用户名: 密码: 验证码:
西藏高海拔地区台站生态化建设研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合成都某部“雪域兵心工程”的科研目标和目前西藏高海拔地区台站生态化建设所面临的紧迫性课题,拟着重研究解决我国西藏高海拔地区台站生态化建设需求与现有的生态化理论和技术之间的对接问题。以西藏高海拔地区的导航台、雷达站、通信站等营区的生态化建设为研究对象,采用资料搜集、实地调研、现场测试、计算机模拟、理论体系构建、实例检验等方法,对西藏高海拔地区台站的建筑环境、太阳能利用、生态化建设技术策略以及生态化建设评价等问题进行了深入系统的研究。完成的主要工作和取得的主要成果如下:
     首先,在相同的舒适室内热环境条件下,通过对移居人群在西藏高海拔地区(5300m)和中海拔地区(3550m)的单因素工效对比实验研究表明,打字正确率有显著性差异,样本工效受海拔高度因素的影响显著。
     对海拔5000米的西藏高海拔、低气压地区的建筑室内热环境和人体热舒适性特征的现场研究发现,该地区自然通风条件下被动式太阳房内人体热感觉(TS)中性温度为:19.42℃(ta;IcI=1.0clo),并得出了高海拔台站室内热舒适温度的范围:14.25~24.60℃(ta;Icl=1.0clo),完全不同于以往的相似研究的结果,且符合TSV=0.0966tα-1.6452线性变化规律。对高海拔地区既有建筑室内热环境和热工性能进行了现场测试,发现高海拔地区室内热环境的首要特征是空气湿度相对于公认标准(ISO7730)明显偏低。现场测试了外围护结构传热系数等基本热工特征参数,发现高海拔地区墙体传热系数与室外空气相对湿度存在相关关系:K=5×10-6φ4-O.0009φ3+0.0593φ8-1.6327φ+16.795。通过对现有建筑的热工性能测试结果、太阳辐射强度的实地观测结果以及人体热舒适温度处于更宽范围的现场研究成果的分析,认为西藏高海拔地区利用太阳能供暖是可行的。
     通过对西藏高海拔地区台站建筑的环境调查和监测,获得了台站环境影响评价的第一手基础数据,包括台站生活垃圾的人均日产生量(1.257kg/人.d)和组分以及台站人均日用水量(26.0L/人.d)、人均污水排放量和环境噪声等数据,并据此定量分析了台站对周围生态环境的影响程度。在对高海拔地区自然环境现场调研,台站建筑环境现状测试以及当地可再生能源——太阳能被动利用研究经验进行分析的基础上,指出了高海拔地区台站建筑的发展方向——生态建筑。构建了以太阳能被动利用为基础的高海拔地区台站生态化建设的技术策略体系。
     通过对现有的绿色建筑/生态建筑评价系统的分析,指出现有的绿色建筑/生态建筑评价系统不能简单化地用于高海拔地区台站生态化建设的评价。建立了高海拔地区台站生态化建设指标体系和评价数学模型。通过对实例评价的分析,结果显示这种评价方法对高海拔地区台站生态化建设的评价更为准确,解决了通常评价方法中存在的“主观赋权”问题对评价结果的影响。
     以上研究表明,在西藏高海拔地区,采取以太阳能被动利用技术为基础的生态化技术进行生态化台站建设是必要而可行的。同时,利用生态化技术解决西藏高海拔地区台站面临的诸多生态环境问题,对保障驻站人员身心健康,提高工作效率,保护西藏高海拔地区特有的生态系统都具有重要的理论意义和实用价值。
     本研究为西藏高海拔地区台站生态化建设的规划、设计、施工以及评价提供了理论依据和实用技术。同时,也为该地区的其他建筑的生态化建设提供了有益借鉴,有助于推动生态建筑和环境保护理论的深入研究与进一步发展。
To both achieve the goal of Projects in Soldiers'Interest in Snowy Fields and solve the urgent issues which high-altitude stations in Tibet are facing in ecological construction, we focused mainly on coupling the demands in the ecological construction of high-altitude stations of Tibet with the current ecological theory and technology. We studied the ecological construction of navigation, radar, and communications stations in high-altitude areas of Tibet by means of documentary materials collection, field research, field testing, computer simulation, theoretical system construction, and case study, covering multiple aspects including building environment, solar energy utilization, ecological construction technology strategies, and evaluation method of the ecological construction. Main work completed and the results achieved are as follows.
     First of all, the experimental study on ergonomics of staff under the conditions of comfortable indoor thermal environment was conducted at a high altitude of5300m and a medium altitude of3550m, by comparing the effect of altitude on typing correct rate. The results show a significant difference.
