用户名: 密码: 验证码:
煤矿瓦斯抽采钻孔风力排粉水射流负压引射除尘技术及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿井下瓦斯抽采钻孔风力排粉施工过程中产生大量的粉尘,这种扬尘不仅对施工人员造成矽肺疾患,而且是煤尘爆炸和燃烧的事故隐患,对煤矿形成重大威胁。因此必须研究一种高效的除尘设备对粉尘进行治理。本文分析了井下钻孔施工过程中钻孔孔口及巷道煤尘扩散、流动、沉降的规律,研究了钻孔孔口集尘、捕尘、消尘方法,综合运用多相流流动理论、水射流负压理论、引射理论、射流泵理论,确定了钻孔孔口除尘装置设计方案,主要工作和取得的研究成果如下:
     (1)研究了井下钻孔风力排粉钻孔粉尘运动及浓度分布规律:粉尘从尘源处产生后,大于1.5~2mm的颗粒迅速沉降,落向底板;其余大部分游离粉尘迅速从孔口向外扩散充满巷道并沿风流方向运动,由于风流是湍流运动,粉尘运动不规则的呈雾状充满巷道,易对人体健康和生产安全造成危害。
     (2)提出了以中压为力源的水射流负压除尘技术:首先以集尘装置将钻孔施工时产生的粉尘控制在相对密封的空间内,用压力泵将水压达到16MPa,并安装在一定直径管道内的喷头高速喷出,这样在喷头的后方形成负压区,通过小阻力的管路与集尘器连接并将钻进过程中产生的粉尘抽入管道内,抽放管道内的粉尘高速与喷头喷出的水雾流混合,并在水雾流中悬浮,高速水雾流以高粘度的特性与粉尘高速摩擦并完全湿润,在一定速度下不产生沉降而被排出管道外,达到除尘的效果。
     (3)设计了水射流负压除尘装置:装置主要由集尘装置、支撑装置、除尘装置、动力装置和连接管线集成,通过ANSYS CFX数值模拟软件对喷嘴个数、喷嘴安装角度、混合管长度和侧向吸尘管位置进行参数优化,实现高效除尘;用FLUENT流体模拟软件模拟分析喷孔情况下除尘装置内压力分布,结果表明在喷孔情况下装置仍可使用。
     (4)进行了40多组数值模拟、60多次地面模拟实验和12个矿30多个测点160多次井下现场施工测试记录:测定钻孔除尘系统的性能参数和除尘效率,现场使用结果表明,打钻过程中巷道粉尘降低90%以上,浓度由原来的300~400mg/m~3降低到3.5mg/m~3。
Heavy dust is produced while use wind power to exhaust dust in coal minedrilling. The dust brings not only silicosis disorders to the workers, but also exists as amajor threat and a potential trigger of accidents, fire and explosion included. So it isessential to develop an efficient dust removal equipment to control the dust. In thisessay, the diffusion of dust caused by drilling under the ground was discussed and therules of the flow and sedimentation of the dust produced in the drilling hole and theroadway were studied. Then based on the principles of multiphase flow, water jetvacuum theory, ejector theory and jet pump theory, a dust removal device in drillingholes was designed. The main results are shown as follows:
     1. The rules of distribution and movement of the dust exhausted by wind underthe ground were studied. The dust leaves from the coal and the particles whose sizebeyond2mm rapidly down on the plate, while other runs out of the drilling hole andspreads outward, which fills the roadway fully and moves with the airflow. Because ofthe turbulent motion of the airflow, the dust moves irregularly, making the roadwaymisty, which is harmful to individuals and serves as a threat to production.
     2. The mechanism of a pressurized water jet vacuum dust removal process wasgiven. To begin with, the dust is controlled in a relatively sealed space. When waterpressure reaches16MPa, it is erupted at speeds from a nozzle in the pipe with acertain diameter, so that a negative pressure zone is formed at the rear of the nozzle.This negative pressure was linked to a collector through little resistant pipes. Dust inthe drainage pipe mixes with spray erupted from the nozzle, and suspended in thespray stream. This high-speed and high-viscosity stream rubs against dust so rapidlyto wet the dust, then the dust will not come into sedimentation at certain speed, and itis discharged from the pipe to reach the goal of dust removal.
     3. A water jet vacuum dust removal device was designed, which is mainlyconsisted of a dust collection device, a supporting device, a dust removal device, apower device and several connecting lines. To get a efficient goal of dust removal, wehave carried on a series of parameter optimization experiment about the number ofnozzles, angle of nozzles, mixing tube length and position of lateral direction through the numerical simulation software ANSYS CFX. Also the internal pressuredistribution is simulated in the case of nozzles is installed by fluid simulation softwareFLUENT. The result shows the device can still be used in the case of nozzle.
