用户名: 密码: 验证码:
超临界CO_2-碱金属体系碳化硅的低温合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO_2-碱金属体系是对温室气体二氧化碳进行资源化利用的一个绿色化学体系。本论文旨在探索一条在该体系中低温合成碳化硅的工艺路线,并对低温合成的立方碳化硅半导体进行发光与磁性方面的表征,考察其光致发光性质和稀磁半导体性质的新颖之处。具体工作如下:
     一、研究了反应过程中超临界CO_2-碱金属体系的压力变化特点及反应特征。分别测量并绘制了不同的CO_2密度体系中,压力随温度变化曲线(P-T),特别考察了CO_2密度为1.0g/mL时金属钠及其体积变化对P-T的影响,不同温度下压力随时间的变化情况,也分析了反应产物,发现了一些有意义的结果,为在该体系中合成高温相材料(如SiC)打下了基础。
     二、在超临界CO_2-碱金属体系中,利用廉价的工业原料FeSi_x合金为原料在460℃低温合成了碳化硅。通过改变FeSi_x合金的粒径以及用量、金属钠的量、升温速率、加热温度以及恒温时间,对碳化硅的合成条件进行了探索,对不同反应条件下合成的碳化硅的晶型和产率也进行了研究。用碱式碳酸镁代替CO_2在500℃也合成了碳化硅,并对碱式碳酸镁和CO_2两种碳源合成碳化硅的反应体系进行了比较。通过对结果的分析,对碳化硅合成条件进行了优化:利用FeSix合金作为硅源在超临界二氧化碳-碱金属体系也能合成碳化硅,但利用碱式碳酸镁作为碳源较CO_2更为有利:FeSix合金的粒径越小、金属钠的质量越大越有利于碳化硅的合成;FeSix粒径小于500目时,利用二氧化碳作为碳源、在460℃延长恒温时间生成的碳化硅晶型倾向于单一化,即立方碳化硅。反应时间越长,3C-SiC的纯度越高,这可能是后续延长加热时间的过程起到了高压退火的作用(CO_2压力约为50 Mpa),使2H等碳化硅向立方碳化硅转变,提高了立方碳化硅的纯度。
     三、对利用FeSi_x合金、CO_2和金属Na在460℃合成的3C-SiC光致发光性质进行了研究。XPS测试发现晶粒表面有氧化层,据此提出了3C-SiC晶粒结构模型:中心为3C-SiC,外部为一层薄的SiO_2氧化膜,中间为很薄的SiO_2/SiC非晶界面层。用370nm激发的发光谱特征验证了该结构模型的真实性,峰值位于约437nm的强发光带和峰值在418nm的发光带分别归因于非晶碳化硅和含氧缺
The ScCO_2-alkali metal system, which is used to convert CO_2 into useful carbon-based materials, belongs to green chemistry system. The purpose of this dissertation is to establish a route for synthesizing silicon carbide at low temperatures in the ScCO_2-alkali metal system, and to investigate photoluminescence and dilute magnetic properties of 3C-SiC semiconductor synthesized at low temperatures. The details are summarized as follows:
    Firstly, the trait of pressure variation and reaction character of ScCO_2-alkali metal system during the reaction process was studied. The curves of CO_2 pressure vs temperature (P-T) with different CO_2 densities were respectively measured and plotted. Especially, by investigating the influence of metallic Na and its volume on the curve of P-T (CO_2 density = 1.0 g/mL), the pressure variation vs time at different heating temperatures, some interesting results were obtained, laying the foundation for the synthesis of high-temperature phase materials.
    Secondly, silicon carbide was synthesized at low temperature of 460℃ in the ScCO_2-metallic Na system, using cheap FeSix alloy, industrial CO_2 gas and metallic Na. The synthesis conditions of silicon carbide were explored by changing grain size, weight of FeSix alloy, metallic Na volume, heating rate, heating temperature and heating time. The influence of the synthesis conditions on crystal types and yield of silicon carbides was also investigated. Besides, silicon carbide was also synthesized at 500℃ using FeSix alloy, basic magnesium carbonate and metallic Na, the two kinds of reaction systems by using basic magnesium carbonate and CO_2 as carbon sources respectively were compared. The optimized synthesis conditions of silicon carbide were brought forward after discussion of the results. Magnesium carbonate as carbon source for synthesis of silicon carbide in the ScCO_2-metallic Na system with FeSix alloy as silicon source is more advantageous than CO_2. The smaller grain size of FeSix alloy and more weight of metallic Na are two favorable conditions to form silicon carbonate; As using CO_2 and FeSix alloy (≤500) as carbon source and silicon
引文
[1] Victor D.G, Nature, 1998, 395, 837.
    
