用户名: 密码: 验证码:
Ag添加对Zr_(57)Al_(15)Co_(28)非晶合金性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用Zr_57Al_15Co_20Ag_8和Zr57Al15Co28两种非晶合金材料,采用X射线衍射(XRD)和差示扫描量热分析(DSC)实验表征了其非晶结构以及Ag的添加对合金结构和性能参数的影响。DSC实验结果表明:在20 K/min加热速率下,Zr_57Al_15Co_20Ag_8非晶合金的第一晶化温度为787.5 K,Zr57Al15Co20非晶合金的第一晶化温度为806.4 K。利用Kissinger关系研究了Zr_57Al_15Co_20Ag_8和Zr57Al15Co28非晶合金的晶化动力学行为,其晶化激活能分别为521.5 KJ/mol和375.9 KJ/mol。
     利用纳米压痕技术分析对比了两者的弹性性能以及加载速率对弹性模量、纳米硬度等参数的影响。最大载荷为5000μN时,Zr57Al15Co28的加载和卸载曲线斜率均比Zr57Al15Co20Ag8非晶合金的大,表明前者的弹性性能较后者良好,即由于贵金属Ag的添加使得Zr57Al15Co20Ag8非晶合金的弹性性能减弱。
     利用高压同步辐射技术对Zr57Al15Co20Ag8和Zr57Al15Co28在高压下进行压缩性能研究得到了非晶合金的状态方程分别为:-ΔV_0 / V_0 =-0.06959+0.00971P-1.16447×10_-4P_2+4.70907×10_-6P_3 -ΔV_0 / V_0 =-0.10844+0.02143P-6.90900×10_-4P_2+8.02256×10_-6P_3两者的B(体弹模量)分别为102.98 GPa和46.66 GPa。
     利用六面顶高压技术在300℃、0-5 GPa压力条件下,研究了压力对Zr_57Al_15Co_20Ag_8非晶合金的晶化和相变过程的影响;利用Ozawa关系式分析了高压退火处理对Zr_57Al_15Co_20Ag_8非晶合金动力学的影响。实验结果表明:晶化激活能与压力密切相关;经过高压退火处理后非晶合金的纳米硬度和弹性模量平均值有增大的趋势;其中纳米硬度值分布较为分散而弹性模量数值较为集中。
In this thesis, Zr_57Al_15Co_20Ag_8 and Zr57Al15Co28 metallic glasses were selected, the structures of both alloys were detected and compared by the XRD and the DSC measurements. The addition of the Ag has large impact on the structure and the performance parameters of the Zr57Al15Co28. The results show that the first crystallization temperature of Zr_57Al_15Co_20Ag_8 is about 787.5 K which is ahead of 806.4 K of the Zr57Al15Co28. We investigated the crystallization kinetics of both metallic glasses through Kissinger equation, which show that the crystallization activation energy of the Zr_57Al_15Co_20Ag_8 and the Zr57Al15Co28 is about 521.5 KJ/mol, 375.9 KJ/mol respectively.
     Instrumented Nano-indentation experiments that were conducted to compare the elastic properities of both metallic glasses and to analyse the effect of loading rate on elastic modulus and hardness. The results show that the gradient of the loading and unloading curve of Zr57Al15Co28 under 5000μN is steeper than Zr57Al15Co20Ag8, which is a distinct symbol that the elastic properity of Zr57Al15Co28 is superior than Zr57Al15Co20Ag8. The addition of Ag give rise to the enhancement of plastic deformation and the weakness of elastic properity of Zr_57Al_15Co_20Ag_8 metallic glass.
     Utilizing the high pressure synchronization radiation technique to study the compressibility of the Zr_57Al_15Co_20Ag_8 and the Zr57Al15Co28, we gained the equation of the state accurately as follows: -ΔV_0 / V_0 =-0.06959+0.00971P-1.16447×10_-4P_2+4.70907×10_-6P_3 -ΔV_0 / V_0 =-0.10844+0.02143P-6.90900×10_-4P_2+8.02256×10_-6P_3The corresponding B (elastic modulus) of Zr_57Al_15Co_20Ag_8 and the Zr57Al15Co28 are 102.98 GPa and 46.66 GPa respectively.
     High pressure experiments were performed for Zr_57Al_15Co_20Ag_8 alloys by the cubic anvil high pressure apparatus under 300℃to investigate the influence of pressure on crystallization and phase transformation course of Zr_57Al_15Co_20Ag_8 metallic glass; The Ozawa curve is fitted linearly to investigate the annealing effect under high pressure on kinetics behavior of the Zr_57Al_15Co_20Ag_8 metallic glass. The final data indicate that the crystallization activation energy have great relation with high pressure; The average hardness and elastic modulus is developing towards the higher values while the hardness values are more dispersive than elastic modulus values.