     4. In order to test the performance parameters and collection efficiency ofdrilling dust removal system, more than20groups of numerical simulation,10experiments of ground simulation and test records of12mines and more than30measurement points, over160site operation under the ground were done. The resultsshow that the content of dust in the tunnel decreases by more than90%, concentrationtransforms from300~400mg/m~3to3.5mg/m~3.
引文
[1]张建华,范付恒.水射流负压钻孔除尘技术的应用[J].煤矿安全,2011,42(3):86-87.
    [2]杨金德,傅清青,陈剑锋.厦门地区石材企业粉尘对工人健康的危害[J].职业与健康,2011,27(4):361-366.
    [3]张景钢,张小洁,原征岚.煤矿职业性危害因素的研究[J].中国矿业,2010,19(2):75-78.
    [4]王世平.浅谈煤矿井下生产性粉尘的危害及防治[J].资治文摘(管理版),2009,(6):196.
    [5] Wilson K, Stevens P, Lovejoy H, et al. Effect of Chronic Amorphous Silica Exposure OnSequential Pulmonary Function[J]. Journal of Occupational Medicine,1979,21(6):399-402.
    [6]张琪凤,杨大里.萤石矿工尘肺预防控制与消除的研究[J].中华劳动卫生职业病杂志,2002,20(2):83-86.
    [7]张军.生产性粉尘的危害及防治[J].中国预防医学杂志,2001,2(1):79-80.
    [8]向光全.粉尘的危害与防治措施[J].水利电力劳动保护,1996,(3):15-16.
    [9]王继仁,贾宝山.低透气性煤层瓦斯抽采技术与应用[J].煤炭技术,2009,28(03):70-72.
    [10]陈卫红,邢景才,史廷明,等.粉尘的危害与控制[M].北京:化学工业出版社,2005.
    [11]李建坤,余模华.发展综合防尘技术降低尘肺病发生率[J].矿业安全与环保,2002,29(6):12-14.
    [12]李润之.瓦斯爆炸诱导沉积煤尘爆炸的研究[D].北京:煤炭科学研究总院,2007.
    [13]王顺喜.煤矿粉尘的治理[J].科技风,2011,(2):134
    [14]西山博之,宋旭安.利用喷雾装置控制钻孔粉尘[J].矿业工程,1988,(8):61-68
    [15]田书龙.综采工作面的粉尘分布及治理对策[J].山西煤炭,2004,24(4):54-55.
    [16]秦文贵.放顶煤综采工作面主要防尘措施的实施与管理[J].煤矿安全,1996,27(4):38-40.
    [17]梁彤.综采工作面喷雾降尘技术研究[D].太原:太原理工大学,2003.
    [18]周刚.综放工作面喷雾降尘理论及工艺技术研究[D].青岛:山东科技大学,2009.
    [19]马中飞,张化龙.水力吸尘管性能优化实验研究[J].煤矿机械,2008,29(4):60-63.
    [20]马中飞,郝明奎,赵峰.二次实心旋转水气射流驱散积聚瓦斯的理论与试验[J].煤炭学报,2008,33(2):140-143.
    [21]陆清有,兰立志,佟宝华.风动钻孔除尘装置的研究与应用[J].中国勘察设计,2007,(4):71-72.
    [22]周峰,张念东.孙村煤矿煤层注水钻孔捕尘装置研制成功[J].工业安全与环保,2006,32(11):6.
    [23]张书军,王良杰.煤层钻孔施工孔内捕尘技术[J].中州煤炭,2005,(5):41+71.
    [24]赵静野,孙厚钧,高军.引射器基本工作原理及其应用[J].北京建筑工程学院学报,2001,17(3):12-15.
    [25]李卫成.一种新型孔口除尘器的设计与应用[J].煤炭工程,2009,(6):107-109.
    [26]林南英.引射除尘器中关键问题的试验研究[J].煤矿机械,1998,(12):12-14.
    [27]翟国栋,董志峰,严升明.引射除尘技术在综放工作面的应用研究[J].能源环境保护,2007,21(1):27-30.
    [28]蒋仲安,金龙哲,袁绪忠,潘大勇.掘进巷道中粉尘分布规律的实验研究[J].煤炭科学技术,2001,29(3):43-45.
    [29]刘荣华,王海桥,施式亮,等.压入式通风掘进工作面粉尘分布规律研究[J].煤炭学报,2002,27(3):233-236.
