用户名: 密码: 验证码:
柴油机控制系统半物理仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合电控技术是柴油机技术研究的主要方向之一,电控技术是提高柴油机动力性、经济性、可靠性和改善排放性能的有效措施,电控水平的高低已经成为柴油机先进性的重要标志。柴油机电控技术正在由单一控制功能向多目标优化的综合控制方向发展。随着柴油机电控系统功能不断增强,结构日益复杂,柴油机电控系统的开发难度不断加大,开发周期长、成本高、调试和试验困难是柴油机电控系统研制面临的突出矛盾。利用现代V模式开发流程,研究柴油机电控系统从功能设计、快速原型、代码生成到半物理仿真的一体化仿真技术,解决电控系统开发、调试难题是十分必要的。
     针对柴油机综合电控系统开发、调试和试验的技术难题,在查阅国内外相关领域的技术资料,分析柴油机电控系统半物理仿真技术现状和发展趋势的基础上,利用现代建模仿真技术和电子信息技术,开展了船用柴油机控制系统半物理仿真技术研究,重点开展了以下几方面的工作。
     1.针对船用柴油机控制系统通过配机试验进行I/O通道调试、系统功能试验、参数优化等存在的周期长、费用高、危险性大、极限工况试验困难等难题,根据柴油机控制系统调试中对多输入、多输出、较好的精度、高实时性等特殊要求,利用平均值和热动力学建模方法,建立了能够满足多目标控制研究和实时性需求的柴油机数学模型。将Arrhenius(阿列纽斯)方法应用到船用柴油机燃烧扭矩的计算中,解决了多缸柴油机瞬时输出扭矩的精确计算问题,满足控制系统断缸或断排的控制需求,保证了以研究控制为目的的柴油机模型的精度和实时性要求;给出了涡轮增压器的涡轮和压气机的折合参数,用折合参数表示的特性对于研究控制系统具有最佳可比性,同时也具有一定的通用性。
     2.采用模块化建模技术,建立了具有完整模型体系的多参数、多输入输出通道的柴油机仿真模型和船舶动力传动系统模型。该模型以C代码的方式运行在dSPACE实时仿真平台中。建模中针对柴油机控制系统研究的需求,采取适当简化、实验参数配置、功能模块划分、多缸数据处理等技术,使所建立的模型即能真实地反映柴油机的运行状态,又具有较好的实时性和通用性。
     3.针对典型柴油机控制系统,开展了柴油机控制系统建模仿真及性能优化研究。研究了起动智能控制,燃油系统和增压系统的匹配优化控制,稳态调速率对瞬态调速特性变差的影响,采用线性递减、累加的方式来消除影响,并进行了仿真和试验验证。达到了改善起动性能、改善全工况调速性能、节约能源及改善排放的目的。
     应用ControlDesk软件建立了功能完善、操作友好的仿真监控界面,可实现离线/在线仿真过程中模型和用户之间的交互、虚拟仪表和程序之间的动态数据交换、跟踪实时曲线、完成在线调参、数据实时记录等功能。
     4.基于先进的dSPACE实时仿真系统,开发了船用柴油机控制系统半物理仿真试验平台,该平台由柴油机实时、多参数仿真模型,实时仿真控制界面,多功能I/O接口板,船用柴油机控制系统和执行器等组成。利用该平台对柴油机控制系统的起动、停机、调速、相继增压、缸排断油、安全保护及状态监测等功能进行调试试验,实现对柴油机控制系统的半物理仿真调试,半物理仿真结果与配机实验结果进行了对比分析,结果表明所建立的半物理仿真平台能够满足控制系统半物理仿真实时性和精度的要求,有效地解决了通过配机试验进行控制系统调试的难题。
     5.针对船用柴油机非线性、时变性和各系统之间相互影响、相互制约和相互耦合等特点,进行了柴油机智能调速控制研究;为解决柴油机全工况调速问题,利用开发的半物理仿真平台,对模糊控制和人工神经网络等智能控制理论在船用柴油机上的应用进行了研究,设计了满足船用柴油机全工况调速要求的模糊-PID控制器和BP神经网络调速控制器,利用柴油机多参数仿真模型进行了验证,仿真结果与传统的PID调速控制进行了比较分析,结果表明模糊-PID复合调速控制器和BP神经网络调速控制器均优于传统的PID控制器。为开发船用柴油机智能调速控制系统打下了坚实的基础。
     本文研究的柴油机控制系统半物理仿真技术可以替代配机试验,缩短控制系统的开发周期、降低开发成本;同时,本文也开展了快速控制原型的研究,为柴油机控制系统从功能设计到产品的转化奠定了坚实的基础。
The electronic control technology is one of the major directions of the diesel research. The electronic control technology is also the effective way to improve the power performance, economy performance, reliability performance and the emissions performance. The level of the electronic control has become a advanced symbol of the diesel. The diesel electronic control technology is developing from the single functions to the multi-objective comprehensive control. With the strengthen of the electronic control system functions and the complex of the structure, the electronic control system of the diesel is difficult to develop, the development cycle is length, the cost is high and the test is difficult. The integrated simulation technology was used to research the diesel electronic control system which is from the functional design, the rapid control prototyping, the code generation to semi-physical simulation. It is necessary that the V model development process was used to solve the development difficulty of the diesel electronic control system.
