用户名: 密码: 验证码:
候选基因多态性与高原肺水肿易感性的分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原肺水肿(high altitude pulmonary edema,HAPE)是急性高原病(acute mountainsickness,AMS)的重型。已有研究结果显示,HAPE发病具有明显的种族特异性和个体易感倾向,提示HAPE的发生与遗传因素有关。近年来国内外已有研究对多个基因的多态性与HAPE易感性的关系进行了探讨,但是由于各研究在种族、地域及研究方法上存在差异,因而研究结果并不完全一致。本研究在对HAPE易感性的关联研究予以定性分析的基础上,采用分子流行病学、Meta分析及生物信息学等方法对相关易感基因与HAPE发病的关联进行了探讨与分析,旨在从基因水平和蛋白水平探讨候选基因多态性与HAPE的关联,相关结果对深入开展HAPE发病机制及防治研究有重要意义。研究发现:
     1.高原肺水肿遗传易感性的系统评价:从1998年至2011年,在HAPE易感性关联研究中,共涉及23种候选基因。其中,被研究报道次数位居前两位的HAPE易感基因依次为ACE基因和NOS3基因。迄今为止,共有15个候选基因的32个多态性位点被报道与HAPE的发病可能存在关联。这些结果为我们后续人群研究提供了理论基础。
     2.候选基因多态性与高原肺水肿易感性的关联研究:ACE基因两个tagSNP位点即rs8066114位点和rs4461142位点,以及NOS3基因rs1799983位点均与HAPE发病存在关联,可增加HAPE患病风险。ACE基因rs4340位点、rs4291位点、rs434位点和rs4363位点,TH基因rs6356位点,ENaC基因rs3759324位点、rs10849447位点及rs2228576位点均未发现与与HAPE发病相关。为进一步扩大样本量验证实验结果,我们将NOS3基因多态性与HAPE易感性的相关研究综合后予以了Meta分析,分析结果进一步验证了NOS3基因rs1799983位点确与HAPE的发病存在关联。
     3.高原肺水肿易感基因eNaC、NOS3及TH突变的生物学效应预测:(1)eNaC基因rs2228576位点:预测结果显示,该位点突变导致该蛋白质的第663位氨基酸由一个侧链带有羟基的极性氨基酸即苏氨酸(Thr)变成一个侧链为甲基的非极性氨基酸即丙氨酸(Ala)。突变后,β-转角增加,而无规则卷曲减少;该通道蛋白质结构域2、3、4所覆盖的氨基酸范围较突变前有明显改变。根据相关理论推测,这些变化有可能影响该蛋白质跨膜区的特性及通道的转运功能。(2)NOS3基因rs1799983位点:预测结果显示,该位点突变导致NOS3酶的第298位氨基酸发生了改变,由突变前的天冬氨酸(Asp)变成突变后的谷氨酸(Glu);突变后ɑ-螺旋和无规则卷曲均有所减少,而延伸链和β-转角均有所增加;rs1799983SNP位点所对应的氨基酸空间结构肽链长度有所延伸。根据相关理论推测,这些改变有可能会影响到NOS3酶与Ca2+或钙调蛋白的结合能力。(3)TH基因rs6356SNP位点:预测结果显示,该位点突变导致该蛋白质的第81位氨基酸发生了改变,由突变前的缬氨酸(Val)变成突变后的甲硫氨酸(Met);突变后,ɑ-螺旋减少,而延伸链和β-转角均有所增加。rs6356SNP位点所对应的氨基酸空间结构肽链长度有所延伸。根据相关理论推测,这些变化有可能导致TH酶C-端催化结构域部分蛋白质折叠方式发生改变,从而降低TH酶的活性。
HAPE (high altitude pulmonary edema, HAPE) is the life-threatening form of acutemountain sickness (acute mountain sickness, AMS). Existing research results indicated thatHAPE showed obvious racial specificity and individual susceptible tendency, suggestingthe occurrence of HAPE was associated with genetic factors. In recent years, therelationship between some gene polymorphisms and susceptibility to HAPE were studied athome and abroad, but the results were inconsistent across studies for the race of participantsand research methods were different. In this study, association studies of susceptibility toHAPE were carried out by qualitative analysis. Besides, molecular epidemiology,meta-analysis and bioinformatics methods were adopted to discover the relationshipbetween susceptibility genes and the onset of HAPE. The purpose of this study is to explorethe association of candidate gene polymorphisms with HAPE on the level of gene andprotein. This study is of great importance to in-depth research of pathogenesis andprevention of HAPE.