    [30] Hall,D.A..Factor Affecting Airborne Dust Concentration With Special Reference to TheEffect of Ventilation[J]...1997
    [31] Courtney, Welly G,,Cheng Lung,Drivers, Edward F..Deposition of Respirable Dust In AnAirway [J]...1999
    [32]刘毅,蒋仲安,蔡卫,等.综采工作面粉尘运动规律的数值模拟[J].北京科技大学学报,2007,29(4):351-353+362.
    [33]王世潭.粉尘尘源分布规律初探[J].矿业快报,2005,(8):17-18.
    [34] Hodkinson,J. R.. The mixing of Respirable Dust With the Nine Ventilation Studied By ARadio-active Tracer Technique [J]...2001
    [35]王晓珍,蒋仲安,王善文,等.煤巷掘进过程中粉尘浓度分布规律的数值模拟[J].煤炭学报,2007,32(4):386-390.
    [36]刘毅,蒋仲安,蔡卫,等.综采工作面粉尘浓度分布的现场实测与数值模拟[J].煤炭科学技术,2006,34(4):80-82.
    [37] Yuan-Pan Zheng, Chang-Gen Feng, Guo-Xun Jing, et al. A statistical analysis of coal mineaccidents caused by coal dust explosions in China [J]. Journal of Loss Prevention in the ProcessIndustries,2009,22(4):528-532
    [38] Hinze J O.Turbulence[M]. McGraw-Hiil, New York,1975.
    [39]王和堂.矿尘在井巷风流中的运动特性[J].矿业工程研究,2011,26(4):66-69.
    [40] El-shoboksky M S. A method for reducing the deposition of small particles from turbulentfluid by creating a thermal gradient at the surface[J]. The Canadian Journal of ChemicalEngineering,1981,59(2):155-157.
    [41] Phillips W F. Motion of aerosol particles in a temperature gradient[J]. Physics of Fluids,1975,18(2):144-147.
    [42]孔珑主.两相流体力学[M].高等教育出版社,2004.
    [43] Davia, Azbel. Two-Phase System of Chemical Engineering[M], Park Ridge, NJ, NoyesPub,1981,120
    [44] Zhou,L.X. Two-fluid models for simulating turbulent gas-particle flows and combustion[J].Multiphase Science and Technology,1999,11(1):37-57
    [45] Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization[J].International Journal of Multiphase Flow,1996,22(S):21-66.
    [46] Zhou L X, Xu Y, Fan L S, et al. Simulation of swirling gas-particle flows using an improvedsecond-order moment two-phase turbulence model[J]. Powder Technology,2001,116(2-3):178-189.
    [47]清华大学工程力学系.流体力学基础[M].北京:机械工业出版社,1980:97-139.
    [48]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [49] Soo S L Fluid Dynamics of Multiphase Flow System. Massachuselts: Ginn andCompany(Xerox Corp),1967,20
    [50] Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow, Paris: Eyrolles,1975,56
    [51] Van Wachem B G M, Almstedt A E. Methods for multiphase compu-tational fluiddynamics[J]. Chemical Engineering Journal,2003,96(1-3):81-98.
    [52] Gidaspow D. Multiphase Flow and Fluidization[M]. Academic Press,1994.
    [53] Soo S L. Particulate and continuum multiphase fluid dynamics[M]. Hemisphere Pub. Corp,New York,1989.
    [54] Soo S L. Multiphase fluid dynamics[M]. Science Press,1991
    [55]王晓瑾,薄以匀,陈晋南,等.SHG-Ⅱ-Z型除尘脱硫装置三维三相流场的数值模拟[J].计算机与应用化学,2006,23(3):198-202.
    [56]陆慧林,刘文铁,别如山,等.增湿活化反应器内气—液滴—固三相流场的数值模拟[J].工程热物理学报,2001,22(S1):197-200.
    [57]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [58]董志勇.射流力学[M].北京:科学出版社,2005.
    [59]孙厚钧,宋锡铭.以流体自控振荡射流促进河道输沙水体增氧与航道浚深[A].中国水利水电技术进展[C].北京:海洋出版社,1999
    [60] Thompson J F, Warsi Z U A, Mastin C W. Numerical grid generation: foundations andapplications[M].1985
    [61] A T Sakman, M A Jog, S M Jeng, et al. Parametric Study of Simplex Fuel Nozzle InternalFlow and Performance[J]. AIAA Journal,2000,38(7):1214-1218.
    [62] J. F. Thompson. Numerical solution of flow problems using body-fitted coordinate systems.Computational Fluid Dynamics,1980,1:105
    [63] Heinrich,J. C., Huyakorn,P. S., Zienkiewicz,O. C., et al. An upwind finite element scheme fortwo-dimensional convective transport equation[J]. International Journal for NumericalMethods in Engineering,1977,11(1):131-143.