引文
1赵英俊,杨克冲,杨叔子.非晶态合金传感器技术与应用.华中理工大学出版社, 1998, 3: 3
    2 A. Inoue. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48: 279
    3 J. D. Bernal. Geometric Approach to the Structure of Liquids. Nature. 1959, 183: 141
    4 W. H. Zachariasen. The Atomic Arrangement in Glass. J. Am. Chem. Soc. 1932, 54: 3841
    5 D. Turnbull. M. H. Cohen. Concerning Reconstructive Transformation and Formation of Glass. J. Chem. Phys. 1958, 29: 1049
    6 H. A. Daveis, F. E. Luborsky. Amorphous Metallic Alloys. London, Butterworts, 1983
    7 W. Klement, R. H. Willens, P. Duwez. Non-crystalline Structure in Solidfied Gold-silicon Alloys. Nature. 1960, 187: 869-870
    8 A. Inoue. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48: 279
    9 R. W. Cahn, A. L. Greer. Physical Metal Lurgy. 1996(4): 1723
    10 B. Lawn. Fracture of Brittle Solids. Cambridge, Cambridge University Press,1993
    11 J. J. Lewandowski, M. Shazly, A. ShamimiNouri. Intrinsic and Extrinsic Toughening of Metallic Glasses. Scripta Materialia. 2006, 54: 337-341
    12 W. Johnson. Bulk Glass-forming Metallic Alloys: Science and Technology. MRS Bulletin. 1999, 10: 42
    13 C. Schuh, T. Hufnagel, U. Ramamurty. Mechanical Behavior of Amorphous Alloys, Acta Materialia. 2007, 55(12): 4067-4109
    14 J. Eckert, J. Das, S. Pauly et al. Mechanical Properties of Bulk Metallic Glasses and Composites. Journal of Materials Research. 2007, 22 (2): 285-301
    15 Z. P. Lu, C. T. Liu. Role of Minor Alloying Additions in Formation of Bulk Metallic Glasses. J. Mater. Sci. 2004, 39: 3965
    16 Morgana Martin Trexler, Naresh N. Thadhani. Mechanical Properties of Bulk Metallic Glasses. Progress in Materials Science. 2010, 55: 759-839
    17 W. L. Johnson. Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys. Mater. Sci. Forum. 1996, 225: 35-40
    18 C. Zhang, N. Li, J. Pan et al. Enhancement of Glass-forming Ability and Bio-corrosion Resistance of Zr-Co-Al Bulk Metallic Glasses by the Addition of Ag. Journal of Alloys and Compounds. 2010, 504S: S163-S167
    19 G. Duan, K. D. Blauwe, M. L. Lind et al. Compositional Dependence of Thermal, Elastic, and Mechanical Properties in Cu-Zr-Ag Bulk Metallic Glasses. Scripta Materialia. 2008, 58: 159-162
    20吴春姬,张亚南,王文全等.添加元素对Mg-基非晶合金形成能力和热稳定性的影响.吉林大学学报(理学版), 2009, 9(5): 10-20
    21 W. D. Qin, J. S. Li, H. C. Kou et al. Effects of Alloy Addition on the Improvement of Glass Forming Ability and Plasticity of Mg-Cu-Tb Bulk Metallic Glass. Intermetallics. 2009, 17: 253-255
    22 C. Zhang, N. Li, J. Pan et al. Enhancement of Glass-forming Ability and Bio-corrosion Resistance of Zr-Co-Al Bulk Metallic Glasses by the Addition of Ag. Journal of Alloys and Compounds. 2010, 504S: S163-S167
    23 W. H. Wang, R. J. Wang, D. Q. Zhao. Microstructural Transformation in A Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass. Phys. Rev. B. 2000, 62: 11292
    24 W. H. Wang, D. W. He, D. Q. Zhao. Nanocrystallization of ZrTiCuNiBeC Bulk Metallic Glass under High Pressure. Appl. Phys. Lett. 1999, 75: 2770
    25 Y. Kawamura, A. Inoue. Newtonian Viscosity of Supercooled Liquid in A Pd40Ni40P20 Metallic Glass. Appl. Phys. Lett. 2000, 77: 1114-1116
    26 G. J. Fan, H. J. Fecht. A Cluster Model for the Viscous Flow of Glass-forming Liquids. J. Chem. Phys. 2002, 116: 5002-5006
    27 O. Haruyama, H. Sakagami, N. Nishiyama et al. The Free Volume Kinetics during Structural Relaxation in Bulk Pd-P Based Metallic Glasses. Mater. Sci. Eng. A. 2007, 449-451
    28 W. H. Wang, Z. X. Bao et al. Equation of State of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass. Phys. Rev. B. 2000, 61: 3166
