolysis experiment examined the influence of feeding quantity, residence time, particle size and reaction temperature on the liquid yield, the results show that the yield of liquid can reach up to 70wt% when the liquid residence time is less than Is, the granular particle diameter is less than lmm and the reaction temperature is 500℃. The experiment also investigated the influence of the condensation temperature on the quality of bio-oil. The condensate at the first level (above 100℃) mainly has acids and esters with large molecules; the condensate at the second level (above 50℃) mainly has aldehydes, ketones and phenol; and the condensate at the third level (below 50℃) mainly has small polar molecules such as acids, aldehydes, phenol as well as a lot of water. The acid has equal distribution in the three condensates.
     The high water content, high oxygen content, high viscosity, low calorific value and other unfavorable factors limit the use of bio-oil. The deoxygenation of bio-oil is investigated in the presence of catalyst in an autoclave. The experiment studies the influence of the temperature, reaction time, The finally deoxynation of bio-oil was 50wt% on optimal condition (Pt/γ-Al2O3、240℃、1h、6MPa), which value jump to 33.4KJ/kg and water separated from bio-oil. The results of GC-MS revealed that the content of acid、aldehyde and alkone in the bio-oil decreased, phenol same, and eater increased with hydrocarbon. For the further deoxygenation to enhance the bio-oil quality, Continully, playing experiment at high temperature, the final deoxynation decreased 84% in 330℃、1h and exist of 1% triethylamine(promoter of RN32V).
引文
[1]李洪宇.生物质快速裂解及生物油在线精制研究[D].上海:华东理工大学.2008
    [2]Demirbas Ayhan. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Concersion and Management.2001,42:1357-1378
    [3]张瑞芹.生物质衍生的燃料和化学物质[M].郑州:郑州大学出版社.2004,9
    [4]刘荣厚.新能源工程[M].北京:中国农业出版社.2006,10
    [5]Shaddix R, Huey S. Combustion characteristics of fast pyrolysis oils derived from hybrid poplar. In Developments in Thermochemical Biomall Conversion. Bridgwater AV. Boocock DGB Eds. Blackie Academic & Professional:London.1997, pp465-480
    [6]Gust S. Combustion of pyrolysis liquids. In:Kaltschmitt M.Bridgwater AV, editors. Biomass Gasification and pyrolysis[J]. CPL Press.1997, p.498-503
    [7]Ramage J, Scurlock J. Biomass. Boyle G. Renewable energy-power for a substainable future[M]. Oxford:Oxford university press.1996
    [8]World Energy Council 1994. New renewable energy resources[M]. Kogan Page, London. 1994
    [9]沈英.国外专利文献.精细化工原料及中间体[P].2010,6
    [10]Overend R P. Biomass gasification:a growing business[J]. Renew Energy World.1998, 159-163
    [11]吴家桦,沈来宏,王雷等.串行流化床生物质气化制氢试验研究.太阳能学报.2010,31(2):242-247
    [12]刘荣厚.生物质快速热裂解制取生物油技术的研究进展[J].沈阳农业大学学报.2007,38(1):3-7
    [13]刘宝勇,郭贞,郭庆杰等.生物质热解与热解油精制[J].中国粉体技术.2007,3:39-43
    [14]张巍巍,陈雪莉,于遵宏.生物质慢速热解工艺的新探讨[J].环境科学与技术.2008,2(31):38-42
    [15]Scott D S, Majerski P, Piskorz J, et al. A second look at fast pyrolysis of biomass the RTI process [J]. Journal of Analytical and Applied Pyrolysis.1999,51(1):23-27
    [16]曾其良,王述洋,徐凯宏.典型生物质快速热解工艺流程及其性能评价[J].森林工程.2008,24(3):47-50
    [17]A.V. Bridgwater. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of Analytical and Applied Pyrolysis.1999,51:3-22
    [18]张素平,颜涌捷.生物质制液体燃料的研究[D].2002
    [19]A.V. Bridgwater, D. Meier and D. Radlein. An overview of fast pyrolysis of biomass[J]. Organic Geochemistry.1999,30:1479-1493
    [20]Scott D S, Piskorz J, Westerberg I B, et al. Flash pryolysis of peat in a fluidized bed[J]. Fuel Processing Technology.1988,18:81-95
    [21]李世光,徐绍平.煤与生物质的共热解[J].煤炭转化.2002,25(1):7-12
    [22]Li Shiguang, Xu Shaoping, Liu Shupin. Fast pyrolysis of biomass in free fall reactor for hydrogen rich gas[J]. Fuel processing Technology.2004,85:1201-1211
    [23]Wagenaar B M, Prins W, Vanswaaij W P M. Pyrolysis of biomass in the rotating cone reactor:Modeling and experimental justification [J]. Chemical Engineering Science. 1994,49(24B):5109-5126
    [24]A. A. Lappas, M. C. Samolada, D. K. Iatridis, et al. Biomass pyrolysis in a circulating fluid-bed reactor for the production of fuels and chemicals[J]. Fuel.2002,81:2087-2095
    [25]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源.2004,3:11-14
    [26]Czernik S, Bridgwater A V. Overview of Application of Biomass Fast Pyrolysis Oil[J]. Evergy&Frels.2004,25(6):1049-1052
    [27]A.V. Bridgwater, M.L. Cottam. Opportunities for biomass pyrolysis liquids production and upgrading[J]. Eengy and fuels.1992,6(2):113-120
    [28]Mahfud F H. Exploratorly Studies on Fast Pyrolysis Oil Upgrading[D]. Faculty of Mathematics and Natural Science.2007
    [29]Senol O I, Ryymin E M, Viljava T R, et al. Reactions of Methyl Heptanoate Hydro.deoxygenation[J]. Journal of Molecular Catalysis A:Chemical.2007,268:1-8.