    [2] Rillig M. C., Wright S. F., Allen M. F, Field C. B., Nature, 1999,400, 628.
    
    [3] Pierrehumbert. R.T., Nature, 2004,429, 646.
    
    [4] Takahashi T., Science, 2004, 305, 352.
    
    [5] Cox P. M., Betts R. A., Jones C. D., Spall S. A. and Totterdell 1. J., Nature, 2000, 408,184.
    
    [6] Beerling D., Nature, 2002,415, 386.
    [7] Russel P. G, Novac N., Srinivasan S. and Sterrinberg M., J. Electrochem. Soc, 1977, 124,1329.
    [8] Grant J. L., Goswarmi K., Spreer L. O., Otvos J. W. and Calvin M., 1987, J. Am. Chem. Soc Dalton Trans., 2105.
    
    [9] Lou Z. S., Chen Q. W., Wang W. and Zhang Y. F., carbon, 2003,41, 3063.
    [10] Lou Z. S., Chen C. L., Chen Q. W. and Gao J., carbon, 2005,43, 1084.
    [11] Lou Z. S., Chen Q. W, Gao J. and Zhang Y. F., carbon, 2004,42,229.
    [12] Lou Z. S., Chen Q. W., Zhang Y. F., Wang W. and Qian Y. T., J. Am. Chem. Soc, 2003,125, 9302.
    
    [15] Johnston K. P., Penninger J. M. L., Supercritical Fluid Science and Technology, 1st ed. American Chemical Society: Washington, DC, 1989,406.
    
    [16] Noyori R., Chem. Rev., 1999,99, 353.
    
    [17] Supercritical Fluids: Fundamentals and Applications, NATO Adv. Study Inst. (Kemer, Turkey, 1999). To be published.
    
    [18] Jessop P.G., Ikariya T., Noyori R., Chem. Rev., 1999, 99,475.
    
    [19] Fukushima.Y.R&D review of Toyota CRDL, 1999, 35, 1.
    
    [20] Cooper Andrew I., J. Mater. Chem., 2000, 10, 207.
    
    [21] Tripp C.P. and Hair M.L., Langmuir, 1991, 7, 293.
    
    [22] Mchugh M.A. and Krukonis V., Supercritical Fluid Extraction 2nd ed. Butterworth-Heinemann:Boston, 1994.
    [23] Rubin J.B., Davenhall L.B., Taylor C.M.V., Sivils L.D., Pierce T. and Tiefert K., "CO2-Based Supercritical Fluids as Replacements for Photoresist Stripping Solvents" .
    
    [24] Erkey C., Gadalla H. and Akgerman A. J., Supercrit. Fluids, 1990, 3, 80.
    
    [25] 王少芬,魏建谟,应用化学,2001, 18,87.
    
    [26] Debenedetti P. G.., Tom J. W., Yeo S. D. and Lim G. B., J. Controlled Release, 1993,24,27.
    
    [27] Matson D.W., Petersen R.C. and Smith R.D., Adv. Ceram., 1987, 21, 109.
    [28] Tom J.W. and Debenedetti P.G., J. Aerosol Sci., 1991, 22, 555.
    [29] Kwauk X., Debenedetti P.G., J. Aerosol Sci., 1993,24, 445.
    [30] Gallagher P. M., Coffey M. P., Krukonis V. J. and Hillstrom W. W., J. Supercrit. Fluids 1992, 5,130.
    
    [31] Reverchon E., Delia Porta G., Celano C. et al. J. Material Res. 1998,13,284.
    [32] Reverchon E., Delia Porta G., Di Trolio A., Pace S. Ind. Eng. Chem. Res. 1998, 37, 952.
    