    29 Y. Z. Yang, X. F. Li, Z. H. Qiu. Heat Treatment of Metals. 2005, 30: 17-20
    30沈鼎昌.同步辐射的现状和发展.中国科学基金, 2005(6): 9-19
    31阮芳,姚可夫.高强度Zr基大块非晶合金的研究进展.材料导报, 2005, 19(9): 8-11
    32 F. E.卢博斯基著,柯成,唐与湛等.非晶态金属合金.北京:冶金工业出版社, 1987: 1-33
    33 A. Inoue, J. S. Cook. Fe—based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region. Mater. Trans. JIM. 1995, 36(9): 1180-1183
    34 J. A. Xu, H. K. Mao, P. M. Bell. High-Pressure Ruby and Diamond Fluorescence Observations at 0.21 to 0.55 Terapascal. Science. 1986, 232(4756): 1404
    35 L. Liu, K. C. Chan, G. K. H. Pang. High-resolution TEM Study of the Microstructure of Zr65Ni10Cu7.5Al7.5Ag10 Bulk Metallic Glass. Journal of Crystal Growth. 2004, 265: 642-649
    36 Maruzen, Metals Databook. Japan Inst, Metals, Tokyo, 1983: 8
    37 A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions. JIM. 1990, 31(3): 177-183
    38余鹏,孙保安,白海洋.探索塑性金属玻璃.物理, 2008, 37(6): 421-425
    39 H. E. Kissinger. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry. 1957, 29: 1072
    40 H. R. Wang, Y. L. Gao, G. H. Min et al. Primary Crystallization in Rapidly Solidified Zr70Cu20Ni10 Alloy from a Supercooled Liquid Region. Phys.Lett. A. 2003, 314: 81-87
    41 G. P. Zhang, W. Wang, B. Zhang et al. Rapid Communications Rate dependent Serrated Flow Behavior in Amorphous Metals during Nanoindentation. Scripta Mater. 2005, 52: 1147
    42 T. Benameur, K. Hajlaoui, A. R.Yavari et al. On the Plastic Flow in Zr-based Metallic Glass through Micro-indentation: An Atomic Force Microscopy Analysis. Mater.Trans. JIM. 2002, 43: 2617
    43 L. Greer, I. T. Walker. Transformations in Primary Crystallites in (Fe,Ni)-based Metallic Glasses. Mater. Sci. Forum. 2002, 77: 386-388
    44 N. K. Mukhopadhyay, G. C. Weatherly, J. D. Embury. An Analysis of Microhardness of Single-quasicrystals in the Al-Cu-Co-Si System. Mater. Sci. Eng. A. 2002, 315
    45 C. A. Schuh, T. G. Nieh. A Nanoindentation Study of Serrated Flow in Bulk Metallic Glasses. Acta Mater. 2003, 51: 87
    46 P. W. Bridgman. The Physics of High Pressure (G. Bell and Sons, Ltd, London, 1958)
    47 W. H. Wang, Z. X. Bao et al. Equation of State of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass. Phys. Rev. B. 2000, 61: 3166
    48 S. Argon. Plastic Deformation in Metallic Glass. Acta Metall. 1979, 27: 47
    49 X. D. Wang, J. Z. Jiang, S. Yi. Reversible Structural Relaxation and Crystallization of Zr62Al8Ni13Cu17 Bulk Metallic Glass. J. Non-Cryst. Solids. 2007, 353: 57-61
    50 J. C. Qiao, J. M. Pelletier. Enthalpy Relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 Bulk Metallic Glasses by Differential Scanning Calorimetry (DSC). Intermetallics. 2011, 19(1): 9-18
    51 H. L. Ma, X. H. Zhang, J. Lucas et al. Relaxation Near Room Temperature in Tellurium Chalcohalide Glasses. J. Non-Cryst. Solids. 1992, 140: 209
    52 T. Ozawa. Kinetic Analysis of Derivative Curves in Thermal Analysis. J. Thermal Analysis. 1970, 2 (3): 301
    53 C. A. Schuh, T. C. Hufnagel, U. Ramamurty. Mechanical Behavior of Amorphous Alloys. Acta Mater. 2007, 55: 4067
    54 W. J. Wright, R. Saha, W. D. Nix. Mater. Trans. JIM. 2001, 42: 642
    55魏恒斗,陈学定,郝雷. (Ni0.75Fe0.25)78Si10B12非晶合金非等温晶化动力学效应.稀有金属材料与工程, 2006, 35(11): 1721-1724
    56 B. G. Yoo, J. H. Oh, Y. J. Kim et al. Nanoindentation Analysis of Time-dependent Deformation in As-cast and Annealed Cu-Zr Bulk Metallic Glass. Intermetallics. 2010, 18: 1898-1901

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700