     A field study on human thermal comfort of relocated was conducted in high-altitude low-pressure areas, in naturally ventilated passive solar houses located at nearly5000m. The thermal-neutral indoor-air temperature calculated by thermal sensation votes (TSV) was19.42℃(Icl=1.0clo); and the thermal-comfort indoor-air temperature ranged from14.25℃to24.60℃(Icl=1.0clo), which is quite different from that observed in other similar thermal comfort studies. The regression equation is:TSV-0.0966Tα-1.6452. A field testing study on indoor thermal environment and thermal engineering performance of existing buildings was carried out in high altitude areas. It was found that the most important characteristic of indoor thermal environment in high altitude areas was air humidity remarkably low relative to the recognized standard (ISO7730). Field test of exterior wall heat transfer coefficient and other basic parameters had been completed in high altitude areas. The relationship between the exterior wall heat transfer coefficient and outdoor humidity was as follows: K=5×10-6φ4-0.0009φ3+0.0593φ2-1.6327φ+16.795. Based on the test results of the thermal performance of existing buildings, the intensity of solar radiation, and the field study outcome of body thermal-comfort temperature in a wide range, we concluded that solar energy heating is applicable in the high altitude areas in Tibet.
     Environmental monitoring of station buildings in high altitude areas of Tibet was carried out. The first-hand data of environmental impact assessment were obtained, which included the volume and the composition of domestic solid waste of station buildings and the per capita daily water consumption, waste water per capita, and environmental noise. The solid waste per capita output was1.257kg/d, and daily water consumption of a person was 26.0L/d. By the analysis of the data, the impact on the surrounding environment was quantitatively assessed. After a field survey of the natural environment in high-altitude areas, tests of the station building environmental factors, and research on the passive utilization of local renewable energy--solar energy, we proposed that ecological buildings should be the development trend of the station buildings in high altitude areas, and we also developed a technological strategic system for ecological buildings in high altitude areas based on the passive utilization of solar energy.
     The existing green/ecological building evaluation systems can not be directly applied to the evaluation of ecological construction of stations in high altitude areas. We modified the evaluation index selection and established an evaluation mathematics model for the ecological construction of stations in high altitude areas of Tibet. The case study results indicated that this evaluation method can be more accurate applied to the ecological construction of stations in a high altitude area, with the subjective weighting that affects the accuracy of current evaluation methods effectively solved.
     The above studies showed that adopting a passive utilization of solar energy technology as the basis of the eco-technology for construction of ecological stations is necessary and feasible in a high altitude area of Tibet. At the same time, the use of eco-technology solutions to many ecological and environmental problems which the stations construction is facing in a high altitude area of Tibet is of great theoretical and practical values in the protection of physical and mental health of personnel in the stations, improving work efficiency, protecting unique ecosystem in the high altitude areas of Tibet.
     These studies provide the theoretical foundation and practical technology for the ecological stations design, implementation and evaluation in a high altitude area of Tibet. Meanwhile, they provide useful references for that the ecological construction of other buildings in this areas, promote the theory of ecological construction and environmental protection in depth research and further development.
引文
① Ernst Heinrich Haeckie,《有机体普通形态学》,1886年.
    ① 《韩非子·五蠹》
    ① Andersen,M.M.On the faces and phases of eco-innovation:on the dynamics of the greening of the economy. Paper presentea at the DRUID summer conference 2010, London.
    ① 《毂梁传·僖公廿八年》
    ② 《元和郡县志》
    ① 梁思成,《中国建筑史》,1944年.
    ① T.A.马克斯,E.N.莫里斯,陈士译.建筑物.气候.能量.中国建筑工业出版社,1990
    ① ASHRAE Handbook2005.
    ① iSo7730-2005
    ② ASHRAE55-2010
    ① 冯泰,米鋐道,高尚华,钱辉镜,晏晓焰编,工程数学基础知识手册,宇航出版社,1988年11月第一版.
    [1]刘文鹏,论清代新疆台站体系的兴衰,《西域研究》,2001年,第4期:29-30
    [2]中国国家测绘局.中华人民共和国测绘行业标准.数字基本地理单元图规范(上报主管部门申请行标立项稿).
    [3]王磊.西藏地区被动太阳能建筑采暖研究.西南交通大学博士学位论文.2008.
    [4]钟祥浩等.西藏高原生态安全研究.山地学报.2010年1月,28卷第1期:1-10
    [5]中华人民共和国国家标准.建筑气候区划标准(GB50178—93).中华人民共和国建设部实施日期:1994年2月1日.
    [6]中华人民共和国国家标准.民用建筑热工设计规范(GB50176-93).中华人民共和国建设部实施日期:1993年10月1日.
    [7]徐宗学等.近40年来西藏高原气候变化特征分析.亚热带资源与环境学报.2006年9月,第1卷第1期:24-30
    [8]刘建平.西藏建筑节能设计标准的探讨.中国勘察设计.2009年11期:45-48
    [9]马勇,张西洲,王伟,等.高原汽车兵智力、记忆、心理测验分析.中国心理卫生杂志,1999,13(1):48-49
    [10]李庆,范勇,贺栓友,等.高原施工部队官兵心智操作能力的变化.解放军预防医学杂志.1999,17(5):376-377
    [11]陈信,袁修干.人一机一环境系统工程生理学基础,北京:北京航空航天大学出版社,2000.
    [12]沈德功.高原环境对人体生理机能与运动能力的影响.西藏体育,1996,(2):39-42
    [13]Norton B.G.Why preserve natural variety?.Princeton University Press,1987.