     Main foundings:
     1. A systematic review of the genetic susceptibility to HAPE: from1998to2011, atotal of23candidate genes were involved in all studies about the susceptibility to HAPEassociation,. Among them, the susceptibility genes which were most frequently studiedwere ACE gene and NOS3gene. So far a total of32polymorphic loci of the15candidategenes have been reported that they may be associated with the occurrence of HAPE. Theseresults provide a theoretical basis for our population-based study.
     2. Association studies of candidate gene polymorphisms and susceptibility to HAPE:rs8066114and rs4461142which are the tagSNP of ACE gene, as well as the rs1799983ofNOS3gene are associated of increased risk of HAPE. rs4340, rs4291, rs434and rs4363of ACE gene, rs6356of the TH gene, rs3759324, rs10849447and rs2228576of eNaC genewere not found to be associated with the HAPE risk. To verify the experimental results, wedid meta-analysis to ascertain the association between NOS3gene polymorphisms andsusceptibility to HAPE. The results validate the association between NOS3gene rs1799983and HAPE risk.
     3. Biological effects prediction of HAPE susceptible gene eNaC, NOS3and THmutations:(1) rs2228576of eNaC gene: predictive results showed that mutation of thislocus leads to the663rd amino acids of the protein mutate from threonine (Thr) to alanine(Ala). After mutation, the beta-turn increased and random coil reduced; a obvious changewas observed in the amino acids coverage of eNaC2,3,4protein domain. According tospeculation of relevant theoretical, these changes may affect the characteristics of thetransmembrane region of the protein and transport function of the channel.(2) rs1799983ofNOS3gene: predictive results showed that the298th amino acids of NOS3enzymes hadchanged due to mutation, changing from spartic acid (Asp) to glutamic acid (Glu); aftermutation ɑ-helix and random coil reduced, and extended strand and beta-turn increased;peptide chain length of corresponding amino acid of rs1799983SNP has been extended.According to the relevant theoretical speculation, these changes may affect binding capacitybetween Ca2+or calmodulin and NOS3enzyme.(3) rs6356of TH gene SNP: predictiveresults showed that the mutation cause the change of81st amino acids of the protein. Valine(Val) had changed to methionine (Met); mutation resulted to decrease of ɑ-helix, andincrease in extension chain and the beta-turn. The corresponding amino acid peptide chainlength of rs6356SNP has been extended. According to the relevant theoretical speculation,these changes may lead to changes in protein folding way of the the TH enzyme C-terminalcatalytic domain portion, therefore reducing the activity of TH enzyme.
引文
1.张彦博.高原疾病[M].西宁:青海人民出版社,1984:1-22.
    2. West JB.The physiologic Basis of High-Altitude Diseases [J].Ann interr Med,2004,141(10):789-800.
    3. Dallimore J, Rowbotham EC. Incidence of Acute Mountain Sickness in Adolescents [J].Wilderness Environ Med,2009,20(3):221-224.
    4. Hultgren NH, Lopez CE, Lundberg E, Miller H. Physiologic studies of pulmonaryedema at high altitude [J]. Circulation,1964,29:393-408.
    5. Singh I,Roy SB. High altitude pulmonary edema:Clinical, hemodynamic, andpathologicstudies. In:CommandUARaD, editor. Biomedicine of high terrestrialelevation problems.1969.p.108-120.Washington D.C.
    6. Kobayashi T, Koyama S, Kubo K, Fukushima M, Kusama S. Clinical features ofpatients with high altitude pulmonary edema in Japan [J]. Chest,1987,92:814-821.
    7. Barry PW, Pollard AJ. Altitude illness [J]. BMJ,2003,326(7395):915-919.
    8.麻晓林,金榕兵,张晓华,崔高宇,任先军,石虹,孙业勤.军队医院接收青海玉树726例地震伤病员救治情况分析[J].创伤外科杂志,2010,12(4):339-343.
    9. Hultgren HN, Marticorena EA. High altitude pulmonary edema: epidemiologicalobservations in Peru [J]. Chest,1978,74,372-376.
    10. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. TheNewcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies inmeta-analyses.3rd Symposium on Systematic Reviews: Beyond the Basics, Oxford,UK, July3-5,2000, available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (Accessed October12,2011).
    11. Taylor AT. High-altitude illnesses: physiology, risk factors, prevention, and treatment[J]. Ramb Maim Med J,2011,2(1):1-18.
    12. Hanaoka M, Kubo K, Yamazaki Y, Miyahara T, Matsuzawa Y, Kobayashi T, SekiguchiM, Ota M, Watanabe H. Association of high-altitude pulmonary edema with the majorhistocompatibility complex [J]. Circulation,1998,97(12):1124-1128.
