用户名: 密码: 验证码:
合金磁相变的调控及其磁热性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Regulation of Magnetic Transition and Magnetocaloric Properties in Magnetic Alloys
  • 作者:马胜灿
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2011
  • 导师:都有为 ; 王敦辉
  • 学科代码:070205
  • 学位授予单位:南京大学
  • 论文提交日期:2011-05-10
摘要
磁性相变合金由于在相变点附近磁化强度和电阻率等参数发生突变表现出一系列有趣的物理现象,比如磁热效应、磁致电阻、磁致应变等,使其作为一种多功能材料在很多领域都有重要的应用前景。本文从基础和应用研究的角度出发,研究了三类合金磁相变的调控及其磁热性质,主要内容如下:
     1.Ni-Mn-Co-Sn铁磁形状记忆合金磁相变的调控及其磁热性质
     Ni-Mn基的铁磁形状记忆合金是近几年发展起来的一种新型多功能材料,具有可受温度和磁场共同控制的热弹性和形状记忆效应。随着温度的降低,一定成分的新型Ni-Mn-X (X=In, Sn, Sb)铁磁形状记忆合金会顺次经历一个奥氏体顺磁相到铁磁相的二级相变和从铁磁奥氏体到弱磁马氏体相的马氏体相变过程。由于磁性和电阻率发生突变,使得这类合金在相变点附近具有丰富的物理性质。为了有效地调节相变和更深入的研究相变点附近的物理性质,我们制备了Ni-Mn-Co-Sn条带并对其分别进行了预压、退火以及高压退火处理,研究了预压力和热处理等对其马氏体相变和奥氏体磁相变的调控及对相变点附近磁热性质的影响:(1)预压力作用下的Ni-Mn-Co-Sn条带马氏体相变温度升高,而奥氏体居里温度几乎没改变,尽管在预压力作用下马氏体相变附近等温磁熵变有所下降,但由于相变温区变宽致使预压后的条带制冷能力增大;(2)退火使得Ni-Mn-Co-Sn条带马氏体相变温度和奥氏体居里温度都明显升高,马氏体相变附近磁熵变大幅增加,但有效磁致冷能力并没有明显增加。而在奥氏体铁磁相变附近,退火后的条带磁熵变和有效制冷能力都明显增加;(3)高压退火后的Ni-Mn-Co-Sn合金马氏体相变温度和奥氏体居里温度都明显升高,更有意思的是高压退火后Ni-Mn-Co-Sn合金出现中间相。由于中间相变的存在,马氏体相变附近出现连续的两个正的磁熵变峰,大大拓宽了制冷温区。
     2. MnCoGe基合金磁相变的调控及其磁热性质
     MnCoGe合金在室温下是一个共线铁磁体,居里温度是~345 K,在~650 K时发生一个从TiNiSi到Ni2In相的结构相变。由于这个结构相变发生在两个顺磁态之间,磁化强度变化量很小,致使这个结构相变在热磁曲线上不容易被识别出来。为此我们采用过渡族元素替代和调节Mn/Co比例的方法分别制备了Mn1-xVxCoGe和Mn1+xCo1-xGe两个系列的MnCoGe基合金,并对它们进行了磁性测量。发现过渡族元素替代和调节Mn/Co比例都可使MnCoGe合金的结构相变温度降低,在室温附近获得铁磁到顺磁的一级磁结构相变,磁化强度发生突变,并由此获得了大的低场磁熵变。更值得提出的是这两类材料在低场下的磁滞损耗都非常小,完全可以忽略,在一级磁相变材料中同时获得大的室温磁熵变和小的磁滞损耗对磁制冷的实际应用有着很重要的意义。
     3.RC04Al基系列合金自旋重取向相变及其磁卡效应
     RCo5是近年来被人们广泛关注的一类稀土R和过渡族金属Co组成的二元铁磁性合金,具有CaCu5结构(P6/mmm空间群)。由于稀土R (Pr、Nd、Tb、Dy、Ho等)和Co晶格具有不同的易磁化方向使得RCo5合金有两个相互竞争的磁晶各向异性共存,从而诱导出两个自旋重取向相变,相变过程中磁化强度发生突变,伴随着一些有趣的物理现象。不同稀土离子之间的相互取代以及Al、Ga等非磁性元素对Co的取代可以改变稀土R和Co次晶格的磁晶各向异性能,从而达到调节相变的目的。我们制备了Nd1-xDyxCo4Al和Pr1-xYNdxCo4Al两个体系的合金并研究了它们的自旋重取向相变及其磁卡性质。通过不同稀土元素之间的相互取代,相变温度都可以被调节到室温附近,并且有很宽的变化范围。在自旋重取向相变附近,这两个体系的所有合金都出现了连续两个一正一负的熵变峰,且具有很宽的制冷温区。另外,我们还制备了DyCo4Al亚铁磁合金,并在其亚铁磁的补偿温度附近研究了一种由自旋抵消所引起的磁卡效应,为探索新型室温磁熵变材料作了一些有益的尝试。
Magnetic transition alloys possess many interesting physical phenomena, including magnetocaloric effect, magnetoresistance, and magnetostriction owning to the abrupt changes of magnetization and resistivity around the transition temperature. As multifunctional materials, these alloys have important application in many fields. In the present paper, we studied the regulation of magnetic transition and related magnetocaloric properties in three kinds of magnetic alloys. The main results are as follows:
     1. The regulation of magnetic transition and related magnetocaloric properties in Ni-Mn-Co-Sn ferromagnetic shape memory alloy.