    [14]Murdy W.H人类中心主义:一种现代观.吴永忠,译.哈尔滨师专学报,1994,(4):7-11
    [15][①]梁留科.现代科学技术中的生态研究问题.生态学杂志,1992,11(2):69-71
    [16][①]任飞.南极地区建筑设计生态策略研究.清华大学博士学位论文.2004
    [17][①]文厚泓.藏传佛教的生态哲学.西藏民族学院学报(哲学社会科学版).2008年7月,第29卷第4期:45-48
    [18]ASHRAE55-2010
    [19]彼.奥.范格著,李天麟编译.舒适.北京:北京科学技术出版社.1992.
    [20]魏润柏,徐文华.热环境.上海:同济大学出版社,1994.
    [21]Mcintyre D A. Indoor climate [M].London:Applied science published LTD,1980.
    [22]A.P. Gagge. A standard predictive index of human response to the thermal environment. ASHRAE Trans.1986,92(2):709-731
    [23]Fanger P O. Thermal Comfort [M]. Copenhagen:Danish technical press,1970.
    [24]Mcnall P E. Nevins R G, Ryan P W, et al. Metabolic rates at four activity levels and their relationship to thermal comfort [J].ASHRAE trans,1968,Vol,part IV.3.1-IV.3.20.
    [25]J.F. Nicol, M.A. Humphreys. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Building 34(2002):563-572
    [26]M.A. Ealiwa, A.H. Taki, A.T. Howarth, M.R. Seden. An investigation into thermal comfort in the summer season of Ghadames, Libya Building and Environment 36 (2001):231-237
    [27]J. Fergus Nicol, Iftikhar A. Raja, Arif Allaudin, Gul Najam Jamy. Climatic variations in comfortable temperatures:the Pakistan projects. Energy and Buildings 30(1999): 261-279
    [28]Fuad H. Mallick. Thermal Comfort and Building Design in the tropical climates. Energy and Buildings 23(1996):261-279
    [29]D.J. de Dear, K.G. Leow, and S.C. Foo. Thermal comfort in the humid tropics. Int. J Biometeorol (1991) 34:259-265
    [30]Oseland, N. A. & Raw, G. Thermal comfort in starter homes in UK. Proceedings of Healthy Buildings:Environmental Design Research Association 22 Annual Conference, Oxatepec:EDRA,1990:315-320
    [31]Schiller, G. E. A comparison of measured and predicted comfort in office buildings. ASHRAE Transactions,1990,96(1):609-622
    [32]Richard J.de.Dear & Auliciems, A. Validation of the predicted mean vote model of thermal comfort in six Australian field studies. ASHRAE Transactions,1985,91(2): 452-468
    [33]Richard J.de.Dear, Fountain M., Popovic S., Watkins S., Brager Cz. Arens E., et al. A Field Study of Occupant Comfort and Office Thermal Environments in a Hot-Humid Climate (Final report, ASHRAE RP-702),1993.
    [34]Auliciems A. & de Dear R. Air conditioning in Australia I:Human thermal factors. Architectural Science Review,1986,29:67-75
    [35][①] ISO (2004) International Standard 7730. Moderate thermal Environments-Determination of the PMV and PPD Indices and Specification of theConditions for thermal Comfort. Geneva, International Standards Organization.
    [36]Webb CG:An analysis of some observations of thermal comfort in an equatorial climate. Br J Industr Med 1959.16:297-310
    [37]De Dear RJ, Auliciems A:Validation of the predicted mean vote model of thermal comfort in six Australian field studies. ASHRAE Trans 1985,91(2B):452-468
    [38]Busch JF:Thermal responses to the THAI office environment. ASHRAE Trans 1990, 96(1):859-872
    [39]Schiller GE, Arens EA, Bauman PE, Benton C, Fountain M, Doherty T:Thermal environments and comfort in office buildings. ASHRAE Trans 1988; 94(2):280-308;
    [40]Donnini G, Molina J, Martello C, Lai DHC, Lai HK, Chang CY, Laflamme M, Nguyen VH, Haghighat F:Field study of occupant comfort and office thermal environments in a cold climate. ASHRAE Trans 1997,103 (part 2):205-220
    [41]ASHRAE. ASHRAE Standard 55-2010:Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-conditioning Engineers 2010.
    [42]ISO7730:Moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort (2004).