    13. Luobu GS, Cen WJ, Liu GZ. Analysis of association of polymorphisms of angiotensinconverting enzyme gene and angiotensinogen gene with high altitude pulmonaryedema [J]. Chin Circ J,2000,15(1):29-31.
    14. Qadar Pasha MA, Charu R, Ahsan A, Norboo T. HAPE susceptibility associates withvariants of genes of vascular homeostasis. Human Genome Mapping; Genomic Basis ofCommon Diseases, poster abstract,2005, pp.310.
    15. Qi Y, Niu W, Zhu T, Zhou W, Qiu C. Synergistic effect of the genetic polymorphisms ofthe renin-angiotensin-aldosterone system on high-altitude pulmonary edema: a studyfrom Qinghai–Tibet altitude [J]. Eur J Epidemiol,2008,23(2):143-152.
    16. Stobdan T, Ali Z, Khan AP, Nejatizadeh A, Ram R, Thinlas T, Mohammad G, Norboo T,Himashree G, Qadar Pasha M. Polymorphisms of renin-angiotensin system genes as arisk factor for high-altitude pulmonary oedema [J]. J Renin Angiotensin AldosteroneSyst,2011,12(2):93-101.
    17. Dehnert C, Weymann J, Montgomery HE, Woods D, Maggiorini M, Scherrer U, GibbsJS, B rtsch P. No association between high-altitude tolerance and the ACE I/D genePolymorphism [J]. Med Sci Sports Exerc,2002,34(12):1928-1933.
    18. Kumar R, Qadar Pasha MA, Khan AP, Gupta V. Renin angiotensin aldosterone systemand ACE I/D gene polymorphism in high-altitude pulmonary edema [J]. Aviat SpaceEnviron Med,2004,75,981-983.
    19. Hotta J, Hanaoka M, Droma Y, Katsuyama Y, Ota M, Kobayashi T. Polymorphisms ofrenin–angiotensin system genes with high-altitude pulmonary edema in Japanesesubjects [J]. Chest,2004,126(3):825-830.
    20. Charu R, Stobdan T, Ram RB, Khan AP, Qadar Pasha MA, Norboo T, Afrin F.Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1polymorphisms [J]. Thorax,2006,61(11):1011-1012.
    21. Ahsan A, Charu R, Pasha MA, Norboo T, Charu R, Afrin F, Ahsan A, Baig MA. eNOSallelic variants at the same locus associate with HAPE and adaptation [J]. Thorax,2004,59(11):1000-1002.
    22. Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T,Kubo K. Positive association of the endothelial nitric oxide synthase gene polymor-phisms with high-altitude pulmonary edema [J]. Circulation,2002,106(7):826-830.
    23. Weiss J, Haefeli WE, Gasse C, Hoffmann MM, Weyman J, Gibbs S, Mansmann, U,B rtsch P. Lack of evidence for association of high altitude pulmonary edema andpolymorphisms of the NO pathway [J]. High Alt Med Biol,2003,4(3):355-366.
    24. Ahsan A, Mohd G, Norboo T, Baig MA, Pasha MA. Heterozygotes of NOS3polymorphisms contribute to reduced nitrogen oxides in high-altitude pulmonaryedema [J]. Chest,130(5):1511-1519.
    25. Sun YJ, Fang MW, Niu WQ, Li GP, Liu JL, Ding SQ, Xu Yi, Yu GS, Dong JQ, Pan YJ,Dong WY, Wang T, Cao JW, Li XB, Wang ZX, Yu GX, Sun HC, Jia ZH, Liu J, WangXM, Si Q, Wu QX, Zhou WY, Zhu TC, Qiu CC. Endothelial nitric oxide synthase genepolymorphisms associated with susceptibility to high altitude pulmonary edema inchinese railway construction workers at Qinghai-Tibet over4500meters above sealevel [J]. Chin Med Sci J,25(4):215-221.
    26. Qi Y, Niu WQ, Zhu TC, Liu JL, Dong WY, Xu Y, Ding SQ, Cui CB, Pan YJ, Yu GS,Zhou WY, Qiu CC. Genetic interaction of Hsp70family genes polymorphisms withhigh-altitude pulmonary edema among Chinese railway constructors at altitudesexceeding4000meters [J]. Clin Chim Acta,2009,405(1-2):17-22.
    27. Mishra A, Ali Z, Vibhuti A, Kumar R, Alam P, Ram R, Thinlas T, Mohammad G, PashaMA. CYBA and GSTP1variants associate with oxidative stress under hypobarichypoxia as observed in high-altitude pulmonary oedema [J]. Clin Sci,2012,122(6):299-309.