     Ni-Mn-based ferromagnetic shape memory alloys (FSMAs) are a kind of new multifunctional materials, which have been developing in recent years. They show thermoelastic and shape memory effects simultaneously, which can be controlled by temperature and magnetic field respectively. In the Ni-Mn-X (X=In, Sn, Sb) FSMAs, they undergo a ferromagnetic transition from ferromagnetic austenite to paramagnetic one and a martensitic transformation from ferromagnetic austenite to weak magnetic martensite on cooling. Around their transition temperatures, abundant physical properties are achived due to the abrupt change of magnetization and resistivity. In order to tune the transitions of FSMAs and investigate their physical properties around the transition temperatures, we prepare the Ni-Mn-Co-Sn ribbons and deal with them by pre-deformation, annealing, and high pressure annealing. The main results of the effect of these external factors on the ribbons are listed as below:(ⅰ) In the pre-deformed Ni-Mn-Co-Sn ribbons, the martensitic transformation temperature increase while the Curie temperature of austenite keeps almost unchanged. Though the magnetic entropy change of the pre-deformed ribbons around martensitic transformation decreases slightly, the refrigerant capacity (RC) increases due to the broad temperature span; (ⅱ) Annealing makes the martensitic transformation temperature and Curie temperature of austenite increase obviously in Ni-Mn-Co-Sn ribbons. The magnetic entropy change around the martensitic transformation of these ribbons increases largely, but the effective RCeff is almost unchanged. Around the Curie temperature of austenite, both the magnetic entropy change and RCeff increase remarkably after annealing. (ⅲ) Both the martensitic transformation and austenitic Curie temperatures increase evidently in the high-pressure-annealed Ni-Mn-Co-Sn alloy. More interestingly, an intermediate phase is also observed prior to the martensitic transformation in this alloy. Due to the existence of intermediate phase, two sequent positive magnetic entropy change peaks are obtained around the martensitic transformation, which broadens the working temperature interval.
     2. The regulation of magnetic transition and related magnetocaloric properties in MnCoGe based alloys.
     MnCoGe alloy is a collinear ferromagnet with the Curie temperature of TC=345 K. This compound has the orthorhombic TiNiSi-type crystal structure at room temperature and transforms diffusionlessly to the hexagonal Ni2In-type structure at Tt=650 K. Because this structural transformation occurs between two paramagnetic states, the change of the magnetization around the structural transformation is very small, which can not be distinguished from the thermomagnetic curves. In order to realize the magnetoestructural transition in these alloys, we prepared two series of MnCoGe based alloys, Mn1-xVxCoGe and Mn1+xCo1-xGe. The experimental results indicate that Tt can be largely reduced by the V-substitution or tuning the Mn/Co ratio, which makes the structural transformation and magnetic transition couple intimately. In these two series of alloys, the first order magnetostructural transformations from the ferromagnetism to paramagnetism are achieved around room temperature. The magnetization appears an abrupt change, which induces a large magnetic entropy change in the relatively low field. It is worth pointing out that the magnetic hysteresis losses of these two kinds of alloys are almost negligible, which is important for the practical applications.
     3. The spin reorientation transition and related magnetocaloric effects in RCo4Al-based alloys.
     RCo5 are ferromagnetic alloys, which have the CaCu5 structure and P6/mmm space group. In these alloys, two spin reorientation transitions (SRTs) are induced due to the coexistence of two competing magnetocrystalline anisotropys. One is the planar anisotropy of the rare earth sublattice R (Pr、Nd、Tb、Dy、Ho et al.), the other is axial anisotropy of Co sublattice. The magnetization shows an abrupt change around these SRTs, which would lead to some interesting physical phenomena. The substitution for the R ions and the substitution of Al and Ga for Co element can change the magnetocrystalline anisotropy energy of R and Co sublattices, and then, the SRTs can be regulated. Therefore, we prepared the Nd1-xDyxCo4Al and Pr1-xNdxCo4Al alloys and investigated their SRTs and related magnetocaloric effect in this paper. The experimental results indicat that the transition temperatures are tuned to around room temperature and SRT occurs in a very broad temperature interval for these two alloys. Mealwhile, the moderate magnetic entropy change values are observed in these alloys. In addition, we also prepared the ferrimagnetic DyCo4Al alloy and investigated the magnetic and magnetocaloric properties around the compensate temperature. The aforementioned investigation should be a beneficial attempt to explorate new room temperature magnetic refrigeration materials.
引文
[1]徐祖耀,相变物理,北京:科学出版社,1999
    [2]冯端,金属物理学(第二卷相变),北京:科学出版社,1998
    [3]徐洲,赵连城,金属固态相变原理,北京:科学出版社,2004
    [4]P.A. Lindgard, and O.G.Mouritsen, Phys. Rev. B 41 (1990) 688.
    [5]O. Tegus, E. Bruck, K.H.J. Buschow, and F.R. de Boer, Nature (London) 415 (2002) 150.