    [33] Dixon D.J., Luna-Barcenas G. and Johnston K.P., Polymer, 1994, 35, 3998.
    [34] Luna-Barcenas G, Kanakia S. K., Sanchez I. C, Johnston K. P., Polymer 1995, 36,3173.
    
    [35] Dixon D. J. and Johnston K. P., J. Appl. Polym. Sci., 1993, 50, 1929.
    [36] Ji M., Chen X., Wai C. M. and Fulton J. L., J. Am. Chem. Soc, 1999, 121, 2631.
    [37] Holmes J. C., Bhargave P. A., Korgel B. A., Johnston K. P., Langmuir, 1999, 15, 6613.
    
    [38] Ohde H., Rodriguez J. M., Xiang-Rong Y. et al., Chem. Commun., 2000, 2353.
    [39] Ohde H., Wai C.M. Kim H., Kim J. and Ohde M., J. Am. Chem. Soc. 2002, 124, 4540.
    [40] Ji M., Chen X. Y., Wai C. M. and Fulton.J. L., J. Am. Chem. Soc, 1999, 121, 2631.
    
    [41] Romack T. J. and De Simone J. M., Macromolecules, 1995, 28, 8429.
    [42] Pang T. H., Ye M. H., Knopf F. C. and Dooley K. M., Chem. Eng. Commun., 1991,110,85.
    [43] King J. W. and Williams L.L., Curr. Opin. Solid State Mater. Sci., 2003, 7, 413.
    [44] Tony Clifford, Introduction to fundamentals of supercritical fluid, oxford university press, 1998.
    [45] Cansell F., Aymonier C. and Loppinet-Serani A., Curr. Opin. Solid State Mater. Sci., 2003, 7,331.
    [46] Goldfarb D. L., Fernandez D. P and Corti H. R., Fluid Phase Equilib., 1999, 158, 1011.
    [47] Vetere A., Fluid Phase Equilib., 1998, 148, 83.
    [48] Wang Q., Cao F. Y. and Chen Q. W., Mater. Chem. Phys., 2006, 95, 113.
    [49] Ott H., Probleme der moderne Physik, 1926, 63, 1.
    [50] 郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,科学出版社,2000.
    [51] Shaffer P. T. B., Acta Cryst., 1969, B25(3), 477.
    [52] 韩荣江,王继扬,徐现刚,胡小波,董捷,李现祥,李娟,姜守振,王丽,蒋民华,人工晶体学报,33,877.
    [53] Nakashima S. and Hangyo M., Solid State Commun., 1991, 80(1), 21.
    [54] 余森,碳化硅制造,机械工业部机床工具总局,1982.
    [55] Knippenberg W. F., Philips Research Reports, 1963, 18, 161.
    [56] Ruff O., Trans. Electrochem. Soc., 1935, 68, 87.
    [57] Drowart J., et al., J. Chem. Phys., 1958, 29, 1015.
    [58] Scace R. I., et al., J. Chem. Phys., 1959, 30, 1551.
    [59] Davis S. G., et al., J. Chem. Phys., 1961, 32, 659.
    [60] Wiebke G., Berichte der Deutschen Keramichan Gesellschaft, 1960, 37, H5, 219.
    [61] Lely J. A., et al., Proc. Int. Conf., 1958, 514.
    [62] Fenjisawa H. and Fagananwki G., Microelectronics Devices[M]. Princeton: Science Press, 1992.
    [63] Hiro M. and Hiroshi K., Appl. Phys. Lett., 1983, 42, 432.
    [64] Munetaka H., Shiozaki A. and Kukimoto H., J. Lumin., 1981, 24/25, 43.
    [65] Street R. A., Neckel N. H. and Tsai C. C., J. Non-Cryst. Solids, 1995, 190, 33.
    [66] Takahiro M., Jun T. and Taruki T., Appl. Phys. Lett., 1994, 64,226.
    [67] Hidenori M. and Takahiro M., Appl. Phys. Lett., 1994, 65, 3350.
    [68] Koch V. P., Sreseli O. and Polisski G., Thin Solid Films, 1995, 255, 107.
    [69] Kordina O., Hallin C. and Ellison A., J. Appl. Phys. Lett., 1996, 69, 1456.
    [70] Takazawa A., Tamura T. and Yamada M., Jpn. J. Appl. Phys., 1993, 32. 3148.
    [71] 余明斌,马建平,罗家骏等,半导体学报,2000,21,674.
    [72] 王玉霞,温军,郭震等,半导体学报,2000,21,571.
    [73] Yu M. B., Yoon S. F., Xu S. J., et al. Mat. Res. Soc. Syrup., 2000, 621, Q5. 10. 1.
    [74] 廖良生,鲍希茂,王水风等,半导体学报,1996,17,77.
    [75] 吴晓华,鲍希茂,李宁生等,半导体学报,2000,21,128.
    [76] Bao X. M., Liao L. S. and Li N. S., Nuc. Phys. Res. B, 1996, 119, 505.
    [77] 廖良生,鲍希茂,闽乃本,半导体学报,1995,16,315.
    [78] Freitas J. A., Jr., Bishop S. G., Edmond J. A., Ryu J. and Davis R. F., J. Appl. Phys., 1987, 61, 1.
    [79] Haberstroh Ch., Helbig R. and Stein R. A., J. Appl. Phys., 1994, 76, 509.
    [80] Russell M. W., Freitas Jr. J. A., Moore W. J. and Butler J. E., Adv. Mater. Opt. Electron., 1997, 7, 195.
    [81] Henry A., Ivanov I. G., Ellison A. and Janzen E., Mater. Sci. Eng. B, 1999, 61-62, 234.
    [82] Chang S. S. and Sakai A., Mater. Lett., 2004, 58, 1212.
    [83] Prinz G. A., Science, 1998, 282, 1660.
    [84] Wolf S. A., et al, Science, 2001, 294, 1488.
    [85] Oestreich M., Nature, 1999, 402, 735.
    [86] Munekata H., et al, Phys. Rev. Lett., 1989, 63, 1849.
    [87] Ohno H., et al, Appl. Phys. Lett., 1998, 73,363.
    [88] de Boeck J. and Borghs G., Phys. World, 1999, 12, 27.
    [89] Ohno H., Science, 21998, 81, 951.
    [90] Sanvito S., Theurich G., and Hill N. A., J. Supercond., 2002, 15, 85.
    [91] Kacman P., Semicond. Sci. Technol., 2001, 16, R25.
    [92] Sato K. and Katayama-Yoshida H., Semicond. Sci. Technol., 2002, 17, 367.
    [93] Saeki H., Tabata H., and Kawai T. H., Solid State Commun., 2001, 120, 439.
    [94] hirai M. S., Ogawa T., Kitagawa I., and Suzuki N., J. Magn. Magn. Mater., 1998, 177-181, 1383.
    [95] Sapra S., Sarma D. D., Sanvito S., and Hill N. A., Nano Lett., 2002,2, 605.
    [96] Sanyal B., Bergqvist L. and Eriksson O., Phys. Rev. B, 2003,68,054417.
    [97] Theodoropoulou N., Hebard A, F., Chu S. N. G., Overberg M. E., Abernathy C. R., Pearton S. J., Wilson R. G., Zavada J. M. and Park Y. D., J. Vac. Sci. Technol. A, 2002,20, 579.
    