    28. Droma Y, Hanaoka M, Hotta J, Katsuyama Y, Ota M, Kobayashi T, Kubo K. The r506Qmutation of coagulation factor V gene in high altitude pulmonary-edema-susceptiblesubjects [J]. High Alt Med Biol,2003,4(4):497-498.
    29. Hanaoka M, Droma Y, Hotta J, Matsuzawa Y, Kobayashi T, Kubo K, Ota M.Polymorphisms of the tyrosine hydroxylase gene in subjects susceptible to high-altitudepulmonary edema [J]. Chest,2003,123(1):54-58.
    30. Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU. Association ofpolymorphisms in pulmonary surfactant protein A1and A2genes with high-altitudepulmonary edema [J]. Chest,2005,128(3):1611-1619.
    31. Qi Y, Liu JL, Xu Y, Dong WY, Ding SQ, Yu GS, Zhu TC, Qiu CC. Polymorphismswithin GNB3, ADD1and ADRB2genes are not associated with HAPE in China [J].Basic Clin Med,2009,29(8):811-815.
    32. Hanaoka M, Droma Y, Ota M, Ito M, Katsuyama Y, Kubo K. Polymorphisms of humanvascular endothelial growth factor gene in high-altitude pulmonary oedema susceptiblesubjects [J]. Respirology,2009,14(1):46-52.
    33. Stobdan T, Kumar R, Mohammad G, Thinlas T, Norboo T, Iqbal M, Pasha MA.Probable role of beta2-adrenergic receptor gene haplotype in high-altitude pulmonaryoedema [J]. Respirology,2010,15(4):651-658.
    34. Qi Y, Sun J, Zhu T, Wang W, Liu J, Zhou W, Qiu C, Zhao D. Association ofangiotensin-converting enzyme gene insertion/deletion polymorphism withhigh-altitude pulmonary oedema: a meta-analysis [J]. J Renin Angiotensin AldosteroneSyst,2011,12(4):617-623.
    35. Beall CM, Laskowski D, Erzurum SC. Nitric oxide in adaptation to altitude [J]. FreeRadic Biol Med,2012,52(7),1123-1134.
    36.我国高原病命名、分型及诊断标准(中华医学会第三次全国高原医学学术讨论会推荐稿,1995,9).高原医学杂志,2010,20(1):9-11.
    37. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews [J]. AnnIntern Med,1997,127(9):820–826.
    38. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency inmeta-analyses [J]. BMJ,2003,327(7417):557–560.
    39. DerSimonian R, Laird N. Meta-analysis in clinical trials [J]. Control Clin Trials,1986,7(3):177-188.
    40. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials:an update [J]. Contemp Clin Trials,2007,28(2):105-114.
    41. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospectivestudies of disease [J]. J Natl Cancer Inst,1959,22,719-748.
    42. Mortimer H, Patel S, Peacock AJ. The genetic basis of high-altitude pulmonary oedemaPharmacology&Therapeutics [J].2004,101(2):183-192.
    43. Maloney JP, Broeckel U. Epidemiology, Risk Factors, and Genetics of High-Altitude–Related Pulmonary Disease [J]. Clin Chest Med,2005,26(3):395-404
    44. Rupert JL, Koehle MS. Evidence for a Genetic Basis for Altitude-Related Illness [J].High Alt Med Biol,2006,7(2):150-167.
    45. Cargill RI, Lipworth BJ. Lisinopril attenuates acute hypoxic pulmonaryvasoconstriction in humans [J]. Chest,1996,109(2):424-429.
    46. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme andangiotensin II in development ofhypoxic pulmonary hypertension [J]. Am J Physiol,1995,269(4Pt2):H1186–H1194.
    47. Li YY, Luo DC, Xiao Q. Clinical significance of changes in plasma renin-angiotensinaldosterone system on patients with high altitude pulmonary edema [J]. Zhong hua NeiKe Za Zhi,1993,32(4):232-234.
    48. Milledge JS, Catley DM, Ward MP, Williams ES, Clarke CR. Renin-aldosterone andangiotensin-converting enzyme during prolonged altitude exposure [J]. J Appl Physiol,1983;55(3):699-702.
    49. Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonaryhypertension [J]. Physiol Rev,2000,80(4):1337-1372.
    50. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biologicalactivity of endothelium-derived relaxing factor [J]. Nature,1987,327(6122):524-526.
    51. Anand IS, Prasad BA, Chugh SS, Rao KR, Cornfield DN, Milla CE, Singh N, Singh S,Selvamurthy W. Effects of inhaled nitric oxide and oxygen in high-altitude pulmonaryedema [J]. Circulation,1998,98(22):2441-2445.