     For the technical difficulty of the development, debugging and testing of the diesel electronic control system, on basis of the referring to the related technical information and analyzing the semi-physical simulation technology status and development trend, the semi-physical simulation technology of the marine diesel electronic control was researched. The major works are as follows:
     1. The experiments matching to machine of the marine diesel control system included I/O channel debugging, system function testing and parameter optimization. The experiments have a lot of disadvantage, such as the long cycle, the high cost, the high-risk and the limited conditions.
     According to the special requirements of the diesel control system for multi-input and output, high-precision and high real-time, the mean-value and thermodynamic principle was used to set up the diesel model to meet the control demands of the many objectives and the real-time. The burning chemical reaction thermal of marine diesel is calculated application of Arrhenius method so as to achieve the accuracy calculation of the combustion torque and meet the control demand of cut-off cylinders and array, this guaranteed the accuracy and the real-time of the model for the purpose of researching the control system. The turbine and compressor equivalent parameters were calculated. The characteristics expressed by equivalent parameters possess the best comparability and versatility.
     2. The modularization method is chosen to establish a complete diesel simulating model of the many input and output and power transmission system model of the ship. The model code was downloaded to the dSPACE real-time simulation platform, the operation and calculation of the model was carried on by the dSPACE/PPC controller board. Based on the researching need of the diesel ECS, the appropriate simplify, experimental data configuration, module division and the data process of the multi-cylinder technology were taken during modeling, so that the model is high accuracy, good real-time and high universality.
     3. Based on the control system researched, the diesel control system modeling and simulation and the performance optimization of the diesel were researched. the paper has researched the start intelligent control, the match optimize control between the fuel system and the charger system, the impacting of the steady state governing rate on the instantaneous governing rate, the linear reducing or adding were taken to eliminate impact. And the relevant control functions were simulated. The performance optimization research improves the starting performance, improves the speed governing of the full condition, conserves the energy and improves the emissions.The monitoring interface was established by the controlDesk software which has function perfectly and operation friendly. The monitoring interface can achieved the interfacing between the model and user during the offline/online simulation, the data exchanging between virtual instrumentation and procedures, the tracking of the real-time curves, the adjusting of the parameters online and the recording data.
     4. Based on the dSPACE real-time simulation system, the semi-physical simulation platform was developed. The semi-physical simulation platform composes the real-time diesel simulation model, the real-time simulation monitoring interface, the functional I/O board, the real diesel electronic control system and the real actuator. The platform tested the starting, the stopping, the speed governing, the protection of the exceeding speed, the sequential turbocharger, the cylinder cutout and status monitoring. The results of the semi-physical simulation were compared to the test results of the matching machine. The results show that the simulation platform has the high precision and the real-time well. The simulation platform can accelerate the development of the marine diesel electronic control system and can reduce the cost of the testing. It can test the other diesel controller (such as diesel electronic speed governor) if the semi-physical simulation platform is expanded some functions, the simulation platform can test the marine power device in the laboratory. The simulation platform is universal. This overcomes the disadvantage of the matching machine test.