    [43]Kwok AG:Thermal comfort in tropical solar houses. ASHRAE Trans 1998,104(1B): 1031-1047
    [44]Kwok AG, Chun C:Thermal comfort in Japanese schools. Solar Energy 2003,74: 245-252
    [45]Wong NH, Khoo SS:Thermal comfort in solar houses in the tropics. Energy Buildings 2003,35:337-351
    [46]Hwang RL, Lin TP, Kuo NJ:Field experiments on thermal comfort in campus solar houses in Taiwan. Energy Buildings 2006,38:53-62
    [47]M.A. Humphreys. Field Studies of Thermal Comfort Compared and Applied. Building Services Engineer.1976, (44):5-27
    [48]Richard J. de Dear, Gall SB. Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE Trans.1998,104(1)
    [49]M.A. Ealiwa, A.H. Taki, A.T. Howarth, M.R. Seden. An investigation into thermal comfort in the summer season of Ghadames, Libya Building and Environment 36 (2001):231-237
    [50]Shahin Heidari, Steve Sharples. A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings 34 (2002):607-614
    [51]J. Fergus Nicol, Iftikhar A. Raja, Arif Allaudin, Gul Najam Jamy. Climatic variations in comfortable temperatures:the Pakistan projects. Energy and Buildings 1999,30: 261-279
    [52]A.P. Gagge, J. Stolvijk and Y Nishi, An effective temperature scale based on a simple model of human physiological regulatory response, ASHRAE Transaction, 1971,77 (1):247-62
    [53]Tao, Peter. The thermal sensation difference between Chinese and American people. Indoor air,1991, (4):699-703
    [54]工昭俊,严寒地区居室热环境与热舒适性研究.哈尔滨工业大学博士论文,2002;
    [55]王昭俊,方修睦,廉乐明.哈尔滨市冬季居民热舒适现场研究.哈尔滨工业大学学报,2002,Vol.34(4):500-504
    [56]王昭俊.哈尔滨市住宅环境热舒适测试结果分析.建筑热能通风空调.2004,Vol.23(No.3):5-8
    [57]金虹,赵华,王秀萍.严寒地区村镇住宅冬季室内热舒适环境研究.哈尔滨工业大学学报.2006年12月,第38卷第12期:2108-2111
    [58]夏一哉,赵荣义.北京市住宅环境热舒适研究.暖通空调,1999,2(29)
    [59]王怡,刘加平.西安住宅环境现状调查及空调设备使用情况分析.暖通空调,2005,12(35):44-46
    [60]彭菲菲.寒冷地区冬季民用住宅室内热湿环境状况及居住者适应性的研究.大连理工大学硕士论文,2003.
    [61]茅艳.人体热舒适气候适应性研究.西安建筑科技大学博士论文.2007.
    [62]李百战,彭绪亚等.改善重庆住宅热环境质量的研究。建筑热能通风空调,1999(3):6-8
    [63]陈良,郑洁,汪洪等.重庆夏季办公室室内环境研究.重庆建筑,2006.
    [64]李俊鸽,杨柳,刘加平.夏热冬冷地区夏季住宅室内适应性热舒适调查研究.四川建筑科学研究.2008年04期:205-210
    [65]付祥钊,高志明,康侍民.改善长江流域住宅热环境的通风措施.住宅科技.1994年04期:5-8
    [66]刘国丹.无症状高原反应域低气压环境下人体热舒适研究.西安建筑科技大学博士论文.2008.
    [67]辛岳芝.高原中海拔地区低气压环境下人体热舒适初步研究.青岛理工大学硕士学位.2008.
    [68]黄凌江,冷御寒.林芝地区传统民居冬季室内热环境评价与分析.南方建筑.2012,1:92-96
    [69]Zhang Yingzi, Atsushi Deguchi, Liu Jiaping. Thermal Comfort of Tibetan People in Indoor Space.2010年建筑环境科学与技术国际学术会议论文集.南京:东南大学出版社.2010:101-110
    [70]中国科学院地理研究所.中国1:1000000地貌图制图规范(试行).科学出版社.1987
    [71]李炳元,潘保田,韩嘉福.中国陆地基本地貌类型及其划分指标探讨.第四纪研究.2008年7月第28卷第4期:525-542
    [72]茅艳.人体热舒适气候适应性研究.西安建筑科技大学博士论文.2007.
    [73]端木琳,于连广,胡文军.动态环境下热舒适问题的探讨.制冷与空调,2004,5:24-31
    [74]孙淑风,赵荣义,许为全.动态送风末端装置特性的实验研究.制冷与空调.2002年10月,第2卷第5期:23-26
    [75]李俊,孙淑凤,狄洪发等.动态条件下人体对个体送风的热反应研究.暖通空调,2005,10(35):17-22
    [76]杨嘉,吴祥生,张锦松等.人体热舒适的模糊综合评判.重庆大学学报,2002,8(25):28-31
    [77]陆益民,黄险峰,毛宗源等.人工免疫算法在室内热舒适模型优化中的应用.哈尔滨工业大学学报,2005(37):355-358
    [78]嵇赞喆,涂光备,王晓杰,涂光备,王晓杰.人工神经网络在热舒适实验研究中的应用.天津大学学报,2004,4(37):331-335
    [79]李元哲主编.被动式太阳房热工设计手册.清华大学出版社,1993.
    [80]J.D. Balcomb, R.D. Mcfarland, Simulation Analysis of passive Heated Buildings[C]-the Influence of climate and Geometry on Performance,Los Alamos NM87545.
    [81]J.D Balcomb etc., Evaluating of The performance of Passive Solar Heated Buildings LA-UR-83-003.
    [82]US Dept.of Energy, Passive Solar Design Handbook[M], Vol.1,1980.
    [83]J.D Balcomb etc, Passive Solar Design HandBook [M],1980.