    [6]E. Warburg, Ann. Phys.13 (1881) 141.
    [7]P. Langevin, Ann. Chim. Phys.5 (1905) 70.
    [8]P. Weiss, and A. Piccard, Compt. Rend.166 (1918) 325.
    [9]P. Debye, Ann. Phys.81 (1926) 1154.
    [10]J. Gianque, Amer. Chem. Soc.49 (1927) 1864.
    [11]R.D. Hudson, Principle and Application of Magnetic Cooling, Amsterdam: North-Holland,1972,175.
    [12]G.V. Brown, J. Appl. Phys.47 (1976) 3673.
    [13]S.A. Nikitin, K.P. Skokov, Yu.S. Koshkid'ko, Yu.G. Pastushenkov, and T.I. Ivanova, Phys. Rev. Lett.41 (1990) 688.
    [14]J.S. Amaral, and V.S. Amaral, Appl. Phys. Lett.94 (2009) 042506.
    [15]G.J. Liu, J.R. Sun, J. Shen, B. Gao, H.W. Zhang, F.X. Hu, and B.G. Shen, Appl. Phys. Lett.90 (2007) 032507.
    [16]J.D. Zou, B.G. Shen, B. Gao, J. Shen, and J.R. Sun, Adv. Mater.21 (2009) 693.
    [17]W.B. Cui, W. Liu, and Z.D. Zhang, Appl. Phys. Lett.96 (2010) 222509.
    [18]L. Caron, Z.Q. Ou, T.T. Nguyen, D.T. Cam Thanh, O.Tegus, and E.Bruck, J. Magn. Magn. Mater.321 (2009) 3559.
    [19]N.A. de Oliveira, and P.J. von Ranke, Phys. Rev. B 77 (2008) 214439.
    [20]S. Yu. Dan'kov, A.M. Tishin, V.K. Pecharsky, and K.A. Gschneidner Jr., Phys. Rev. B 57(1998)3478.
    [21]D.H. Wang, S.L. Huang, Z.D. Han, Q.Q. Cao, Z.H. Su, W.Q. Zou, and Y.W. Du, J. Alloys Compd.377(2004)72.
    [22]D.H. Wang, S.L. Huang, Z.D. Han, Z.H. Su, Y. Wang, and Y.W. Du, Solid State Commun. 131 (2004)97.
    [23]D.L. Rocco, J.S. Amaral, J.V. Leitao, V.S. Amaral, M.S. Reis, R.P. Fernandes, A.M. Pereira, J.P. Araujo, N.V. Martins, P.B. Tavares, and A.A. Coelho, Phys. Rev. B 79 (2009)014428.
    [24]V.K. Pecharsky, and K.A. Gschneidner, Jr., Phys. Rev. Lett.78 (1997) 4494.
    [25]V.K. Pecharsky, and K.A. Gschneidner, Jr., Appl. Phys. Lett.70 (1997) 3299.
    [26]F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, and X.X. Zhang, Appl. Phys. Lett. 78(2001)3675.
    [27]O. Tegus, E. Bruck, K.H.J. Buschow, and F.R. de Boer, Nature (London) 415 (2002) 150.
    [28]N.T. Trung, V. Biharie, L. Zhang, L. Caron, K.H.J. Buschow, and E. Bruck, Appl. Phys. Lett.96(2010) 162507.
    [29]L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P.A. Algarabel, M.R. Ibarra, and J. Kamarad, Phys. Rev. Lett.93 (2004) 137201.
    [30]K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Pecharsky, V.V. Ivtchenko, and E.M. Levin, J. Alloys Compd.303-304 (2000) 214.
    [31]E.M. Levin, V.K. Pecharsky, K.A. Gschneidner Jr., and P. Tomlinson, J. Magn. Magn. Mater.210(2000) 181.
    [32]L. Morellon, J. Blasco, P.A. Algarabel, and M.R. Ibarra, Phys. Rev. B 62 (2000) 1022.
    [33]H. Wada, and Y. Tanabe, Appl. Phys. Lett.79 (2001) 3302.
    [34]A. de Campos, D.L. Rocco, A.M.G. Carvalho, L. Caron, A.A. Coelho, S. Gama, L.M. da Silva, F.C.G. Gandra, A.O. dos Santos, L.P. Cardoso, P.J. von Ranke, and N.A. de Oliveira, Nat. Mater.5 (2006) 802.
    [35]Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma. K. Ishida, and K. Oikawa, Appl. Phys. Lett.85 (2004) 4358.
    [36]Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, and Y.W. Du, Appl. Phys. Lett. 90(2007)042507.
    [37]S.Y. Yu, L. Ma, G.D. Liu, Z.H. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, and X.X. Zhang, Appl. Phys. Lett.90 (2007) 242501.
    [38]R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, and T. Kanomata, Appl. Phys. Lett.88 (2006) 192513.
    [39]H.C. Xuan, Q.Q. Cao, C.L. Zhang, S.C. Ma, S.Y. Chen, D.H. Wang, and Y.W. Du, Appl. Phys. Lett.96 (2010) 202502.
    [40]F.X. Hu, B.G. Shen, J.R. Sun, G.J. Wang, and Z.H. Cheng, Appl. Phys. Lett.80 (2002) 826.