     5. For the characteristics of the mutual influence, mutual restraint and mutual coupling between various systems of the diesel, the intelligent speed control of the diesel was researched. Appling semi-physical simulation platform, the fuzzy control and artificial neural network control theory were researched to regulate the speed of the marine diesel. The fuzzy-PID controller and BP neural controller were designed to meet the marine diesel engine speed control requirements of the whole condition.
     The control theories were verified by using multi-parameter diesel simulation model. The simulation results were compared to the traditional PID speed controller. The results show that the fuzzy-PID speed controller and BP neural network speed controller are better than the traditional PID speed controller. This lays the solid foundation for developing the marine diesel speed intelligent control. The semi-physical simulation of the diesel electronic control system can replace the matching machine test, shorten the development cycle and decrease the development cost. At the same time, the rapid control prototyping was researched. This is the foundation of developing control system from the function design to the product conversion.
引文
[1]姚俊,马松辉著.Simulink建模与仿真.西安电子科技大学出版社,2002:1-25页
    [2]赵敏静.变循环发动机控制半物理仿真研究.北方工业大学,2008:1-5页
    [3]陈宗海.过程系统建模与仿真.中国科技大学出版社,1997:82-150页
    [4]王凌伟.基于虚拟机间接仿真的计算机运行环境重视.北京理工大学硕士学位论文.2008:1-4页
    [5]李彬轩.柴油机电控单元硬件在环仿真系统的设计及其相关研究.浙江大学博士学位论文.2001:1-125页
    [6]林楠.船舶柴油机建模及转速控制仿真研究.大连海事大学硕士学位论文.2008:1-4页
    [7]朱庆智.船舶柴油机建模分析和虚拟漫游系统的实现.大连海事大学硕士学位论文.2007:1-4页
    [8]帅英梅.涡轮增压柴油机电控调速系统的模型与仿真.华中科技大学硕士学位论文.2004:1-4页
    [9]王海燕.大型低速船用柴油机建模与系统仿真.大连海事大学博士学位论文.2006:1-14页
    [10]Dimitrios T, Hountalas. Prediction of marine diesel engine performance under faultconditions. Applied Thermal Engineering.2000,20(2000):1753-1783P
    [11]N.P. Kyratos, I.Koumbarelis. Performance Prediction of next-generation slow speed diesel Engines during ship maneuvers. Transaction of lmarEst. 1994,106(1):1-26P
    [12]N.p.Kyrtatos, K. Marek. Transient operation of large-bore two-stroke marine diesel engine Power plants Measurement and simulations. Proceeding of the 23nd World Congresson Combustion Engine Technology for Ship Propulsion, Hamburg, DE,2001:1237-1250P
    [13]G. Theotokatos, N. P. Kyrtatos. Diesel engine transient operation with turboeharger compressor surging. SAE paper. No.2001-01-1241,2001
    [14]顾宏中.涡轮增压柴油机热力过程模拟计算.上海交通大学出版社,1985:14-60页
    [15]顾宏中.涡轮增压柴油机性能研究.上海交通大学出版社,1998:46-100页
    [16]刘永长.内燃机热力过程模拟.机械工业出版社,2001:21-70页
    [17]龚金科,刘孟祥等.用Simulink实现柴油机的建模与仿真.湖南大学学报(自然科学版).2002,29(4):38-41页
    [18]龚金科,刘孟祥.柴油机工作过程数学模型.移动电源与车辆.2002,18(2):16-20页