    [30]Pindoria R V, Megaritis A, Herod A A, et al. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass:Effect of catalyst temperature, pressure and catalyst aging time on product characteristics[J]. Fues.1998, 77(15):1715-1726
    [31]徐俊明,蒋剑春等.改性生物质热解油的组成及特性[J].太阳能学报.2010,31(2):253-260
    [321 Yueling Gu, Zuogang Guo. Experimental research on catalytic esterification of bio-oil volatile fraction[J]. Power and Energy Engineering Conference (APPEEC).2010,28-31: 1-4
    [33]姚燕,王树荣,骆仲泱,岑可法.生物油轻质馏分加氢试验研究[J].工程热物理学报.2008,29(4):715-719
    [34]Mahfud F H, Ghijsen F, Heeres H J. Hydrogenation of fast pyrolysis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts[J]. Journal of Molecular Catalysis A:Chmical.2007,264(1/2):227-236
    [35]阮仁祥,李文志等.生物油轻组分的催化氢化与酯化[J].中国科技论文在线.2010,5(3):217-224
    [36]Zhang Suping, Yan Yongjie, Li T ingchen, et al. Upgrading of Liquid Fuel from the Pyrolysis of Biomass[J].Bioresource Technology.2005,96(5):545-550
    [37]V.A.Yakovlev, S.A.Khromova, et al. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel[J]. Catalysis Today.2009,144: 362-366
    [38]Elliott D C, Neuenschwander G G. Liquid Fuel by Low-Severity Hydrotreating of Biocrude[J]. In:Bridge water A V, Bock D G B, eds
    [39]Adam J, Antonakou E, lappas A.et al.In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous material [J]. Microporous and Mesoporous materials.2006,96(1-3):93-101
    [40]Zhang Qi, Chang Jie, Wang Tiejun, Xu Ying. Review of Biomass Pyrolysis Oil Properties and Upgrading Research[J]. Energy Conversion and Management.2007, (48):87-92
    [41]Gandarias I, Barrio V L, Requies J, et al. From Biomass to Fuels[J]. Hydrogen Energy. 2008, (33):3485-2488
    [42]Weiyan Wang, Yunquan Yang. Characterization and hydrodeoxygenation properties of Co promoted Ni-Mo-B amorphous catalysts:influence of Co content[J]. Reaction Kinetics, Mechanisms and Catalysis.2010,101(1):105-115
    [43]Murni M, Ahmad M, Fitrir R, et al. Upgrading of Bio-Oil into High-Value Hydrocarbons via Hydrodeoxygenation[J]. American Journal of Applied Sciences.2010,7(6):746-755
    [44]Courtney A, Fisk, Tonya Morgan, et al. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Applied Catalysis A:General.2009,358:150-156
    [45]Elham Karimi, Ariel Gomez.et. Thermal Decomposition of Acetic and Formic Acid Catalyzed by Red Mud Implications for the Potential Use of Red Mud as a Pyrolysis Bio-Oil Upgrading Catalyst[J]. Energy fuels.2010,24:2747-2757
    [46]Steven Crossley, Jimmy Faria. Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface[J]. Science.2010,327:68-74
    [47]郑宏杰,李敏,徐斌等.水-有机两相体系中钌络合物催化肉桂醛选择性加氢反应研究[J].化学研究与应用.2005,17(2):183-185
    [48]Wei, Hong-Ge Zhong, Zhao-Ping, et al. Research on solid catalysts base hydrogenation for bio-oil model compounds[J]. Kezaisheng Nengyuan.2010,28(1):52-55
    [49]郭晓亚,颜涌捷,李庭琛等.生物质裂解油催化裂解精制[J].过程工程学报.2003,3(1):91-95
    [50]Xiaoya Guo, Yong Zheng. Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil[J]. biomass and bioenergy.2009,33: 1469-1473
    Jun Peng, Ping Chen. Catalytic upgrading of bio-oil by HZSM-5 in sub-and super-critical ethanol[J]. Bioresource Technology.2009,100:3415-3418
    [52]Adjaye J D, Bakhshi N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals:Chemical kinetics, parameter estimation and model predictions[J]. Biomass and Bioenergy.1995,8(4):265-277