    52. Busch T, B rtsch P, Pappert D, Grünig E, Hildebrandt W, Elser H, Falke KJ, SwensonER. Hypoxia decreases exhaled nitric oxide in mountaineers susceptible tohigh-altitude pulmonary edema [J]. Am J Respir Crit Care Med,2001,163(2):368–373.
    53. F rstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H.Nitricoxide synthase isozymes: characterization, purification, molecular cloning, andfunctions [J]. Hypertension,1994,23(6Pt2):1121–1131.
    54. Czyzyk-Krzeska MF, Bayliss DA, Lawson EE, Millhorn DE. Regulation of tyrosinehydroxylase gene expression in the rat carotid body by hypoxia [J]. J Neurochem,1992,58(4):1538–1546.
    55. Buerk DG, Osanai S, Mokashi A, Lahiri1S. Dopamine, sensory discharge, and stimulusinteraction with CO2and O2in cat carotid body [J]. J Appl Physiol,1998,85(5):1719–1726
    56. Stephan Kellenberger, Laurent Schild. Epithelial Sodium Channel/Degenerin Familyof Ion Channels: A Variety of Functions for a Shared Structure [J].Physiol Rev,2002,82(3):735-767.
    57. Horisberger JD. Canessa C. Rossier BC. The Epithelial Sodium Channel: RecentDevelopments [J]. Cell Physiol Biochem,1993,3(5-6):283–294.
    58. Barbry P, Hofman P. Molecular biology of Na+absorption [J]. Am J Physiol,1997,273(3Pt1):G571-585
    59. Furuhashi M, Kitamura K, Adachi M, Miyoshi T, Wakida N, Ura N, Shikano Y, ShinshiY, Sakamoto K, Hayashi M, Satoh N, Nishitani T, Tomita K, Shimamoto K. Liddle’sSyndrome Caused by a Novel Mutation in the Proline-Rich PY Motif of the EpithelialSodium Channel β-Subunit [J]. J Clin Endocrinol Metab,2005,90(1):340-344.
    60. Edelheit O, Hanukoglu I, Gizewska M, et al. Noval mutations in epithelial sodiumchannel (ENaC) subunit genes and phenotypic expression of multisystempseudohypoaldosteronism [J]. Clin Endocrinol (Oxf),2005,62(5):547-553.
    61. Carter AR, Zhou ZH, Calhoun DA, Bubien JK.Hyperactive ENaC identifieshypertensive individuals amenable to amiloride therapy [J]. Am J Physiol Cell Physiol,2001,281(5):C1413-1421.
    62. Saha C, Eckert GJ, Ambrosius WT, Chun TY, Wagner MA, Zhao Q, Pratt JH Improv-ement in Blood Pressure With Inhibition of the Epithelial Sodium Channel in BlacksWith Hypertension [J]. Hypertension,2005,46(3):481-487.
    63. Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, Pauwels R, Praet M,Siragy HM, de Gasparo M..Distribution of type-1and type-2angiotensin receptors inthe normal human lung and in lungs from patients with chronic obstructive pulmonarydisease [J].Histochem Cell Biol,2001,115(2):117-124.
    64.刘臻臻吴明星.人γD一晶状体蛋白及其五种突变型分子特性比较[J].眼科学报,2007,23(3):129-135.
    65. Giraldez T, Afonso-Oramas D, Cruz-Muros I, et al. Cloning and functional expressionof a new epithelial sodium channel δsubunit isoform differentially expressed in neuronsof the human and monkey telencephalon [J]. J Neurochem,2007,102(4):1304-1315.
    66. Matalon S, O′Brodovich H. Sodium channels in alveolar epithelial cells: molecularcharacterization, biophysical properties, and physiological significance [J]. Annu RevPhysiol,1999,61(4):627-661.
    67. Matthay MA, Folkesson HG, Christine C. Lung epithelial fluid transport and theresolution of pulmonary edema [J]. Physiol Rev,2002,82(3):569-600.
    68. W K Alderton, C E Cooper, and R G Knowles。Nitric oxide synthases: structure,function and inhibition [J]. Biochem J,2001,357(Pt3):593–615.
    1. Taylor AT. High-altitude illnesses: physiology, risk factors, prevention, and treatment[J]. Ramb Maim Med J,2011,2(1):1-18.
    2. West JB.The physiologic Basis of High-Altitude Diseases [J].Ann interr Med,2004,141(10):789-800.
    3.张彦博.高原疾病[M].西宁:青海人民出版社,1984:1-22.