    [19]李长文,赵长禄等.基于Matlab/simulink及RTW的柴油机瞬态建模与仿真.北京理工大学学报.2004,24(7):579-582页
    [20]辛颖,吕安勤等.N6160ZC型柴油机工作过程模拟计算与优化.大连海事大学学报.2004,30(3):73-76页
    [21]YU-LONG ZHAN, BI-YU WAN, XIAO-ZHONG WANG, et al. A simulation model for theMain engine of the modern container ship. Proeeedings of the Third International Conference on Machine Leaming and Cyberneties, Shanghai,2004:2996-3002P
    [22]X.Dovifaaz, M.Ouladsine, A.Rachid, et al.Neural modeling and control of a diesel engine with pollution constraints.Proceedings of the American Control Conference, Anchorage, AK, USA,2002:2008-2013P
    [23]Zeng Fanming, Chen Yutao,Wu Jiaming,et al.Dynamic modeling and simulation of marine diesel engine using elman networks.Proceedings of IEEE International Conference on Neural Networks & Signal Processing,, Nanjing,China,2003:100-103P
    [24]Radovan Antonic,Zoran Vukic,Ognjen Kuljaca.Marine diesel engine process modeling and control using advanced technologies.Proceedings of IEEE ISIE 2005, Dubrovnik, Croaria,2005:229-234P
    [25]Weifeng Shi,, Jianmin Yang, Tianhao Tang. RBF NN based marine diesel Engine generatior modeling. Proceedings of 2005 American Control Conference, Portland, OR, USA,2005:2745-2749P
    [26]张均东.轮机工程系统状态空间建模.大连海事大学博士学位论文.大连海事大学,1998,1-50页
    [27]曹恒.基于模糊逻辑的内燃机车大功率柴油机智能控制系统的研究.大连理工大学博士学位论文:大连理工大学,2000,27-42页
    [28]E. Hendricks. Mean value modeling of large turboeharged two-stroke diesel engines. SAE PaPer:No.890564,1989
    [29]J.P.Jensen, A. F. Kristensen, S.C.Sorenson. Mean value modeling of a small Turboeharged Diesel engine. SAEPaper:No.910070,1991
    [30]Minghui Kao, John J.Moskwa. Turbocharged diesel engine modeling for nonlinear engine Control and state estimation. ASME Journal of Dynamic Systems, Measurement, and Control.1995,117(1):20-30P
    [31]Robert W. Weeks, John J. Moskwa. Automotive engine modeling for real-time control using Matlab/Simulink. SAE Paper:No.950417,1995
    [32]Yong-Wha Kim, Giorgio Rizzoni, Vadim Utkin. Automotive engine diagnosis and control Via nonlinear estimation.IEEE control systems.1998, 18(5):84-99P
    [33]段树林,欧阳明高,刘铮.涡轮增压柴油机动态仿真的研究.大连海事大学学报.1999,25(3):77-80页
    [34]常久鹏,张红光等.采用准线性模型实现柴油机电控算法的仿真分析.内燃机学报.2000,18(3):331-333P
    [35]WANG Hong-qiao, YANG Ming-gao, LI Jin. A Type of real-time simulation system for electronic diesel engine controller.Transaetion of CSICE.2002,20(1):36-40P
    [36]帅英梅,高世伦.涡轮增压柴油机的平均值模型及仿真.柴油机设计 与制造.2004,107(2):19-23页
    [37]冯国胜,杨绍普.柴油机及其电控系统仿真.系统仿真学报.2005,17(9):2276-2279P
    [38]R. Isermann, J. Schaffnit, S. Sinsel. Hardware-in-the-loop simulation for the design and testing of engine-control systems [J]. Control Engineering Practice,Volume 7, Issue 5, May 1999:Pages 643-653P