    [98] Theodoropoulou N., Hebard A, F., Chu S. N. G., Overberg M. E., Abernathy C. R., Pearton S. J., Wilson R. G. and Zavada J. M., Electrochem. Solid-State Lett., 2001,4,G119.
    
    [99] Martin H. P., Ecke R. and Muller E., J. Eur. Ceram. Soc, 1998, 18,1737.
    [100] Matthews S., Edirisinghe M. J. and Folkes M. J., Ceram. Int., 1999,25,49.
    [101] Narayan J., Raghunathan R., Chowdhurly R. and Jagannadham K., J. Appl. Phys., 1994,75,7252.
    [102] Ramesh P. D., Vaidhyanathan B., Ganguli M. and Rao R. J., J. Mater. Res., 1994, 9, 3025.
    
    [103] Seog I. S. and Kim C. H., 1993, J. Mater. Sci., 28, 3277.
    [104] Guo J. Y., Gitzhofer F. and Boulos M. I., J. Mater. Sci., 1995, 30, 5589.
    [105] Hu J. Q., Lu Q. Y. and Tang K. B., J. Phys. Chem. B, 2000, 104, 5251.
    [106] Lu Q. Y, Hu J. Q. and Tang K. B., Appl. Phys. Lett., 1999, 75, 507.
    