    4. Dallimore J, Rowbotham EC. Incidence of Acute Mountain Sickness in Adolescents [J].Wilderness Environ Med,2009,20(3):221-224.
    5. Hultgren NH, Lopez CE, Lundberg E, Miller H. Physiologic studies of pulmonaryedema at high altitude [J]. Circulation,1964,29:393-408.
    6. Singh I,Roy SB. High altitude pulmonary edema:Clinical, hemodynamic, andpathologicstudies. In:CommandUARaD, editor. Biomedicine of high terrestrialelevation problems.1969.p.108-120.Washington D.C.
    7. Kobayashi T, Koyama S, Kubo K, Fukushima M, Kusama S. Clinical features ofpatients with high altitude pulmonary edema in Japan [J]. Chest,1987,92:814-821.
    8.李素芝,高钰琪.高原疾病学[M].北京:人民卫生出版社,2006:26-39.
    9. Barry PW, Pollard AJ. Altitude illness [J]. BMJ,2003,326(7395):915-919.
    10. Sartori C, Allemann Y, Trueb L, Lepori M, Maggiorini M, Nicod P, Scherrer U.Exaggerated pulmonary hypertension is not sufficient to trigger high-altitudepulmonary oedema in humans [J]. Schweiz Med Wochenschr,2000,130(11):385-389.
    11. Duplain H, Sartori C, Lepori M, Egli M, Allemann Y, Nicod P, Scherrer U. Exhalednitric oxide in high-altitude pulmonary edema: role in the regulation of pulmonaryvascular tone andevidence for a role against inflammation [J]. Am J Respir Crit CareMed,2000,162(1):221-224.
    12. Turner AJ. Angiotensin-converting enzyme2: cardioprotective player in the renin-angiotensin system?[J].Hypertension,2008,52(5):816-817.
    13. Marshall RP. The pulmonary renin-angiotensin system [J]. Curr Pharm Des,2003,9(9):715-722.
    14. Cargill RI, Lipworth BJ. Lisinopril attenuates acute hypoxic pulmonaryvasoconstriction in humans [J]. Chest,1996,109(2):424-429.
    15. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme andangiotensin II in development ofhypoxic pulmonary hypertension [J]. Am J Physiol,1995,269(4Pt2):H1186–H1194.
    16. Li YY, Luo DC, Xiao Q. Clinical significance of changes in plasma renin-angiotensinaldosterone system on patients with high altitude pulmonary edema [J]. Zhong hua NeiKe Za Zhi,1993,32(4):232-234.
    17. Milledge JS, Catley DM, Ward MP, Williams ES, Clarke CR. Renin-aldosterone andangiotensin-converting enzyme during prolonged altitude exposure [J]. J Appl Physiol,1983,55(3):699-702.
    18. Luobu GS, Cen WJ, Liu GZ. Analysis of association of polymorphisms of angiotensinconverting enzyme gene and angiotensinogen gene with high altitude pulmonaryedema [J]. Chin Circ J,2000,15(1):29-31.
    19. Qadar Pasha MA, Charu R, Ahsan A, Norboo T. HAPE susceptibility associates withvariants of genes of vascular homeostasis. Human Genome Mapping; Genomic Basis ofCommon Diseases, poster abstract,2005, pp.310.
    20. Qi Y, Niu W, Zhu T, Zhou W, Qiu C. Synergistic effect of the genetic polymorphisms ofthe renin-angiotensin-aldosterone system on high-altitude pulmonary edema: a studyfrom Qinghai–Tibet altitude [J]. Eur J Epidemiol,2008,23(2):143-152.
    21. Stobdan T, Ali Z, Khan AP, Nejatizadeh A, Ram R, Thinlas T, Mohammad G, Norboo T,Himashree G, Qadar Pasha M. Polymorphisms of renin-angiotensin system genes as arisk factor for high-altitude pulmonary oedema [J]. J Renin Angiotensin AldosteroneSyst,2011,12(2):93-101.
    22. Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, Pauwels R, Praet M,Siragy HM, de Gasparo M. Distribution of type-1and type-2angiotensin receptors inthe normal human lung and in lungs from patients withchronic obstructive pulmonarydisease [J]. Histochem Cell Biol,2001,115(2):117-124.
    23.刘世明,余满堂,吴天一.青海汉族人群ACE基因多态性频率的研究[J].高原医学杂志,2009,19(3):30.
    24. Dehnert C, Weymann J, Montgomery HE, Woods D, Maggiorini M, Scherrer U, GibbsJS, B rtsch P. No association between high-altitude tolerance and the ACE I/D genePolymorphism [J]. Med Sci Sports Exerc,2002,34(12):1928-1933.
