用户名: 密码: 验证码:
生物质热解油气化实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质作为唯一可以液化的清洁的可再生能源,利用其快速热解制取的生物油可以解决生物质直接气化带来的收集、运输和储存问题。但是,生物油的高粘度、高含水量、强酸性、低热值和热不稳定等性质严重影响了生物油的品质,阻碍了生物油的高端应用,因此,将生物油热解气化转化为H_2、CO、CO_2、CH_4、C_2、C_3等合成原料气,再经过进一步的技术处理合成高品位的燃料如甲醇、二甲醚等是实现生物油的高质化利用重要途径之一。本文从机理分析、模拟预测、实验研究三个层面对生物油的气化进行了较为全面的研究。
     首先,在热重分析仪上对生物油的热解及燃烧进行研究,分析其热解及燃烧特征,确定生物油热解与燃烧的动力学机理模型及参数结果,并采用TG-FTIR联用技术对生物油样品热解过程中气体产物的释放特性进行在线分析,确定热解产物及其随温度变化的释放特性。结果表明:生物油热解分为两个阶段,燃烧分为三个阶段,热解的主要产物为CO、CO_2、H_2O和碳氢化合物等小分子气体。
     然后,基于Aspen Plus软件,选取具有代表性的模型化合物模拟生物油,采用Gibbs自由能最小化法建立了生物油气化模型,进行生物油气化全过程的模拟计算,在物料平衡、化学平衡的前提下,分析了温度、压力、气化剂量、反应气氛对反应产物参数的影响:温度的升高使得生物油分解更为彻底,目标产物H_2、CO含量增加;反应产物中H_2、CO含量与压力的增加成反比;选用O_2和H_2O作为气化剂时,较小的量较为适宜;CO_2作为生物油的气化剂是较好的选择。
     最后,在固定床气化系统上对生物油在不同的实验条件(反应温度、载气流量、反应气氛、在生物油中加入水)下的热解气化反应进行了实验研究,并与模拟结果加以比较,综合比较之后得到生物油气化的较优反应条件:800℃为实验条件下热解最佳温度;75ml/min的N_2气体流量为热解反应提供了最佳停留时间;O_2不适宜作为外热式气化系统的气化剂,用于工业应用时,也应选择较小的量;CO_2气氛下,CO产量有较大增加,H_2产量基本不变,因而是较优气化剂;热解气成分主要来自于生物油中不溶于水的大分子有机物。
Bio-oil made from fast pyrolysis of biomass is convenient for being collected, stored and transported with potential to be used as a fossil oil substitute. However, higher viscosity, higher moisture, higher acidity, lower heating value and heat instability are unbeneficial properties of bio-oil to be used in high class way. Therefore, it is one of the important approaches that changing bio-oil from the liquid into H_2, CO, CO_2, CH_4, C_2, C_3, etc. that could be used to synthesize high grand fuel such as methanol, dimethyl ether, etc. after further disposal. Form the aspects of mechanism, modeling and experiments, the gasification of bio-oil was fully investigated in this paper.
     Firstly, the investigations of pyrolysis and combustion of bio-oil were preformed using Thermo-gravimetric analyzer. The characteristics of pyrolysis and combustion of bio-oil were analyzed and kinetic mechanism model and parameters were obtained. The release behaviors of the products of pyrolysis were made on-line analysis by thermo-gravimetric analyzer coupled with Fourier Transform Infrared Spectroscopy.
     The products of pyrolysis were determined and the characteristics of release of them with temperature were studied. The results indicated that pyrolysis of bio-oil divided into two stages and combustion divided into three stages. The main products of pyrolysis are CO, CO_2, H_2O and hydrocarbons etc.
     Then, based on ASPEN PLUS, a bio-oil gasification model by the method of Gibbs free energy minimization was approached and representative model compounds were selected to simulate bio-oil. Analysis was made that the effects of relevant factors (such as temperature, pressure, the amount of gasification agent and reaction atmosphere) on parameters of products on the prerequisite of material balance and chemical equilibrium. The simulation results showed that the decomposition of bio-oil was more thoroughly and the concentration of H_2 and CO increased as temperature rised. The concentration of H_2 and CO was inversely proportional to the increase of pressure. It was more appropriate to choose a low amount when the gasification agent was O_2 and H_2O. It was a better choice that chooses CO_2 as gasification agent.