    [64] R. Siegel, J. R Howell. Thermal Radiation Heat Transfer[M]. Hemisphere Publishing Corp,Washington, DC;1992
    [65] Taylor C., P.Hood.. Anumerical Solution of the Navier-Stokes Equations Using the FiniteTechnique[J]. Computers&Fluids,1973,1(1):73-100.
    [66] R. Senthil Kumar, A. Mani and S. Kumaraswamy. Analysis of a jet-pump-assisted vacuumdesalination system using power plant waste heat[J]. Desalination,2005,179(1-3):345-354.
    [67] Donea J. A Taylor-Galerkin method for convective transport problems[J]. InternationalJournal for Numerical Methods in Engineering,1984,20(1):101-119.
    [68] L.Bai,etc. Numerical Investigation of Unsteady Incompressible3-D Turbulent Flow andTorque Transmission in Fluid Couplings
    [69] Gilbert G B, Hill P G. Analysis and Testing of Two-Dimensional Slot Nozzle Ejectors withVariable Area Mixing Sections [C]. Symposium on Jet Pumps and Ejectors and Gas LiftTechniques,2nd, Cambridge,1975,45-64.
    [70] Rodes T W. Materials handling Water Jet Eductors[J]. Industrial and Engineering Chemistry.1951.
    [71] Norrie D.H, Vriesde G. A Survey of the Finite Element Applications in Fluid Mechanics [J]..Finite elements in fluids,1978,(3):363-396.
    [72] S. T. Bonnington. Jet pumps and ejectors, a state of the art review and bibliography[M].British Hydromechanics Research Association Fluid Engineering,1972
    [73] Ajit Thankker, Feral Hourian. Computational fluid dynamics analysis of a0.6m,0.6bup-to-tip ratio impulse turbine with fixed guide vane[J]. Renewable Energy,2005,30(9):1387-1399.
    [74] Rankine J.M et al..On the Mathmatical Theory of Combined Streams[J]. Proceedings of theRoyal Society of London,1870,19:90-94.
    [75] Cunnighum R.G. Gas Compression with the Liquid Jet Pump[J]. J. Fluids Eng.,1974,96(3):203-215.
    [76]文吉运,于波,陆宏圻,等.射流泵内流场的大涡模拟[J].武汉大学学报(工学版),2007,40(2):110-114.
    [77]陆宏圻.射流泵技术的理论及应用[M].水利电力出版社,1989.
    [78]王时珍.两级吸入式高效高引射系数引射器[J].力学学报,1980,12(4):413-418.
    [79]石兆玉,史登峰,赵向龙,等.可调式水喷射泵的研制[J].区域供热,2000,(2):10-13.
    [80] Rodi,W. A new algebraic relation for calculating the Reynolds stresses[J]. Zeitschrift fuerangewandte Mathematik und Mechanik,1976,56:219-221.
    [81] Teman.R.. Navier-Stokes Equations[M]. University of Chicago Press,1977
    [82] K heshi, H.S, ScdvenL.F. Finite Element Analysis of Incompressible Viscous Flow by aVariational Penalty Function Method[J]. Journal of Computational Physics,1992,43(1):10-19.
    [83] Gosline J.E,, Obrien M.P. The Water Jet Pump[M]. Univ. Calif. Publ,1974
    [84] Taylor C, Hughes T G, Morgan K. A numerical analysis of turbulent flow in pipes[J].Computers and Fluids,1977,5(4):191-204.
    [85] Hirsch C.H, G.Warzee. A Finite Element Method for Flow Calcultions in Turbomachines..1976
    [86] Peyret R, Taylor T D. Computational for Fluid Flow[M]. New York, Springer-Verlag,1985
    [87] G. Rehbinder. A theory about cutting rock with a water jet[J]. ROCK MECHANICS ANDROCK ENGINEERING,1980,12(3-4):247-257.
    [88] A.W Momber, Y.C. Wong, R. lj, et al. Hydrodynamic profiling and grit blasting oflow-carbon steel surfaces[J]. Tribology International,2002,35(4):271-281.
    [89]陆宏圻.喷射技术理论及应用[M].武汉:武汉大学出版社,2004.
    [90]沈忠厚.水射流理论与技术[M].东营:石油大学出版社,1998.
    [91]陈甘棠,王樟茂.流态化技术的理论和应用[M].北京:中国石化出版社,1996.
    [92] Modatess D, H Tan, Elghobashi LS. Two-component LDA Measuement in a Two-PhaseTurbulent Jet[J]. AIAA journal,1984,22(5):624-630.