    25. Hotta J, Hanaoka M, Droma Y, Katsuyama Y, Ota M, Kobayashi T. Polymorphisms ofrenin–angiotensin system genes with high-altitude pulmonary edema in Japanesesubjects [J]. Chest,2004,126(3):825-830.
    26. Ahsan A, Charu R, Pasha MA, Norboo T, Charu R, Afrin F, Ahsan A, Baig MA. eNOSallelic variants at the same locus associate with HAPE and adaptation [J]. Thorax,2004,59(11):1000-1002.
    27. Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonaryhypertension [J]. Physiol Rev,2000,80(4):1337-1372.
    28. Anand IS, Prasad BA, Chugh SS, Rao KR, Cornfield DN, Milla CE, Singh N, Singh S,Selvamurthy W. Effects of inhaled nitric oxide and oxygen in high-altitude pulmonaryedema [J]. Circulation,1998(22):2441-2445.
    29. Busch T, B rtsch P, Pappert D, Grünig E, Hildebrandt W, Elser H, Falke KJ, SwensonER. Hypoxia decreases exhaled nitric oxide in mountaineers suscep-tible tohigh-altitude pulmonary edema [J]. Am J Respir Crit Care Med,2001,163(2):368–373.
    30. Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T,Kubo K.Positive association of the endothelial nitric oxide synthase gene polymor-phisms with high-altitude pulmonary edema [J], Circulation,2002,106(7):826-830.
    31. A. Ahsan, G. Mohd, T. Norboo, M.A. Baig, M. A. Qadar Pasha. Heterozygotes of NOS3polymorphisms contribute to reduced nitrogen oxides in high-altitude pulmonaryedema [J], Chest,2006,130(5):1511-1519.
    32. Sun YJ, Fang MW, Niu WQ, Li GP, Liu JL, Ding SQ, Xu Yi, Yu GS, Dong JQ, Pan YJ,Dong WY, Wang T, Cao JW, Li XB, Wang ZX, Yu GX, Sun HC, Jia ZH, Liu J, WangXM, Si Q, Wu QX, Zhou WY, Zhu TC, Qiu CC. Endothelial nitric oxide synthase genepolymorphisms associated with susceptibility to high altitude pulmonary edema inchinese railway construction workers at Qinghai-Tibet over4500meters above sealevel [J]. Chin Med Sci J,25(4):215-221.
    33. Weiss J, Haefeli WE, Gasse C, Hoffmann MM, Weyman J, Gibbs S, Mansmann, U,B rtsch P. Lack of evidence for association of high altitude pulmonary edema andpolymorphisms of the NO pathway [J]. High Alt Med Biol,2003,4(3):355-366.
    34. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y,Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascularendothelial cells [J]. Nature,1988,332(6163):411-415.
    35. Waldh usl W, Lenz K, Hammerle A, Vierhapper H, Gasic S, Wagner OF. Endothelin-1in adult respiratory distress syndrome. Am Rev Respir Dis,1993,148(5):1169-1173.
    36. Charu R, Stobdan T, Ram RB, Khan AP, Qadar Pasha MA, Norboo T, Afrin F.Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1polymorphisms [J]. Thorax,2006,61(11):1011-1012.
    37. Hanaoka M, Kubo K, Yamazaki Y, Miyahara T, Matsuzawa Y, Kobayashi T, SekiguchiM, Ota M, Watanabe H. Association of high-altitude pulmonary edema with themajor histocompatibility complex [J]. Circulation,1998,97(12):1124-1128.
    38. Meyer S, Z'graggen BR, Blumenthal S, Borgeat A, Ganter MT, Reyes L, Booy C, NeffTA, Spahn DR, Beck-Schimmer B.Hypoxia attenuates effector-target cell interaction inthe airway and pulmonary vascular compartment [J]. Clin Exp Immunol,2007,150(2):358-367.
    39. Qi Y, Niu WQ, Zhu TC, Liu JL, Dong WY, Xu Y, Ding SQ, Cui CB, Pan YJ, Yu GS,Zhou WY, Qiu CC. Genetic interaction of Hsp70family genes polymorphisms withhigh-altitude pulmonary edema among Chinese railway constructors at altitudesexceeding4000meters [J]. Clin Chim Acta,2009,405(1-2):17-22.
    40. McCormack FX. Structure, processing and properties of surfactant protein A [J]..Biochim Biophys Acta,1998,1408(2-3):109-131.
    41. Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU. Association ofpolymorphisms in pulmonary surfactant protein A1and A2genes with high-altitudepulmonary edema [J]. Chest,2005,128(3):1611-1619.