     Finally, experiments of bio-oil gasification were operated on fixed bed under various conditions (temperature, the flow of carrier gas, reaction atmosphere and adding water into bio-oil). The more optimal reaction conditions were given after simulation results were compared with experimental results. The results indicated that 800℃was the best temperature of pyrolysis under experimental conditions. The flow of N_2 of 75ml/min provided best residence time of pyrolysis. It was not appropriate that choose O_2 as gasification agent of external heated gasification system. When used for industrial application the low amount of O_2 was a better choice. When choosed CO_2 as gasification agent the concentration of H2 was almost invariant and the concentration of CO increased significantly. Therefore CO_2 was an appropriate gasification agent. The products of pyrolysis mainly formed from macromolecular organic compounds that were not soluble in water.
引文
[1]朱锡锋,生物质热解原理与技术. 2006,合肥:中国科学技术大学出版社.
    [2]朱清时,阎立峰,郭庆祥,生物质清洁能源. 2002,北京:化学工业出版社.
    [3]袁振宏,吴创之,马隆龙,生物质能利用原理与技术. 2005,北京:化学工业出版社.
    [4]姚向君,田宜水,生物质能资源清洁转化利用技术. 2004,北京:化学工业出版社.
    [5]姚向君,王革华,田宜水,国外生物质能政策与实践. 2006,北京:化学工业出版社.
    [6]肖波,周英彪,李建芬,生物质能循环经济技术. 2006,北京:化学工业出版社.
    [7]张瑞芹,生物质衍生的燃料和化学物质. 2004,郑州:郑州大学出版社.
    [8]马隆龙,吴创之,孙立,生物质气化技术及其应用. 2003,北京:化学工业出版社.
    [9]王贤华,生物质流化床热解液化实验研究及应用:[博士学位论文].武汉:华中科技大学图书馆, 2007.
    [10]朱锡锋,朱建萍,生物质热解液化技术经济分析.新能源及工艺, 2004. 6: p. 32-34.
    [11]唐汝江,陈汉平,王贤华,生物质油应用技术.能源技术, 2005. 4: p. 66-69.
    [12]朱锡锋,郑冀鲁,郭庆祥,生物质热解油的性质精制与利用.中国工程科学, 2005. 9: p. 83-88.
    [13]王栋,生物质热裂解实验研究和热裂解产物利用:[硕士学位论文].杭州:浙江大学图书馆, 2004.
    [14] Bimbela, F., M. Oliva, J. Ruiz, et al., Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids. Journal of Analytical and Applied Pyrolysis, 2007. 79(1-2): p. 112-120.
    [15] Davidian, T., N. Guilhaume, E. Iojoiu, et al., Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Applied Catalysis B: Environmental,2007. 73(1-2): p. 116-127.
    [16] Garcia, L., R. French, S. Czernik, et al., Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Applied Catalysis A: General, 2000. 201(2): p. 225-239.
    [17] Iojoiu, E.E., M.E. Domine, T. Davidian, et al., Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia. Applied Catalysis A: General, 2007. 323: p. 147-161.
    [18] Vagia, E.C.,A.A. Lemonidou, Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy, 2007. 32(2): p. 212-223.
    [19] Sotirchos, S.V.,A.R. Smith, Performance of Porous CaO Obtained from the Decomposition ofCalcium-Enriched Bio-Oil as Sorbent for SO2 and H2S Removal. Engineering Chemical, 2004. 43.
    [20]朱锡锋,郭涛,陆强,生物油雾化燃烧特性试验.中国科学技术大学学报, 2005. 12: p. 856-860.
    [21]朱锡锋,R. H.Venderbosch,生物质热解油气化试验研究.燃料化学学报, 2004. 8: p. 510-512.
    [22]朱锡锋,生物质液化制备合成气的研究.可再生能源, 2003. 1: p. 11-14.
    [23] R.H.Venderbosch, L.v.d.B., and W.Prins Entrained flow gasification of bio-oil for synthesis gas. Netherlands:Biomass Tachnology Group, 1998.