    [84]John A. Duffle etc., Solar Engineering of Thermal Process[C], A Wilew-Interscience publication,1980, New York.
    [85]US Department of Housing and Urban Development, New Energy-Consuming Passive Solar Single Family Homes [M],1981.
    [86]R.M. Lebens, Passive Solar Heating Design. London:Applied Science Publishers LTD,1981.
    [87]J.D. Balcomb etc., Passive Solar Heating Analysis [M] (A Design Manual), ASHRAE, 1984.
    [88]M.M. Gouda, S. Danaher, C.P. Underwood, Quasi-adaptive fuzzy heating control of solar buildings[J], Building and Environment 41(2006) 1881-1891.
    [89]K. Darkwa, P.W. O Callaghan Simulation of phase change dry walls in a passive solar building[J],Applied Thermal Engineering,2006, (26):853-858
    [90]冯佑葆.多层住宅中被动式太阳房建筑设计的探讨《建筑学报》1982年第06期:23-27
    [91]李远哲等.组合式被动太阳房的最佳化.太阳能学报。1983年4月第4卷第2期:117-122
    [92]燕达,谢晓娜,宋芳婷,江亿.建筑环境设计模拟分析软件DeST-S第1讲.建筑模拟技术与DeST发展简介,暖通空调,2004,(7):34
    [93]李元哲,岑幻霞.被动式太阳房的最佳朝向.太阳能学报.1986年第01期:18-25
    [94]王德芳,午锁平,喜文华.附加阳光间型被动式太阳能采暖房数学模型及其模拟程序PSHS甘肃科学(甘肃省科学院学报).1990年第02期:22-35
    [95]王德芳等.集热墙不稳定传热的反应系数解法.太阳能学报,1990年第4期:21-25.
    [96]王德芳,喜文华,于晓菲.被动式太阳房热工计算设计软件发展.太阳能.2000年第02期:30.
    [97]王德芳等.被动式太阳能采暖房数学模型及模拟计算程序—Ⅰ.直接受益型和集热墙型PSHDC:下篇).甘肃科学学报.1990年第01期:19-27
    [98]张阳.零辅助热源被动式太阳房设计技术研究.西安建筑科技大学建筑系学位论文.1994.
    [99]张阳.零辅助热源被动式太阳房热工设计计算方法.西安建筑科技大学学报.1999年3月第31卷第1期:29-31.
    [100]Joseph C.Lam, Liu Yang, Jiaping Liu. Development of passive design zones in China using bioclimatic approach [J].Energy Conversion and Management.2006, (47): 746-762.
    [101]燕果.西藏民居与太阳能[J].华中建筑.1996年04期:76-77
    [102]李静,刘加平等.高原气候条件下的西藏传统民居生态经验和盲点.四川建筑科学研究.2009年6月第35卷第3期:240-242
    [103]范霄鹏,赵之枫.管窥西藏高原民居.世界建筑.2005,(8):74-77
    [104]郭亚娜.西藏阿里太阳能采暖房的设计及分析.能源工程1988年第04期:29-30
    [105]王磊.西藏地区被动太阳能建筑采暖研究.西南交通大学博士学位论文.2008.
    [106]肖伟.藏西南边远地区直接受益式太阳能采暖研究.清华大学博士学位论文.2010.
    [107]桑国臣.西藏高原低能耗居住建筑构造体系研究.西安建筑科技大学博士论文.2009.
    [108]Daniel Castro-Lacouture, Jorge A Sefair,Laura Florez,et al.Optimization model for the selection of materialsusing a LEED-based green building rating system in Colombia. Building and Environment.2009.
    [109]F J Rey, E Velasco, F Varela.Building Energy Analysis(BEA):A methodology to assess building energy labeling. Energy and Build.2007.
    [110]Boon Lay Ong.Green plot ratio:an ecological measure for architecture and urban planning. Renewable Energy.2009.
    [111]W L Lee, J Burnett. Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED. Building and Environment.2008.
    [112]The U.S Green Buildings Council.LEED Guidance for HVAC Engineers. The ASHRAE Green Guide.2006.
    [113]《绿色建筑评估体系》(Leadership in Energy & Environmental Design Building Rating System).美国绿色建筑协会.2005.
    [114]刑明泉.基于《绿色建筑评价标准》的建筑设计模式研究[D].浙江大学博士论文.2008.
    [115]杨文.我国绿色建筑评估体系的探索研究.重庆大学博士论文.2008.
    [116]《绿色建筑评价标准》GB/T50378-2006。(Evaluation standard for green building, GB/T50378-2006.
    [117]胡钦华,丁秀娟,李奎山.关于热感觉和热舒适与热适应性的讨论.山西建筑,2007,33(29):1-2
    [118]Nevins,R.G;Rohles,F.H., Springer, W., and Feyetherm,A·M·.A temperature humidity chart for thermal comfort of seated persons ASHRAE Trans,1966,721:283-291
    [119]J. A. J. Stowijk.:A Mathematical Model of Physiological Temperature Regulation in Man.NASA CR-1855[C].1971.
    [120]Wissler. E. H.:Mathematical Simulation of Human Thermal Behavior using whole Body Models Heat Transfer in Medicine and Biology [J].1985.