    [41]F.X. Hu, B.G. Shen, J.R. Sun, and Z.H. Cheng, Phys. Rev. B 64 (2001) 012409.
    [42]J.L. Zhao, J. Shen, B.G. Shen, F.X. Hu, and J.R. Sun, Solid State Commun.150 (2010) 2329.
    [43]F.X. Hu, G.J. Wang, J. Wang, Z.G. Sun, C. Dong, H. Chen, X.X. Zhang, J.R. Sun, Z.H. Cheng, and B.G. Shen, J. Appl. Phys.91 (2002) 7836.
    [44]S. Fujieda, A. Fujita, K. Fukamichi, Y Yamazaki, and Y. Iijima, Appl. Phys. Lett.79 (2001)653.
    [45]N.T. Trung, Z.Q. Ou, T.J. Gortenmulder, O. Tegus, K.H.J. Buschow, and E. Bruck, Appl. Phys. Lett.94 (2009) 102513.
    [46]D.T. Cam Thanh, E. Bruck, N.T. Trung, J.C.P. Klaasse, K.H.J. Buschow, Z.Q. Ou, O. Tegus, and L. Caron, J. Appl. Phys.103 (2008) 07B318.
    [47]D.M. Liu, M. Yue, J.X. Zhang, T.M. McQueen, J.W. Lynn, X.L. Wang, Y. Chen, J.Y. Li, R.J. Cava, X.B. Liu, Z. Altounian, and Q. Huang, Phys. Rev. B 79 (2009) 014435.
    [48]S. Gama, A.A. Coelho, A. de Campos, A.M.G. Carvalho, F.C.G. Gandra, P.J. von Ranke, and N.A. de Oliveira, Phys. Rev. Lett.93 (2004) 237202.
    [49]L. Manosa, X. Moya, A. Planes, O. Gutfleisch, J. Lyubina, M. Barrio, J.L. Tamarit, S. Aksoy, T. Krenke, and M. Acet, Appl. Phys. Lett.92 (2008) 012515.
    [50]Y. Sun, Z. Arnold, J. Kamarad, G.J. Wang, B.G. Shen, and Z.H. Cheng, Appl. Phys. Lett. 89(2006)172513.
    [51]J. Lyubina, K. Nenkov, L. Schultz, and O. Gutfleisch, Phys. Rev. Lett.101 (2008) 177203.
    [52]C.L. Zhang, D.H. Wang, Q.Q. Cao, Z.D. Han, H.C. Xuan, and Y.W. Du, Appl. Phys. Lett.93(2008)122505.
    [53]E.K. Liu, W. Zhu, L. Feng, J.L. Chen, W.H. Wang, G.H. Wu, H.Y. Liu, F.B. Meng, H.Z. Luo, and Y.X. Li, Europhys. Lett.91 (2010)17003.
    [54]C.L. Zhang, D.H. Wang, Q.Q. Cao, S.C. Ma, H.C. Xuan, and Y.W. Du, J. Phys. D:Appl. Phys.43 (2010)205003.
    [55]J.B. A. Hamer, R. Daou, S. Ozcan, N.D. Mathur, D.J. Fray, and K.G. Sandeman, J. Magn. Magn. Mater.321 (2009) 3535.
    [56]F.X. Hu, J. Wang, L. Chen, J.L. Zhao, J.R. Sun, and B.G. Shen, Appl. Phys. Lett.95 (2009)112503.
    [57]H.C. Xuan, D.H. Wang, C.L. Zhang, Z.D. Han, B.X. Gu, and Y.W. Du, Appl. Phys. Lett. 92(2008) 102503.
    [58]N.T. Trung. L. Zhang, L. Caron, K.H.J. Buschow, and E. Bruck, Appl. Phys. Lett.96 (2010)172504.
    [59]X.B. Liu, Z. Altounian, and G.H. Tu, J. Phys.:Condens. Matter 16 (2004) 8043.
    [60]J.L. Sanchez Llamazares, T. Sanchez, J.D. Santos, M.J. Perez, M.L. Sanchez, B. Hernando, Ll. Escoda, J.J. Sunol, and R. Varga, Appl. Phys. Lett.92 (2008) 012513.
    [61]B. Hernando, J.L. Sanchez Llamazares, J.D. Santos, Ll. Escoda, J.J. Sunol, R. Varga, D. Baldomir, and D. Serantes, Appl. Phys. Lett.92 (2008) 042504.
    [62]H.C. Xuan, K.X. Xie, D.H. Wang, Z.D. Han, C.L. Zhang, B.X. Gu, and Y.W. Du, Appl. Phys. Lett.92 (2008) 242506.
    [63]H.C. Xuan, Y. Deng, D.H. Wang, C.L. Zhang, Z.D. Han, and Y.W. Du, J. Phys. D:Appl. Phys.41 (2008)215002.
    [64]J. Liu, T.G. Woodcock, N. Scheerbaum. and O. Gutfleisch, Acta Mater.57 (2009) 4911.
    [1]郭世海,张羊换,王新林,稀有金属,29(2005)339.
    [2]S.Y. Chen, D.H. Wang, Z.D. Han, C.L. Zhang, Y.W. Du, and Z.G. Huang, Appl. Phys. Lett.95(2009)022501.