    [53]Nokkosmaki M I, Kuoppala E T, Leppamaki E A, et al. Catalytic conversion of biomass pyrolysis vapours with zinc oxide[J]. J Anal Appl Pyrolysis.2000,55(1):119-131
    [54]Adam J, Blazso M, Moszhros E, et al. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J]. Fuel.2005,84(12/13):1494-1502
    [55]Jun Huang, Wei Long. Effects of Acidity on the Conversion of the Model Bio-oil Ketone Cyclopentanone on H Y Zeolites[J].J. Phys. Chem. C.2009, (113):16702-16710
    [56]Diebold J P, Czemik S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage[J]. Eergy & Fuels.1997, (11):1081-1091
    [57]Lopez Juste G, Salva Monfort J J. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor[J]. Biomass and Bioenergy.2000,19:119-128
    [58]Ikura M, Stanciulescu M, Hogan E. Emulsifcation of pyrolysis derived bio-oil in diesel fuel[J]. Biomass and bioenergy.2003,24:221-232
    [59]Zhang Qi, Chang Jie, Wang Tiejun, et al. Upgrading bio-oil over different silid catalysts[J]. Energy & Fuels.2006,20:2712-2710
    [60]Yang Tang, Wanjin Yu. One-Step Hydrogenation#Esterification of Aldehyde and Acid to Ester over Bifunctional Pt Catalysts:A Model Reaction as Novel Route for Catalytic Upgrading of Fast Pyrolysis Bio-Oil[J]. Energy & Fuels.2008,22:3484-3488
    [61]WANG Qil, YAO Yan. Experimental research on bio-oil catalytic esterification using cation exchange resins[J]. Journal of Zhejiang University(Engineering Science).2009, 05
    [62]XIONG Wan-Ming, FU Yao. Upgrading of Bio-oil via Esterification Catalysted with Acidic Ion-exchange Resin. Chemical Journal of Chinese Universities.2009,09
    [63]Nattaporn Lohitharn, Brent H. Shanks. Upgrading of bio-oil:Effect of light aldehydes on acetic acid removal via esterification. Catalysis Communications.2009,11:96-99
    [64]Junming Xu, Jianchun Jiang. Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase[J]. biomass and bioenergy.2010,34:1059-1063
    [65]Min Song, Zhaoping Zhong. Different solid acid catalysts influence on properties and chemical composition change of upgrading bio-oil. Journal of Analytical and Applied Pyrolysis.2010,89:166-170
    [66]Ronghai He, X. Philip Ye. Effects of high-pressure homogenization on physicochemical properties and storage stability of switchgrass bio-oil[J]. Fuel Processing Technology. 2009,90:415-421
    [67]Bridgwater A V. Biomass pyrolysis system design[A]. Biomss Pyrolysis liquids[J]. Upgrading and Utilisatio[C],1591-1602
    [68]Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of Analytical and Applied Pyrolysis.1999,51:3-22
    [69]魏新利,贺心燕.生物质热解装置螺旋加料系统研究[J].可再生能源.2007,25(6):17-24
    [70]王晓艳,董良杰.生物质热裂解制取生物油装置的螺旋给料机设计[J].吉林农业大学学报.2005,27(5):582~585
    [71]徐水龙.螺旋喂料器的设计改进[J].粮食与饲料工业.1995,5:11-12
    [72]上海机电设计院.铸造车间机械化--斗式提升机[M].1956
    [73]《电机工程手册》编辑委员会.机械工程手册(第13篇;物料搬运设备卷)[M].1997
    [74].狩野武,赖耿阳.粉粒体输送装置[M].1979
    [75].梁庚煌.运输机械手册[M].1983
    [76]电机工程手册编辑委员会.机械工程手册(第68篇运输机械)[M].北京:机械工业出版社.1991
    [77]万仁新.生物质能工程[M].北京:中国农业出版社.1995
    [78]Ays.e E. Putun, Esin Apaydin, Ersan Putun. Bio-oil production from pyrolysis soybean-cake. Product yields and composition[J]. Energy.2002(27):703-713
    [79]夏廷栋,胥德孝等.实用密封技术手册[M].哈尔滨:黑龙江科学技术出版社.1985
    [80]奚翠.密封装置设计基础[M].合肥:安徽科技出版社.1987
    [81]时均,汪家鼎,余国宗,陈敏恒.化学工程手册(第二版)下卷[M].北京:化学工业出版社.1996.