    [121]A. P. Gagge. J. A. J. Stowijk, Nishi Y. An effective temperature scale based on a simple modelof human physiological regulatory response [J]. ASHRAE Trans,1971,77: 247-262
    [122]周雪飞.玻璃幕墙建筑夏季室内热环境的研究.哈尔滨:哈尔滨建筑大学,1998.
    [123]寿荣中.人体温度调节的计算机数值模拟.中国安全科学学报.1996,(6):49-53
    [124]陶培德.人体与环境的热湿交换研究及数学模拟.制冷学报,1991(01)
    [125]WANG Xiaoling.Thermal comfort and sensation under transient conditions [D]. Stockholm:department of energy technology division of heating and ventilation, the Royal Institute of Technology,1994
    [126]崔代秀,庞城,王宪章.座舱压力改变对通风服通风散热效能的影响.中国航空科技文献,HJB860406,1986
    [127]袁修干.飞机座舱热力学特性的数学模型及其应用.中国航空科技文献,HJB 830088. 1983
    [128]沙斌.非均匀热环境中人体温度分布的数值计算及实验研究[学位论文].北京;北京航空航天大学,1991
    [129]徐向东.冷环境中人体热调节的数学模拟与实验研究[学位论文].北京:北京航空航天大学,1992
    [130]寿荣中,何惠珊,徐小江等.人体温度调节数学模型.中国航空科技文献,1987
    [131]Shuzo Murakami, Shinsuke Kato, Jie zeng.Combined simulation of air flow radiation and moisture transport for heat release from a human body.Building and Environment,2000,(35):489-500
    [132]徐丰彦.生理学[M].北京:人民卫生出版社,1963
    [133][英]麦金太尔(Mcintyre,D.A.),龙惟定等译.室内气候.上海科学技术出版社,1988,87-89;92-95;101-104;164-170
    [134]金招芬,朱颖心等.建筑环境学.北京:中国建筑工业出版社,2001.
    [135]JuYoun Kwon, Jeongwha Choi, "The relationship between environmental temperature and clothing insulation across a year", International Journal of Biometeorology.2012,Vol.56.Issue 5:887-893,
    [136]P.O.Fanger. Calculation of comfort. Introduction of a Basic Comfort Equation. ASHRAE Trans,1967,Vo 1.73(2):13-20
    [137]姚润明.室内气候模拟及热舒适研究.重庆大学博士论文.1997.
    [138]叶歆.建筑热环境.北京:清华大学出版社,1996.
    [139]李基文.高原病的发病机制及防治研究进展.职业卫生与应急救援.2004,2(22):65-67;
    [140]张娟,鲁毅.短期高原旅行中健康成人心肺功能的变化.中国临床康复,2005,20:9
    [141]刘兵柱等.高原适应初期对人体部分代谢的影响.高原医学杂志,2002,3(12):12-14;
    [142]张彦博.高原疾病.西宁:青海人民出版社,1982
    [143]陈信袁修干.人-机-环境系统工程生理学基础,北京:北京航空航天大学出版社,2000.
    [144]雷丹妮.服装对人体热舒适影响的实验研究.重庆大学硕士学位论文.2012.
    [145]韩滔许志浩.服装热阻在PMV计算中的影响.空调与制冷.2005年增刊:178
    [146]Kwok AG, Chun C:Thermal comfort in Japanese schools. Solar Energy 2003,74: 245-252
    [147]Wong NH, Khoo SS:Thermal comfort in solar houses in the tropics. Energy Buildings 2003,35:337-351
    [148]Hwang RL, Lin TP, Kuo NJ:Field experiments on thermal comfort in campus solar houses in Taiwan. Energy Buildings 2006,38:53-62
    [149]Feriadi H, Wong NH:Thermal comfort for naturally ventilated houses in Indonesia. Energy Buildings 2004,36:614-626
    [150]ASHRAE. ASHRAE Standard 55:Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-conditioning Engineers 2010.
    [151]Toftum J, Jorgensen AS, Fanger PO:Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy Buildings 1998,28:1-13
    [152]Busch JF:Thermal responses to the THAI office environment. ASHRAE Trans 1990, 96(1):859-872.
    [153]E. Arens, L. Zeren, R. Gonzalez, L. Berglund, P. E. Mcnall:Anew bioclimatic chart for environment design. Building Energy Management, Conventional and Solar Approaches, Proceedings of the international congress, Potugal, may,1980.
    [154]American Society of Heating, Refrigerating and Air Conditioning Engineers. User's Manual. ASHRAE/IES Standard 90.1-1989.
    [155]Baruch Givoni, Climate consideration in building and urban design, VAN NOSTRAND REINHOLD,1998.
    [156]Givoni B. (1976). Man, Climate and Architecture, Second Edition, Applied Science Publishers, London.
    [157]刘加平:建筑物理,北京:中国建筑工业出版社.2000.
    [158]Watson, D. and Lab, K., Climatic Design:Energy-efficient Building Principle and Practices, McGraw-Hill, New York,1983.