    [3]K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, and V.V. Kokorin, Appl. Phys. Lett.69(1996) 1966.
    [4]A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Isshida, Appl. Phys. Lett.77 (2001)3054.
    [5]K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, and K. Isshida, Appl. Phys. Lett.79 (2001) 3290.
    [6]Z.H. Liu, M. Zhang, Y.T. Cui, Y.Q. Zhou, W.H. Wang, G.H. Wu, X.X. Zhang, and Gang Xiao, Appl. Phys. Lett.82 (2003) 424.
    [7]M. Wuttig, J. Li, and C. Craciunescu, Scr. Mater.44 (2001) 2393.
    [8]Y. Furuya, N.W. Hagood, H. Kimura, T. Watanabe, Mater. Trans., JIM 39 (1998) 1248.
    [9]T. Kakeshita, T. Takeuchi, T.M. Tsujiguchi, T. Saburi, R. Oshima, and S. Muto, Appl. Phys. Lett.77(2000)1502.
    [10]W.H. Wang, G.H. Wu, J.L. Chen, C.H. Yu, S.X. Gao, W.S. Zhan, Z. Wang, Z.Y. Gao, Y.F. Zheng, and L.C. Zhao, Appl. Phys. Lett.77 (2000) 3245.
    [11]Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett.85 (2004) 4358.
    [12]T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L1. Manosa, and A. Planes, Nat. Mater.4 (2005) 450.
    [13]Z. D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu, and Y.W. Du, Appl. Phys. Lett. 89(2006) 182507.
    [14]S.Y. Yu, Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, and X.X. Zhang, Appl. Phys. Lett.89 (2006) 162503.
    [15]K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, and K. Ishida, Appl. Phys. Lett.89 (2006) 182510.
    [16]R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. ikawa, A. Fujita, T. Kanomota, and K. Ishida, Nature (London) 439 (2006) 957.
    [17]T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L1. Manosa, and A. Planes, Phys.Rev. B 72(2005)014412.
    [18]P.J. Brown, A. PGandy, K. Ishida, R. Kainuma, T. Kanomata, K. U Neumann, K.Oikawa, B. Ouladdiaf, and K.R.A. Ziebeck, J. Phys.:Condens. Matter 18 (2006)2249.
    [19]Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, and Y.W. Du, Appl. Phys. Lett. 90 (2007) 042507.
    [20]Z.D. Han, D.H. Wang, B. Qian, J.F. Feng, X.F. Jiang, and Y.W. Du, Jpn. J. Appl. Phys., part 149(2010)010211.
    [21]B. Gao, F.X.Hu, J. Shen, J. Wang, J.R. Sun, and B.G. Shen, J. Magn. Magn. Mater.321 (2009)2571-2574.
    [22]Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, and Y.W. Du, Mater. Sci. Eng. B 157 (2009) 40.
    [23]H.C. Xuan, D.H. Wang, C.L. Zhang, Z.D. Han, B.X. Gu. and Y.W. Du, Appl. Phys. Lett. 92(2008) 102503.
    [24]F.X. Hu, J. Wang, L. Chen, J.L. Zhao, J.R. Sun, and B.G. Shen, Appl. Phys. Lett.95 (2009)112503.
    [25]L1. Manosa, X. Moya, A. Planes, O. Gutfleisch, J. Lyubina, M. Barrio, J.L. Tamarit, S. Aksoy, T.Krenke, and M. Acet, Appl. Phys. Lett.92,012515 (2008).
    [26]A.K. Nayak, K.G. Suresh, A.K. Nigam, A.A. Coelho, and S. Gama, J. Appl. Phys.106 (2009)053901.
    [27]H.C. Xuan, K.X. Xie, D.H. Wang, Z.D. Han, C.L. Zhang, B.X. Gu, and Y.W. Du, Appl. Phys. Lett.92 (2008) 242506.
    [28]J. Liu, T.G. Woodcock, N. Scheerbaum, and O. Gutfleisch, Acta Mater.57 (2009) 4911.
    [29]H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao, Acta Metall Mater 39 (1991) 2069.
    [30]M. Piao, K. Otsuka, S. Miyazaki, and H. Horikawa, Mater. Trans., JIM 34 (1993) 919.
    [31]C. Picornell, J. Pons, and E. Cesari, Acta mater.49 (2001) 4221.
    [32]Y. Liu, and D. Favier, Acta mater.48 (2000) 3489.
    [33]Y. Liu, and G.S. Tan, Intermetallics 8 (2000) 67.
    [34]G. Tan, and Y. Liu, Intermetallics 12 (2 004) 373.
    [35]D.H. Wang, C.L. Zhang, H.C. Xuan, Z.D. Han, J.R. Zhang, S.L. Tang, B.X. Gu, and Y. W. Du, J. Appl. Phys.102 (2007) 013909.
    [36]V. Franco, J.S. Blazquez, C.F. Conde, and A. Conde, Appl. Phys. Lett.88 (2006) 042505.
    [37]D.L. Rocco, J.S. Amaral, J.V. Leitao, V.S. Amaral, M.S. Reis, R.P. Fernandes, A.M. Pereira, J.P. Araujo, N.V. Martins, P.B. Tavares, and A.A. Coelho, Phys. Rev. B 79 (2009) 014428.