    [93] H. Liu, J. Wang, N. Kelson, et al. A study of abrasive water jet characteristics by CFDsimulation[J]. Journal of Materials Processing Technology,2004,153-154:488-493.
    [94] Elghobashi S E, Megaged I A. Mass and Momentum Transprot in a Laminar IsothernalTow-Phase Round Jet[J]. Numerical Heat Transfer,1981,4(3):317-329.
    [95] Schwarz G. Estimating the dimension of a model[J]. The Annals of Statistics,1978,6(2):461-464.
    [96] R Baar, W Riss. Two Phase flow relocimetry measurements by conductive-correlativemethod[J]. Flow Measurement and Instrumentation,1997,8(1):1-6.
    [97]徐依吉.超高压水射流理论与应用基础研究[D].西南石油学院,2004.
    [98] A Tazibt, F. Patsyand, N. Abriak. Theoretical analysis of theparticle acceleration processinabrasive water jet cutting[J]. Computational Materials Science,1996,5(1-3):243-254.
    [99]李晓红,卢义玉.水射流理论及在矿业工程中的应用[M].重庆:重庆大学出版社,2007.
    [100]卢义玉,王晓川,康勇,等.缩放型喷嘴产生的空化射流流场数值分析[J].中国石油大学学报,2009,33(6):57-60.
    [101]卢义玉,李晓红,向文英.空化水射流破碎岩石的机理研究[J].岩土力学,2005,26(8):1233-1237.
    [102] Elperin I T. Heat and Mass Transfer in Opposing Currents[J]. Journal of EngineeringPhysics,1961(6):62–68.
    [103] LAINER A I, ISRAFILOV T D, ELPERIN I T, et al. Study of counter flow trapping of alunite dust [J]. TheSoviet Jour of Non-Ferrous,1975,4(8):43-45.
    [104] Elperin I T. Transport Processer in Opposing Jets[M]. Science and Tech. Press, Minsk,1972.
    [105]孟卫民,黄剑.引射除尘技术的应用[J].煤矿机械,1999,20(1):28-30.
    [106]索科洛夫.喷射器[M].北京:科学出版社,1977.
    [107] Elperin I T, Meltser V L, Leventai L E, et al. Influence of solid particles concentration ontheir motion in impinging jets. Series of Physical Energy Sci.,1971,(4):66-74.
    [108]翟国栋.引射除尘器中喷嘴的优化研究[J].煤炭工程,2006,(11):19-21.
    [109] Tomita S. Full-Scale Model Experiment on The Airflow at aDriving Face with ForcingAuxiliary Ventilation[D]. Fukuoka: Kyushu University,1995
    [110] ZHUGE Fumin,ZHOU Gang,CHENG Weimin,et al.Optimization design of dust preventionequipment by water-Cloud system of powered roof support in fully mechanized and roofcaving coal face with annual yield of6million tons[A]...2008
    [111]槐文信,李炜.环形和双孔射流吸附区的混合有限分析解[J].水动力学研究与进展(A辑),1994,9(1):112-119.
    [112]王福军.计算流体动力学分析[M].清华大学出版社,2004.
    [113]李锋.基于FLUENT的硐室采场粉尘浓度分布规律模研究[D].青岛:青岛理工大学,2010.
    [114] Warn-Gyu Park, Jin Ho Jang. Numerical flow and performance analysis of waterjetpropulsion system[J]. Ocean Engineering,2005,32(14-15):1740-1761.
    [115] BULTEN N. A breakthrough in waterjet propulsion systems[C]..2008
    [116] Hu P, Zangeneh M. CFD calculation of the flow through a waterjet pump[A] InternationalConference on Waterjet Propulsion III, RINA, Gothenborg, Sweden,2001
    [117] CDI Marine Systems Development Division.Advanced compact waterjet propulsion forhigh-speed ships[C]..2006
    [118] FLUENT6.3User’s Guide.2006
    [119] Gambit2.3User‘s Guide.
    [120]2005FLUENT6.3UDF Manual.2006
    [121]李人宪.有限体积法基础[M].北京:国防工业出版社,2005.
    [122]祝效华.CAD/CAE/CFD/VPT/SC软件协作技术[M].北京:中国水利水电出版社,2004.
    [123]袁丹青.多喷嘴射流泵流场的数值模拟及试验研究[D].镇江:江苏大学2009.
    [124]龙新平,朱劲木.射流泵内部流动的数值模拟[J].武汉大学学报(工学版),2002,35(6):1-6.
    [125]李龙华,缪英.提高射流泵效率的研究[J].江苏石油化工学院学报,1997,9(4):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700