    [159]杨柳.建筑气候分析与设计策略研究.西安建筑科技大学博士学位论文,2003年5月.
    [160]冯雅.西藏高原采暖自然能源的利用.制冷空调,2005(21).
    [161]朱新荣,刘加平.关于底层地面传热系数的探讨.暖通空调.2008年第38卷第5期:105-108
    [162]中国有色金属工业总公司.采暖通风与空气调节设计规范(GBJ19-87,2001年版).中华人民共和国国家标准.2001年.
    [163]李巧媛,谢自楚.高原区气温垂直递减率的分布及其特点分析——以青藏高原及其周边地区为例.石河子大学学报(自然科学版).2006年12月,第24卷第6期:719-722
    [164]彦启森,赵庆珠.建筑热过程.中国建筑工业出版社.1986.
    [165]刘加平,杨柳,刘艳峰,田国民.西藏高原低能耗建筑设计关键技术研究与应用.中国工程科学.2011年第13卷第10期:40-46
    [166]黄雷.生态建筑技术的形式表达.工程建设与设计,2011(7):47-51
    [167]谢浩.生态建筑技术的合理性分析.科技纵横.2010,(4):31-34
    [168]许保玖,安鼎年,给水处理·理论与设计.北京:中国建筑工业出版社.1992年11月第一版.
    [169]Water, a Shared Responsibility, The United Nations World Water Development Report 2 [R/OL]. Http://www. unesco.org/water/wwap/wwdr2/pdf 2006-04-28.
    [170]UN. Water development and management[C]//Proceeding of UN Water Conference 1977, part 4. Oxford:Program on Press,1978.
    [171]新华网.世界水资源现状.水利水电技术.2003年04期:40
    [172]张薇,赵亚娟.国际水资源现状与研究热点.地质通报.2009年3月,第28卷第23期:177
    [173]王瑗等.中国水资源现状分析与可持续发展对策研究.资源与水工程学报.2008年6月,第19卷第3期:10-14
    [174]达娃.西藏地区需水量预测分析.人民长江.2009年1月,第40卷第1期:37.38.45
    [175]中华人民共和国建设部.城市居民生活用水量标准(GB/T50331-2002).2002年9月16日.
    [176]张荣祥.分散建筑生活污水处理技术研究.山西建筑.2009年,第35卷第22期:206-207
    [177]Zeeman G. Feasibility of the on-site treatment of sewage and swill in large buildings [J]. Water Science and Techno logy,2000,41(1):9-11.
    [178]Geenens D. Cost-efficiency and performance of individual and small scale treatment plants [J]. Water Science and Technology,2000,41(1):21-25.
    [179]姜科军,田学达.一体化污水处理和中水制备装置设计和研究.环境污染治理技术与设备,2003年,第4卷第7期:86-88.
    [180]刘伟.论我国高原城市污水治理的对策与方法.环境保护科学.1994年,第1期:31-32
    [181]侯世全等.青藏线生活污水处理技术试验研究.中国铁道学会2004年度学术活动优秀论文评奖论文集:435-441.
    [182]刘超翔等.滇池流域农村污水生态处理系统设计.中国给水排水.2003,19(2):93-94
    [183]王莉娜.含油废水处理剂的合成与应用研究.武汉理工大学硕士论文.2006.
    [184]旦增布多.西藏拉萨市市区生活垃圾物理特性分析.西藏大学学报(自然科学版).2012年5月,第27卷第1期:20-27
    [185]次仁罗布等.拉萨市生活垃圾现状及其资源化处理研究.西藏科技.2007年,第9期:15-19.
    [186]乔明,黄川友,西藏自治区城镇饮用水水源地存在的问题及对策研究.西藏科技2011年,第4期(总第217期):19-20
    [187]郑必海等.驻西藏那曲某部自备集中式供水水质分析及其意义.河南预防医学杂志2007年,第18卷第5期:332-334
    [188]张永良,郑世英.坑道储水消毒耗氯因素实验观察.解放军预防医学杂志2001年6月,第19卷第3期:192-193
    [189]刘文君.给水处理消毒技术发展展望.给水排水.2004,30(1):2
    [190]Letterman RD.Water Quality and Treatment [M].5th.ed. AWWA:Me Graw Hill Inc, 1999:87.
    [191]王擎等.饮用水消毒技术研究与应用.中国消毒学杂志.2006年,第23卷第4期:349-351.
    [192]李晓莉.饮用水的消毒技术.广东化工,2003年,第5期:53-54
    [193]徐艳何德文.饮用水消毒副产物处理技术及其进展.环境保护科学.2004年4月,第30卷第122期:21.22.29
    [194]邹启光,关小红.二氧化氯取代液氯消毒剂的可行性研究.净水技术.2002年,第21卷第3期:P13.14.15.16.
    [195]张永良等.二氧化氯稳定性及坑道储水消毒的研究.中国卫生检验杂志.2010年10月,第20卷第10期:2473-2475
    [196]IEC TC1(术语)161 工作组.电磁兼容术语(GB/T4365-1995).1995.