    [38]B. Hernando, J.L. Sanchez Llamazares, V.M. Prida, D. Baldomir, D. Serantes, M. Ilyn, and J. Gonzalez, Appl. Phys. Lett.94 (2009) 222502.
    [39]D.H. Wang, K. Peng, B.X. Gu, Z.D. Han, S.L. Tang, W. Qin, and Y.W. Du, J. Alloys Comp.358(2003)312.
    [40]J. Kubler, A.R. Williams, and C.B. Sommers, Phys. Rev. B 28 (1983) 1745.
    [41]S.Y. Yu, Z.X. Cao, L. Ma, G.D. Liu, J.L. Chen, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett.91 (2007) 102507.
    [42]B. Hernando, J.L. Sanchez Llamazares, J.D. Santos, V.M. Prida, D. Baldomir, D. Serantes, R. Varga, and J. Gonzalez, Appl. Phys. Lett.92 (2008) 132507.
    [43]V. Provenzano, A. J. Shapiro and R. D. Shull, Nature (London) 429,853 (2004).
    [44]A. K. Pathak, I. Dubenko, H. E. Karaca, S. Stadler, and N. Ali, Appl. Phys. Lett.97, 062505 (2010).
    [45]F.X. Hu, B.G. Shen, and J.R. Sun, Appl. Phys. Lett.76 (2000) 3460.
    [46]C. Biswas, R. Rawat, and S.R. Barman, Appl. Phys. Lett.86 (2005) 202508.
    [47]K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, and V.V. Kokorin, Appl. Phys. Lett.69(1996)1966.
    [48]A. Sozinov, A.A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett.80 (2002) 1746.
    [49]A. Gonzalez-Comas, E. Obrado, L1. Manosa, A. Planes, V.A. Chernenko, B.J. Hattink, and A. Labarta, Phys. Rev. B 60 (1999) 7085.
    [50]Y.T. Cui, J.L. Chen, G.D. Liu, G.H. Wu, and W.L. Wang, J. Phys.:Condens. Matter 16 (2004)3061.
    [51]A. Planes, E. Obrado, A. Gonzalez-Comas, and L1. Manosa, Phys. Rev. Lett.79 (1997) 3926.
    [52]L1. Manosa, A. Gonzalez-Comas, E. Obrado, A. Planes, V.A. Chernenko, V.V. Kokorin, and E. Cesari, Phys. Rev. B 55 (1997) 11068.
    [53]C.P. Opeil, B. Mihaila, R.K. Schulze, L1. Manosa, A. Planes, W.L. Hults, R.A. Fisher, P.S. Riseborough, P.B. Littlewood, J.L. Smith, and J.C. Lashley, Phys. Rev. Lett.100 (2008)165703.
    [54]J.H. Kim, F. Inaba, T. Fukuda, and T. Kakeshita, Acta mater.54 (2006) 493.
    [55]L1. Manosa, A. Planes, J. Zarestky, T. Lograsso, D.L. Schlagel, and C. Stassis, Phys. Rev. B 64 (2001) 024305.
    [56]J.M. Barandiaran, V.A. Chernenko, P. Lazpita, J. Gutierrez, I. Orue, J. Feuchtwanger, and S. Besseghini, Appl. Phys. Lett.94 (2009) 051909.
    [57]J.M. Barandiaran, V.A. Chernenko, P. Lazpita, J. Gutierrez, and J. Feuchtwanger, Phys. Rev. B 80 (2009) 104404.
    [58]F. Zuo, X. Su, P. Zhang, G.C. Alexandrakis, F. Yang, and K.H. Wu, J. Phys.:Condens. Matter 11 (1999)2821.
    [59]W.H. Wang, J.L. Chen, S.X. Gao, G.H. Wu, Z. Wang, Y.F. Zheng, L.C. Zhao, and W.S. Zhan, J. Phys.:Condens. Matter 13 (2001) 2607.
    [60]V.V. Khovailo, T. Takagi, A.D. Bozhko, M. Matsumoto, J. Tani, and V.G. Shavrov, J. Phys.:Condens. Matter 13 (2001) 9655.
    [61]F. Zuo, X. Su, and K.H. Wu, Phys. Rev. B 58 (1998) 11127.
    [62]B. Ludwig, C. Strothkaemper, U. Klemradt, X. Moya, L1. Manosa, E. Vives, and A. Planes, Phys. Rev. B 80 (2009) 144102.
    [63]Y.W. Ma, S. Awaji, K. Watanabe, M. Matsumoto, and N. Kobayashi, Appl. Phys. Lett. 76 (2000) 37.
    [64]T. Castan, E. Vives, and P.A. Lindgard, Phys. Rev. B 60 (1999) 7071.
    [65]A. Zheludev, and S.M. Shapiro, Solid State Commun.98 (1996) 35.
    [66]A. Zheludev, S.M. Shapiro, P. Wochner, and L.E. Tanner, Phys. Rev. B 54 (1996) 15045.
    [67]A. Zheludev, S.M. Shapiro, P. Wochner, A. Schwartz, M. Wall, and L.E. Tanner, Phys. Rev. B 51 (1995) 11310.