    [24] Panigrahi, S., S.T. Chaudhari, N.N. Bakhshi, et al., Production of Synthesis Gas/High-Btu Gaseous Fuel from Pyrolysis of Biomass-Derived Oil. 2002. p. 1392-1397.
    [25] Kinoshita, C.M.,S.Q. Turn, Production of hydrogen from bio-oil using CaO as a CO2 sorbent. International Journal of Hydrogen Energy, 2003. 28(10): p. 1065-1071.
    [26] CALIS, H.P.A.,H.B. J P HAAN,e. al, Preliminary techno-economic analysis of large-scale syn-thesis gas manufacturing from imported biomass[C]. Strasbourg:Pyrolysis and Gasification of Biomass andWaste Expert Meeting, 2002.
    [27]李余增,热分析. 1987,北京:清华大学出版社.
    [28]赵向富,生物质流化床气化实验研究与模拟:[硕士学位论文].武汉:华中科技大学图书馆, 2006.
    [29]胡荣祖,史启祯主编,热分析动力学. 2001,北京:科学出版社.
    [30]王世杰,陆继东,周琥等,石灰石颗粒分解的动力学模型研究.工程热物理学报, 2003. 24(4): p. 699-702.
    [31] Branca, C.,C. Di Blasi,R. Elefante, Devolatilization and heterogeneous combustion of wood fast pyrolysis oils. Industrial & Engineering Chemistry Research, 2005. 44(4): p. 799-810.
    [32]武景丽,汪丛伟,阴秀丽,生物油重质组分模型化合物的热重红外联用分析.新能源(第二界全国研究生生物质能研讨会专刊), 2007: p. 37-40.
    [33] Bassilakis, R.,R.M. Carangelo,M.A. Wojtowicz, TG-FTIR analysis of biomass pyrolysis. Fuel, 2001. 80: p. 1765-1786.
    [34]杨定国,波谱分析基础及应用. 1993,北京:纺织工业出版社.
    [35] Ferdous, D.,A.K. Dalai,S.K. Bej, Production of H2 and medium Btu gas via pyrolysis of lignins in a fixed bed reactor. Fuel Processing Technology, 2001. 70: p. 9-26.
    [36] Jong de, W.,A. Pirone,M.A. Wajtowicz, Pyrolysis of Miscanthus Giganteus and wood pellets:TG-FTIR analysis and reaction kinetics. Fuel, 2003. 82: p. 1139-1147.
    [37]徐越,吴一宁,危师让,基于ASPEN PLUS平台的干煤粉加压气流床气化性能模拟.西安交通大学学报, 2003. 37(7): p. 692-694.
    [38]赵琛琛,工业系统流程模拟利器——ASPEN PLUS.电站系统工程, 2003. 19(2): p. 56-58.
    [39]谢安俊,刘世华,张华岩,大型化工流程模拟软件——ASPEN PLUS.石油与天然气化工, 2005. 24(4): p. 247-253.
    [40] Ong'iro, A., V.I. Ugursal, A.M. Al Taweel, et al., Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN Plus. Applied Thermal Engineering, 1996. 16(3): p. 263-271.
    [41] Sotudeh-Gharebaagh, R., R. Legros, J. Chaouki, et al., Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel, 1998. 77(4): p. 327-337.
    [42] Mathieu, P.,R. Dubuisson, Performance analysis of a biomass gasifier. Energy Conversion and Management, 2002. 43(9-12): p. 1291-1299.
    [43]徐越,燃煤联合循环系统设计集成与干煤粉加压气化过程模拟:[博士学位论文]. p.西安:西安交通大学图书馆,2003.
    [44]汪洋,代正华,于广锁等,运用Gibbs自由能最小化方法模拟气流床煤气化炉.煤炭转化, 2004. 27(4): p. 27-33.
    [45]张素萍,颜涌捷,任铮伟,生物质快速裂解液体产物的分析.华东理工大学学报, 2001. 27(6): p. 666-668.
    [46] Seo, Y.-S.,A. Shirley,S. Kolaczkowski, Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. Power Sources, 2002. 108: p. 213-225.
    [47]中国大百科全书,北京:中国大百科全书出版社.
    [48]李浩春,分析化学手册(第五分册)气相色谱分析(第二版) 1999,北京:化学工业出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700