    [197]邓桦.电磁辐射和微波的生物学效应.国外医学放射医学核医学分册.2002年,第26卷第4期:191-193
    [198]卑伟慧,曹毅.电磁辐射的生物学效应.辐射防护通讯.2007年6月,第27卷第3期:29-31
    [199]Cavllo D.Tomao P.et al. Evaluation of DNA damage in a light personnel by Cometassay [J]. Mutat Res.2002.516(1-2):148.
    [200]Hardell L. et al, Cellular and cordless telephones and the risk for brain tumous. [J]. Eur. J Cancer Prev.2002.11(4):377.
    [201]Natarajan M. et al. NF-kappa B DNA-binding activity after high peak power pulsed microwave (8.2Ghz) exposure of normal human monocytes. [J] Bioelectromagnetics. 2002,23(4):271.
    [202]陈洪宇等.电磁辐射对生殖健康的影响.中国优生与遗传杂志.2009年,第17卷第7期.
    [203]杨学森,索玉兰.电磁辐射后大鼠血清和海马组织儿茶酚胺的变化及防护部位的选择.中华劳动卫生及职业病杂志.2002年,第20卷第1期:269-272
    [2041宁竹之.大剂量电磁脉冲波、连续波致伤生物效应的初步探讨.第二届全国863-410学术研讨会论文汇编.1996.
    [205]Robert E. Teralogen update:electromagnetic field [J]. Teratology.1998.19 (2):305-313.
    [206]Tornqvist S. Paternal work in the power industry:effects on children at delivery [J]. J Occup. Environ Med.1998.40(2):111-117.
    [207]Mubarak SAA. Mubarak SAA. Does high voltage electricity have an effect on sex distribution of offspring? [J].Hum Reprod.1996.11(2):220-231.
    [208]吴明芳.探讨西藏建筑物防雷技术.西藏科技.2008年11期(总第188期):55-56.
    [209]尼玛卓玛,红梅.西藏高原农牧区防雷减灾工作现状及对策.西藏科技.2012年,第3期(总第228期):59-61.
    [210]普布卓玛.西藏高原雪灾中期成因研究.西藏科技.2000年,第3期(总第90期):58-64
    [211]杜敏等.对建筑结构设计施工中雪荷载的探讨.防灾科技学院学报.2008年,第10卷第2期:29-31
    [212]邸小坛,田欣.建筑屋盖抗冰雪灾害能力的分析与防灾建议.工程质量.第27卷2009年,第1期:7-12
    [213]周正.浅谈我国建筑节能的技术途径及发展策略.科技资讯.2010.(9):1.
    [214]朱颖心,谷立静.建筑光伏一体化的全生命周期环境影响分析.动感(生态城市与绿色建筑).2010.2.15.
    [215]西藏那曲地区科学技术委员会.西藏新能源开发利用概述.中国能源.1996.5.
    [216]茨真.中国西藏新能源开发利用概述.能源工程.1996年第1期:6.
    [217]Xiaoge Pinga, Zhigang Jianga, Chunwang Lia.Status and future perspectives of energy consumption and its ecological impacts in the Qinghai-Tibet region. Science Direct,Volume 15, Issue 1, January 2011, Pages 514-523
    [218]陈爽英.企业经理组合激励模式研究.重庆大学博士论文,2006(03)
    [219]张鹏.崔家沟煤业公司高管人员激励机制研究.西安理工大学硕士论文,2008(03).
    [220]Liu Wei, Wang Tao. A Study on evaluation model of quality construction to army cadre, Proceedings 2011 International Conference on Business Management and Electronic Information,May 13-15,2011,Guangzhou,China(BMEI2011)(El Compendex[JC]).
    [221]耿莉萍.财务指标与非财务指标统筹考虑的企业经营者绩效评价模型探讨.中国管理信息化2008(06).
    [222]朱火弟.企业经营者绩效评价及其激励机制研究.重庆大学博士论文,2004(09).
    [223]刘洪旭.离差最大化法在营销审计中的应用[J].商场现代化,2008(01).
    [224]Liu Wei, Wang Tao, Chen Man. Dynamic time-varying evaluation on enterprise technological innovation [J]. J Chongqing Univ:Eng Ed [ISSN 1671-8224],2010,9(3): 159-166.
    [225]冯保成.模糊数学实用集粹.北京:中国建筑工程出版社,1991.
    [226]闫皓,贺仲雄.权重分析系统.系统工程与电子技术,1992(4):41-45.
    [227]程卫民.煤炭安全评价中评价指标安全度值的确定.煤炭学报,1997,22(3):276-279.
    [228]查健禄,田钦谟,李盛德.综合评价问题的系统分析,系统工程学报,2000,15(2):124-130.
    [229]田钦谟,查健禄,李盛德.线性综合评价问题中的补偿作用与稳定性分析.系统工程理论与实践,1997,17(2):1-7.
    [230]浅居喜,代治等.模糊系统理论入门.北京:北京师范大学出版社,1982.
    [231]田钦谟.模糊综合评价中的若干问题.模糊系统与数学,1996,10(2):62-69.
    [232]王涛,邵云飞.技术创新的动态时变专家评价方法研究.科技管理研究,2010,05:8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700