    [82]朱炳辰,化学反应工程[M].2011.
    [83][加]P巴苏.S.A弗雷泽.循环流化床锅炉的设计与运行[M].岑可法等译.北京:科学出版社.199
    [84]李玉柱,董良杰.生物质热裂解用流化床反应器实验装置的设计[D].2010
    [85]刘焕彩流化床锅炉原理与设计[M].1988
    [86]霍华德.F.拉塞.化学反应器设计[M].化学工业出版社.1977
    [87]朱开宏,李伟等.化学反应器的设计、优化和放大[M].2004
    [88]岑可法,倪明江,骆仲泱.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998
    [89]张艳辉,刘有智.旋风除尘器的研究进展[M].1998(04)
    [90]王克.旋风除尘器结构设计探析[J].矿山机械.2003,7
    [91]金国淼.除尘设备[M].化学工业出版社.2002
    [92]李志合,易维明,李永军等.等离子体加热流化床反应器的设计与实验[J].农业机械学报.2007.38(4):66-69.
    [93]Jelle Wildschut, Farchad H. Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts[J]. Ind. Eng. Chem. Res.2009,48:10324-10334
    [94]刘荣厚,栾敬德.榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究[J].农业工程学报.2008.24(5):187-190.
    [95]Pan W P, Richards G N. Influent of metal ions on volatiles products of pyrolysis of wood[J]. J.Anal.Appl.Pyrolysis.1989,16:117-126
    [96]任铮伟,徐清.流化床生物质快速裂解制液体燃料[J].太阳能学报.2002,23(4):462-470
    [97]陆强,朱锡锋,李文志等.生物质快速热解产物在线催化提质研究[J].科学通报.2009,54(8):1139-1146
    [98]石文,张长森等.分级冷凝与电捕获器分离精制生物油研究[J]. Modern Chemical Industry.2010,30(3):51-57
    [99]Diebold J P. A Review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils[EB/OL]. http://www.p2pays.org/ref/19/18946.pdf. 1999-08-27/2007-1-17
    [100]Wang DN, Czernik S, Montane D, et al. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil and its fractions[J]. Industrial and Engineering Chemistry Research.1997,36(5):1507-1512
    [101]Wang DN, Czernik S, Chornet E. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolytic oils[J]. Energy and Fuels.1998,12(1):19-26
    [102]Ying Xua, Tiejun Wang. Upgrading of liquid fuel from the vacuum pyrolysis of biomass over the Mo-Ni/-A12O3 catalysts[J].BIOMASS AND BIOENERGY.2009,33: 1030-1036
    [103]Puentedela G, Gil A, Pis J J and Grange P. Effects of support surface chemistry in hydrodeoxgenation reactions over CoMo/activated carbon sulfided catalysts[J].langmuir. 1999, (15):5800-5806
    [104]高金森,张红梅,张福琴.反应温度及掺渣油比对渣油催化裂化生焦率的影响[J].石油炼制与化工.1998,29(5):12-15
    [105]Courtney A.Fisk, Tonya Morgan, Yaying Ji. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Applied Catalysis A:Gneral.2009,358:150-156
    [106]Pindoria R V, Megaritis A, Herod A A, et al. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass:Effect of catalyst temperature, pressure and catalyst aging time on product characteristics[J]. Fues.1998, 77(15):1715-1726
    [107]徐俊明等.生物热解油精制改性研究进展[J].现代化工.2007,27(7):13~17
    [108]金杏妹.工业应用催化剂[M].华东理工大学出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700