    [68]T.E. Stenger, and J. Trivisonno, Phys. Rev. B 57 (1998) 2735.
    [69]J. Worgull, E. Petti, and J. Trivisonno, Phys. Rev. B 54 (1996) 15695.
    [70]崔玉亭,NiMnGa合金的热力学效应和应用功能研究,重庆大学博士学位论文.
    [71]Y.K. Kuo, K.M. Sivakumar, H.C. Chen, J.H. Su, and C.S. Lue, Phys. Rev. B 72 (2005) 054116.
    [72]X. Moya, D.G. Alonso, Ll. Manosa, A. Planes, V.O. Garlea, T.A. Lograsso, D.L. Schlagel, J.L. Zarestky, S. Aksoy, and M. Acet, Phys. Rev. B 79 (2009) 214118.
    [73]S.M. Shapiro, E.C. Svensson, C. Vettier, and B. Hennion, Phys. Rev. B 48 (1993) 13223.
    [74]S.Y. Yu, L. Ma, G.D. Liu, Z.H. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang and X.X. Zhang, Appl. Phys. Lett.90 (2007) 242501.
    [75]V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, and S.B. Roy, Appl. Phys. Lett.89 (2006) 222509.
    [76]T. Takabatake, M. Shirase, K. Katoh, Y. Echizen, K. Sugiyama, T. Osakabe, J. Magn. Magn. Mater.53-54 (1998) 177.
    [77]Y.Q. Zhang, Z.D. Zhang, J. Aarts, Phys. Rev. B 70 (2004) 132407.
    [1]O. Tegus, E. Briick, K.H.J. Buschow, and F.R. de Boer, Nature (London) 415 (2002) 150.
    [2]N.T. Trung, Z.Q. Ou, T.J. Gortenmulder, O. Tegus, K.H.J. Buschow, and E. Bruck, Appl. Phys. Lett.94(2009)102513.
    [3]Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, and Y.W. Du, Appl. Phys. Lett. 90(2007)042507.
    [4]H.C. Xuan, Y.X. Zheng, S.C. Ma, Q.Q. Cao, D.H. Wang, and Y.W. Du, J. Appl. Phys. 108 (2010)103920.
    [5]T. Krenke, M. Acet, E.F. Wassermann, X. Moya, LI. Manosa, and A. Planes, Phys. Rev. B 73 (2006)174413.
    [6]T. Krenke, M. Acet, E.F. Wassermann, X. Moya, LI. Manosa, and A. Planes, Phys. Rev. B 72(2005)014412.
    [7]R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomota, and K. Ishida, Nature (London) 439 (2006) 957.
    [8]A.K. Pathak, I. Dubenko, H.E. Karaca, S. Stadler, and N. Ali, Appl. Phys. Lett.97 (2010) 062505.
    [9]T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, and A. Planes, Nat. Mater.4 (2005) 450.
    [10]E. Briick, O. Tegus, D.T.C. Thanh, N.T. Trung, and K.H.J. Buschow, Int. J. Refrig.31 (2008)763.
    [11]张成亮,Mn基合金中的磁性相变及其相关物理性质,南京大学博士学位论文.
    [12]C. L. Zhang, D. H. Wang, Q. Q. Cao, Z. D. Han, H. C. Xuan, and Y. W. Du, Appl. Phys. Lett.93 (2008) 122505.
    [13]C.L. Zhang, D.H. Wang, Q.Q. Cao, S.C. Ma, H.C. Xuan, and Y.W. Du, J. Phys. D 43 (2010)205003.
    [14]S. Lin, O. Tegus, E. Briick, W. Dagula, T.J. Gortenmulder, and K.H.J. Buschow, IEEE Trans. Magn.42 (2006) 3776.
    [15]V.Johnson, Inorg. Chem.14(1975) 1117.
    [16]T. Kanomata, H. Ishigaki, T. Suzuki, H. Yoshida, S. Abe, and T. Kaneko, J. Magn. Magn. Mater.140-144 (1995) 131.
    [17]K. Koyama, M. Sakai, T. Kanomata, and K. Watanabe, Jpn. J. Appl. Phys., Part 1 43 (2004)8036.
    [18]J.T. Wang, D.S. Wang, C. Chen, O. Nashima, T. Kanomata, H. Mizuseki, and Y. Kawazoe, Appl. Phys. Lett.89 (2006) 262504.
    [19]N.T. Trung, L. Zhang, L. Caron, K.H.J. Buschow, and E. Bruck, Appl. Phys. Lett.96 (2010)172504.
    [20]N.T. Trung, V. Biharie, L. Zhang, L. Caron, K.H.J. Buschow, and E. Bruck, Appl. Phys. Lett.96(2010) 162507.
    [21]E.K. Liu, W. Zhu, L. Feng, J.L. Chen, W.H. Wang, G.H. Wu, H.Y. Liu, F.B. Meng, H.Z. Luo and Y.X. Li, Europhys. Lett.91 (2010) 17003.
    [22]S. Niziol, A. Zieba, R. Zach, M. Baj, and L. Dmowski, J. Magn. Magn. Mater.38 (1983) 205.