    42. Hayes JD, McLellan LI.Glutathione and glutathione-dependent enzymes represent aco-ordinately regulated defence against oxidative stress [J]. Free Radic Res,1999,31(4):273-300.
    43. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biologicalconsequences [J].Pharmacology,2000,61(3):154-166.
    44. Mishra A, Ali Z, Vibhuti A, Kumar R, Alam P, Ram R, Thinlas T, Mohammad G, PashaMA. CYBA and GSTP1variants associate with oxidative stress under hypobarichypoxia as observed in high-altitude pulmonary oedema [J]. Clin Sci,2012,122(6):299-309.
    45. DrogeW. Oxidative stress and aging [J]. Adv Exp Med Biol,2004,543:191-200.
    46. Shringarpure R, Davies KJ. Protein turnover by the proteasome in aging and disease [J].Free Radic Biol Med,2002,32(11):1084-1089.
    47. Weiss J, Haefeli WE, Gasse C, Hoffmann MM, Weyman J, Gibbs S, Mansmann, U,B rtsch P. Lack of evidence for association of high altitude pulmonary edema andpolymorphisms of the NO pathway [J]. High Alt Med Biol,2003,4(3):355-366.
    48. Z ller B, Hillarp A, Berntorp E, Dahlb ck B. Activated protein C resistance due to acommon factor V gene mutation is a major risk factor for venousthrombosis [J]. AnnuRev Med,1997,48:45-58.
    49. Droma Y, Hanaoka M, Hotta J, Katsuyama Y, Ota M, Kobayashi T, Kubo K. The r506Qmutation of coagulation factor V gene in high altitude pulmonary-edema-susceptiblesubjects [J]. High Alt Med Biol,2003,4(4):497-498.
    50. Sharma P, Hingorani A, Jia H, Ashby M, Hopper R, Clayton D, Brown MJ.Positiveassociation of tyrosine hydroxylase microsatellite marker to essential hypertension [J].Hypertension,1998,32(4):676-682.
    51. Hanaoka M, Droma Y, Hotta J, Matsuzawa Y, Kobayashi T, Kubo K, Ota M.Polymorphisms of the tyrosine hydroxylase gene in subjects susceptible to high-altitudepulmonary edema [J]. Chest,2003,123(1):54-58.
    52. Sartori M, Parotto E, Ceolotto G, Papparella I, Lenzini L, Calò LA, SempliciniA.C825T polymorphism of the GNB3gene codifying the G-protein beta3-subunit andcardiovascular risk [J]. Ann Ital Med Int,2004,19(4):240-248.
    53. Qi Y, Liu JL, Xu Y, Dong WY, Ding SQ, Yu GS, Zhu TC, Qiu CC. Polymorphismswithin GNB3, ADD1and ADRB2genes are not associated with HAPE in China [J].Basic Clin Med,2009,29(8):811-815.
    54. Casari G, Barlassina C, Cusi D, Zagato L, Muirhead R, Righetti M, Nembri P, Amar K,Gatti M, Macciardi F. Association of the alpha-adducin locus with essentialhypertension [J]. Hypertension,1995,25(3):320-326.
    55. Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, Glorioso N, Lanzani C,Manunta P, Righetti M, Rivera R, Stella P, Troffa C, Zagato L, BianchiG.Polymorphisms of alpha-adducin and salt sensitivity in patients with essentialhypertension [J]. Lancet,1997,349(9062):1353-1357.
    56. Krenn K, Klepetko W, Taghavi S, Paulus P, Aharinejad S.Vascular endothelial growthfactor increases pulmonary vascular permeability in cystic fibrosis patients undergoinglung transplantation [J]. Eur J Cardiothorac Surg,2007,32(1):35-41.
    57. Hanaoka M, Droma Y, Ota M, Ito M, Katsuyama Y, Kubo K. Polymorphisms of humanvascular endothelial growth factor gene in high-altitude pulmonary oedema susceptiblesubjects [J]. Respirology,2009,14(1):46-52.
    58. Hamid QA, Mak JC, Sheppard MN, Corrin B, Venter JC, Barnes PJ. Localization ofbeta2-adrenoceptor messenger RNA in human and rat lung using in situ hybridization:correlationwith receptor autoradiography [J].Eur J Pharmacol,1991,206(2):133-8.
    59. Stobdan T, Kumar R, Mohammad G, Thinlas T, Norboo T, Iqbal M, Pasha MA.Probable role of beta2-adrenergic receptor gene haplotype in high-altitude pulmonaryoedema [J]. Respirology,2010,15(4):651-658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700