    [107] Shen G Z., Chen D. and Tang K. B., Chem. Phys. Lett,. 2003, 375, 177.
    [108] Yasui K., Asada K., Maeda T. and Akahan T., Appl. Surf. Sci., 2001, 175,495
    [109] Chen Y., Matsumoto K., Nishio Y., Shirafuji T. and Nishino S., Mater. Sci. Eng. B, 1999,61-62,579.
    [110] Siebert J., Guyot F. and Malavergne V., Earth. Planet. Sci. Lett., 2005,229,205
    [1] Lou Z. S., Chen Q. W., Wang W. and Zhang Y. F., carbon, 2003, 41, 3063.
    [2] Lou Z. S., Chen C. L., Chen Q. W. and Gao J., carbon, 2005, 43, 1084.
    [3] Lou Z. S., Chen Q. W., Gao J. and Zhang Y. F., carbon, 2004, 42, 229.
    [4] Lou Z. S., Chen Q. w., Zhang Y. F., Wang W. and Qian Y. T., J. Am. Chem. Soc., 2003, 125, 9302.
    [5] Motiei M., Hacohen Y. R., Calderon-Moreno J. and Gedanken A., J. Am. Chem. Soc., 2001, 123, 8624.
    [6] 汪志诚,“热力学.统计物理(第三版)”,高等教育出版社,2003年3月
    [7] Chen J. F., Qian W., Ye Y. and Chen Q. W., J. Phys. D: Appl. Phys. 2006, 39, 1472.
    [8] Wang Q., Cao F. Y. and Chen Q. W., Lett. Org. Chem., 2005, 2, 258.
    [9] Angus J. C. and Hayman C. C., Science, 1988, 241, 913.
    [1] 郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,科学出版社,2000.
    [2] 余森,碳化硅制造,机械工业部机床工具总局,1982.
    [3] Knippenberg W. F., Philips Research Reports, 1963, 18, 161.
    [4] 李晋闽,物理,2000,29,481.
    [5] Munekata H., Ohno H., Von Molnar S., Armin Segmuller, Chang L. L. and Esaki L., Phys. Rev. Lett., 63, 1849 (1989).
    [6] Ohno H., Akiba N., Matsukura F., Shen A., Ohtani K. and Ohno Y., Appl. Phys. Lett., 1998, 73, 363.
    [7] Theodoropoulou N., Hebard A. F., Chu S. N. G., Overberg M. E., Abernathy C. R., Pearton S. J., Wilson R. G., Zavada J. M. and Park Y. D., J. Vac. Sci. Technol. A, 2002, 20, 579.
    [8] Martin H. P., Ecke R. and Muller E., J. Eur. Ceram. Soc., 1998, 18, 1737.
    [9] Matthews S., Edirisinghe M. J. and Folkes M. J., Ceram. Int., 1999, 25, 49.
    [10] Narayan J., Raghunathan R., Chowdhurly R. and Jagannadham K., J. Appl. Phys., 1994, 75, 7252.
    [11] Ramesh P. D., Vaidhyanathan B., Ganguli M. and Rao R. J., J. Mater. Res., 1994, 9, 3025.
    [12] Seog I. S. and Kim C. H., J. Mater. Sci.,1993, 28, 3277.
    [13] Guo J. Y., Gitzhofer F. and Boulos M. I., J. Mater. Sci., 1995, 30, 5589.
    [14] Hu J. Q., Lu Q. Y. and Tang K. B., J. Phys. Chem. B, 2000, 104, 5251.
    [15] Lu Q. Y., Hu J. Q. and Tang K. B., Appl. Phys. Lett., 1999, 75,507.
    [16] Shen G. Z., Chen D. and Tang K. B., Chem. Phys. Lett., 2003, 375, 177.
    [17] Kordina O., Hallin C. and Ellison A., J. Appl. Phys. Lett., 1996, 69, 1456.
    [18] Yasui K., Asada K., Maeda T. and Akahan T., Appl. Surf. Sci., 2001, 175,495.
    [19] Chen Y., Matsumoto K., Nishio Y., Shirafuji T. and Nishino S., Mater. Sci. Eng. B, 1999, 61-62, 579.
    [20] Russel P. G., Novac N., Srinivasan S. and Sterrinberg M., J. Electrochem. Soc., 1977, 124, 1329.
    [21] Grant J. L., Goswarmi K., Spreer L. O., Otvos J. W. and Calvin M., J. Am. Chem. Soc. Dalton Trans., 1987, 2105.
    