    [23]J.B.A. Hamer, R. Daou, S. Ozcan, N.D. Mathur, D.J. Fray, and K. G. Sandeman, J. Magn. Magn. Mater.321 (2009) 3535.
    [24]S. Kaprzyk, and S. Niziol, J. Magn. Magn. Mater.87 (1990) 267.
    [25]N.H. Due, D.T. Kim, Anh, and P.E.Brommer, Physica B 319 (2002) 1.
    [26]F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, and X.X. Zhang, Appl. Phys. Lett. 78(2001)3675.
    [27]V.K. Pecharsky, and K.A. Gschneidner, Jr., Phys. Rev. Lett.78 (1997) 4494.
    [28]V. Provenzano, A.J. Shapiro, and R.D. Shull, Nature (London) 429 (2004) 853.
    [29]J. Shen, F. Wang, J.L. Zhao, J.F. Wu, M.Q. Gong, F.X. Hu, Y.X. Li, J.R. Sun, and B.G. Shen, J. Appl. Phys.107 (2010) 07A909.
    [30]B. Hernando, J.L. Sanchez Llamazares, V.M. Prida, D. Baldomir, D. Serantes, M. Ilyn. and J. Gonzalez, Appl. Phys. Lett.94 (2009) 222502.
    [1]O. Moze, L. Pareti, A. Paoluzi, and K. H. J. Buschow, Phys. Rev. B 53 (1996) 11550.
    [2]D.L. Rocco, J.S. Amaral, J.V. Leitao, V.S. Amaral, M.S. Reis, R.P. Fernandes, A.M. Pereira, J.P. Araujo, N.V. Martins, P.B. Tavares, and A.A. Coelho, Phys. Rev. B 79 (2009)014428.
    [3]Handbook of magnetic materials, edited by K.H.J. Buschow, volume 7, p439.
    [4]M.R. Ibarra, L. Morellon, P.A. Algarabel, and O. Moze, Phys. Rev. B 44 (1991) 9368.
    [5]T.S. Zhao, H.M. Jin, G.H. Guo, X.F. Han, and H. Chen, Phys. Rev. B 43 (1991) 8593.
    [6]J.B. Sousa, J.M. Moreira, A. Del Moral, P. Algarabel, and R. Ibarra, J. Phys.:Condens. Matter 2 (1990) 3897-3902.
    [7]H. Ido, W.E. Wallace, T. Suzuki, S.F. Cheng, V.K. Sinha, and S.G. Sankar, J. Appl. Phys. 67(1990)4635.
    [8]H. Ido, K. Konno, S.F. Cheng, W.E. Wallace, and S.G. Sankar, J. Appl. Phys.67 (1990) 4638.
    [9]H. Ido, K. Konno, T. Ito, S.F. Cheng, S.G. Sankar, and W.E. Wallace, J. Appl. Phys.69 (1991)5551.
    [10]K. Konno, H. Ido, S.F. Cheng, S.G. Sankar, and W.E. Wallace, J. Appl. Phys.73 (1993) 5929.
    [11]C. Zlotea and O. Isnard, J. Magn. Magn. Mater.253 (2002) 118.
    [12]C. Zlotea and O. Isnard, J. Magn. Magn. Mater.242 (2002) 832.
    [13]C. Zlotea and O. Isnard, J. Phys.:Condens. Matter 12 (2002) 10211.
    [14]V. Klosek, C. Zlotea, and O. Isnard, J. Phys.:Condens. Matter 15 (2003) 8327.
    [15]V. Klosek, C. Zlotea, and O. Isnard, Physica B 350 (2004) e155.
    [16]C. Zlotea and O. Isnard, J. Alloys Comp.346 (2002) 29.
    [17]Q. Zhang, J.H. Cho, B. Li, W.J. Hu, and Z.D. Zhang, Appl. Phys. Lett.94 (2009) 182501.
    [18]X.X. Zhang, B. Zhang, S.Y. Yu, Z.H. Liu, W.J. Xu, G.D. Liu, J.L. Chen, Z.. Cao, and G.H. Wu, Phys. Rev. B 76 (2007) 132403.
    [19]J.J. Ipus, J.S. Blazquez, V. Franco, A. Conde, and L.F. Kiss, J. Appl. Phys.105 (2009) 123922.
    [20]V. Franco, J.S. Blazquez, C.F. Conde, and A. Conde, Appl. Phys. Lett.88 (2006) 042505.
    [21]V. Franco, J.M. Borrego, and A. Conde, and S. Roth, Appl. Phys. Lett.88 (2006) 132509.
    [22]B. Hernando, J.L. Sanchez Llamazares, V.M. Prida, D. Baldomir, D. Serantes, M. Ilyn, and J. Gonzalez, Appl. Phys. Lett.94 (2009) 222502.
    [23]B. Hernando, J.L. Sanchez Llamazares, J.D. Santos, V.M. Prida, D. Baldomir, D. Serantes, R. Varga, and J. Gonzalez, Appl. Phys. Lett.92 (2009) 132507.
    [24]D.H. Wang, C.L. Zhang, H.C. Xuan, Z.D. Han, J.R. Zhang, S.L. Tang, B.X. Gu, and Y. W. Du, J. Appl. Phys.102 (2007) 013909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700