    [22] Lou Z. S., Chen Q. W., Wang W. and Zhang Y. F., carbon, 2003, 41, 3063.
    [23] Lou Z. S., Chen C. L., Chen Q. W. and Gao J., carbon, 2005, 43, 1084.
    [24] Lou Z. S., Chen Q. W., Gao J. and Zhang Y. F., carbon, 2004,42, 229.
    [25] Lou Z. S., Chen Q. W., Zhang Y. F., Wang W. and Qian Y. T., J. Am. Chem. Soc, 2003,125,9302.
    [1] Shaffer P. T. B., Acta Cryst., 1969, B25(3), 477.
    
    [2] 郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,科学出版社, 2000.
    
    [3] 李晋闽,物理, 2000, 29, 481.
    
    [4] Fenjisawa H. and Fagananwki G., Microelectronics Devices[M] . Princeton : Science Press, 1992.
    [5] Theodoropoulou N., Hebard A, F., Chu S. N. G., Overberg M. E., Abernathy C. R., Pearton S. J., Wilson R. G., Zavada J. M. and Park Y. D., J. Vac. Sci. Technol. A, 2002, 20, 579.
    [6] Freitas J. A., Jr., Bishop S. G., Edmond J. A., Ryu J. and Davis R. F., J. Appl. Phys., 1987,61,1.
    
    [7] Haberstroh Ch., Helbig R. and Stein R. A., J. Appl. Phys., 1994, 76, 509.
    [8] Russell M. W., Freitas Jr. J. A., Moore W. J. and Butler J. E., Adv. Mater. Opt. Electron., 1997,7,195.
    [9] Chen J. F., Qian W., Ye Y, and Chen Q. W., J. Phys. D: Appl. Phys., 2006, 39, 1472.
    
    [10] Choyke W. J., Feng Z. C.and Powell J. A., J. Appl. Phys., 1988, 64, 3163.
    [11] Nishino K., Kimoto T. and Matsunami H., Jpn. J. Appl. Phys.l, 1995, 34, L1110.
    [12] Itoh H., Yoshikawa M., Nashiyama I., Okumura H., Misawa S. and Yoshida S., J. Appl. Phys., 1995,77,837.
    
    [13] Hu J. Q., Lu Q. Y. and Tang K. B., J. Phys. Chem. B, 2000, 104, 5251.
    [14] Russell M. W., Freitas Jr. J. A., Moore W. J. and Butler J. E., Adv. Mater. Opt. Electron., 1997,7, 195.
    
    [15] Yu M. B., Yoon S. F., Xu S. J., et al. Mat. Res. Soc. Symp., 2000, 621, Q5.10.1.
    [16] Kontkiewicz A. J., Kontkiewicz A. M., Siejka J., Sen S., Nowak G., Hoff A. M., Sakthivel P., Ahmed K., Mukherjee P., Witanachchi S. and Lagowski J., Appl. Phys. Lett., 1994,65,1436.
    
     [17] Stathis J. H. and Kastner M. A., Phys. Rev. B, 1987, 35, 2972.
    [18] Wu X. L., Fan J. Y., Qin T., Yang X., Siu G. G. and Chu Paul K., Phys. Rev. Lett., 2005, 94,026102.
    [19] Freitas Jr. J. A., Bishop S. G., Edmond J. A., Ryu J. and Davis R. F., J. Appl. Phys., 61, 1987,2011.
    [20] Wang J., Chen Q. W., Li X. G.., Shi L., Peng, Z. M. and Zeng C., Chem. Phys. Lett., 2004, 390, 55.
    [21] Chevaleevski O., Myong S. Y., and Lim K. S., Solid State Commun., 2003, 128, 355.
    [22] Dietl T., Ohno H., Matsakura F., Cibert J. and Ferrand D., Science, 2000, 287, 1019.
    [23] Theodoropoulou N., Hebard A. F., Overberg M. E., Abernathy C. R., Pearton S. J., Chu S. N. G., and Wilson R. G., Appl. Phys. Lett., 2001, 78, 3475.
    [24] Itoh H., Ohshima T., Aoki Y., Abe K., Yoshikawa M., Nashiyama I., Okumura H., Yoshida S., Uedono A., and Tanigawa S., J. Appl. Phys., 1997, 82, 5339.
    [25] Miao M. S. and Lambrecht R. L., Phys. Rev.B, 2003,68,125204.
    [26] Nishizawa K., Sakai O., and Suzuki S., Physica B, 2000, 281&282,468.
    [27] Verwey E. J. W., Nature 1939, 144, 327.
    [28] Collier C. P., Vossmeyer T., and Heath, J. R., Annu. Rev. Phys., Chem. 1998,49, 371 .
    
    [29] Pileni M. P., J. Phys. Chem. B, 2001,105, 3358.
    [30] Kim B., Tripp S. L., and Wei A., J. Am. Chem. Soc, 2001,123, 7955.
    [31] Wei A., Kim B., Sadtler B., and Tripp S. L., Chem. Phys. Chem., 2001, 2, 743.
    [32] Takagahara T., Surf. Sci., 1992, 267, 310.
    [33] Kagan C. R., Murray C. B., Nirmal M., and Bawendi M. G., Phys. Rev. Lett., 1996,76,1517.
    
    [34] Thurn-Albrecht T., Schotter J., Ka¨stle G. A., EmLey N., Shibauchi T., Krusin-Elbaum L., Guarini K. C. T., Black, Tuominen M. T., and Russell T. P., Science, 2000,290,2126.
    [35] Allwood D. A., Xiong G., Cooke M. D., Faulkner C. C, Atkinson D., Vernier N.. and Cowburn R. P., Science, 2002, 296, 2003.
    [36] Martin J. I., Nogue's J., Liu K., Vicent J. L., and Schuller I. K., J. Magn. Magn. Mater., 2003, 256,449.
    
    [37] Fert A., and Piraux L., J. Magn. Magn. Mater., 1999, 200, 338.
    [38] Anders S., Sun S., Murray C. B., Rettner C. T., Best M. E., Thomson T., Albrecht M., Thiele J.-U., Fullerton E. E., and Terris B. D., Microelectronic Engineering, 2002,61-62,569.
    [39] Wu M., Xiong Y., Jia Y., Niu H., Qi, H. Ye J., and Chen Q., Chem. Phys. Lett., 2005,401,374.
    
    [40] Li D., Herricks T., and Xia Y., Appl. Phys. Lett, 2003, 83,4586.
    [41] Tripp S. L., Pusztay S. V., Ribbe A. E., and Wei A., J. Am. Chem .Soc, 2002,124, 7914.
    [42] Kurrika V., Shafi P. M., Felner I., Mastai Y., and Gedanken A., J. Phys. Chem. B 103,3358(1999).
    [43] Maillard M., Motte L., Ngo A. T., and Pileni M. P., J. Phys. Chem. B, 2000, 104, 11871.
    
    [44] Yellen B., Friedman G, and Feinerman A., J. Appl. Phys., 2003, 93, 7331.
    [45] Haratani S., Aoyama T., and Sato I., IEEE Trans. Magn., 2000, 36, 3164.
    [46] Jubert P. O., Fruchart O., and Meyer C., J. Magn. Magn. Mater. 226, 1842 (2001).
    [47] Lou Z., Chen Q., Zhang Y., Wang W., and Qian Y, J. Am. Chem .Soc, 2003,125, 9302.
    [48] Lou Z., Chen Q., Wang W., Qian Y, and Zhang Y, Angew. Chem. Int. Ed., 2003, 42,4501.
    
    [49] Ohara P. C., and Gelbart W. M., Langmuir, 1998, 14, 3418.
    [50] Chen D. H., and He X. R., Mater. Res. Bull., 2001, 36, 1369.
    [51] Huang X., and Chen Z., J. Magn. Magn. Mater., 2004, 280, 37.
    [52] Leslie-Pelecky D. L., and Rieke R. D., Chem. Mater. 1996, 8, 1770.
    [53] Jacobs I. S., and Bean C. P., Phys. Rev., 1955, 100, 1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700