    [39]Rolf Isermann, Norbert M€uller. Design of computer controlled combustion engines.Mechatronics.13 (2003),1067-1089P
    [40]王永庭,张付军等.柴油机各缸供油量不均匀调节ECU硬件在环仿真研究.北京理工大学学报.2005,25(1):13-17页
    [41]孔峰,张育华等.共轨柴油机仿真系统及ECU的硬件在环仿真.柴油机,2005,27(4):12-14页
    [42]池建军,侯妮娜.国内柴油机电控技术的现状及发展方向.机械管理开发,2007,94(1):15-17页
    [43]王尚勇,杨青.柴油机电子控制技术.机械工业出版社,2004:187-188页
    [44]马善伟,乐正伟.柴油机故障诊断技术综述,上海第二工业大学学报,2008,25(2):122-128页
    [45]译著.ECS396/S E型/F型配ETB 4E/ETB 4F(船用)结构和功能.山西柴油机厂,2003:13-70页
    [46]蒋玉荣.柴油机综合控制系统的转速控制环节设计研究.哈尔滨工程大学硕士学位论文,哈尔滨工程大学.2006:1-5页
    [47]胡大斌,陈国均.柴油机转速模糊控制的一种算法及其实现.海军工程大学学报,2004,16(1):59-62页
    [48]盛立峰,张德江等.模糊控制在柴油机电控系统中的应用.控制工程,2004,11(5):400-402页
    [49]赵军.柴油机电子调速器的研究[D].山东工业大学,1997:1-25页
    [50]Tomohiro Iwai, The Development of an Electronic Governor for the Power Generator System, SAE 901603
    [51]Maurizio Abate, Norberto Doslo, Use of Fuzzy Logic for Engine Idle Speed Control, SAE 900594
    [52]时文飞,侯世英等.基于CMAC与PID复合控制的柴油机调速系统.控制理论与应用,2006,25(4):11-13页
    [53]汪昊,李明河.基于遗传算法的PID整定的柴油机调速系统的研究.控制理论与应用,2007,26(5):20-22页
    [54]姜培刚.基于遗传算法的柴油机自适应智能调速控制系统.农业机械学报,2001,32(4):14-16页
    [55]刘西全,江国和等.基于遗传算法的船用柴油机转速控制系统仿真研究.华东船舶工业学院学报,2005,19(2):10-14页
    [56]DaeEun Kim, Jaehong Park. Application of adaptive control to the fluctuation of engine speed at idle. Information Sciences.177 (2007):3341-3355P
    [57]毛小兵.柴油机调速系统自适应滑模控制算法的研究与仿真.船海工程.2008,37(2):62-65页
    [58]TESIS DYNAware en-DYNA THEMOS 2.0, Block Reference Manual, 2007:9-20P
    [59]刘永长.内燃机原理.武汉:华中科技大学出版社,2001:72-247页
    [60]en-DYNA Basic 1.6 Simulink Blocks Reference Manual enDYNA Basic 2004:10-23,43-66P
    [61]魏象仪.内燃机燃烧学.大连理工大学出版社,1992:1-24页
    [62]傅维镰,张永康.燃烧学.高等教育出版社,1987:9-60页
    [63]何学良,李疏松.内燃机燃烧学.机械工业出版社,1990:231-281页
    [64]李幼鹏.柴油机原理.大连理工大学出版社,1992,179-208页
    [65]GTPower Manual,2007:40-95页
    [66]宋智辉.柴油机活塞-曲轴系统的动力学分析.兰州工业高等专科学校学报,2006,13(2):1-4页
    [67]杨春永,宋军委等.新型柴油机转矩特性曲线拟合方法的研究.工程机械,2008,39(5):20-22页
    [68]徐建.新型高压电控柴油机动态模型的研究.页浙江大学硕士学位论文,2002:33-37
    [69]聂云超,任庆国.船用柴油机.大连:大连理工大学出版社,2004:13-23页
    [70]王海燕,张均东等.大型船用柴油机建模与动态仿真.系统仿真学报.2006,18(9):2638-2641页
    [71]Samhaber C, Wimmer A. Modeling of engine warm-up with in-tegration of vehicle and engine cycle simulation[C].SAE 2001-01-1697P
    [72]Wagner John R, Venkat Srinivasan, Dawson Darren M. Smart Thermostat and Coolant Pump Control for Enigne Thermal Management Systems.SAE Paper
    [73]徐立华.船舶柴油机.哈尔滨工程大学出版社,2006:243-267页
    [74]高孝洪.船舶内燃机仿真及应用.人民交通出版社.1993:70-90页
    [75]王鹏.电控柴油机HIL实时仿真系统研究.哈尔滨工程大学硕士学位论文.2002:51-59页
    [76]廖铁勇,彭水生.船舶发电柴油机工作过程仿真.大连海事大学学报,2004,30(1):35-38页
    [77]王家宏.基于MATLAB的柴油机燃烧过程仿真建模研究.机电设备,2008,3:56-59页
    [78]GONZALESM A, LIAN Z W, REITZ R D. Modeling DieselEngine Spray Vaporization and Combustion [C].SAE Paper920579.
    [79]A.D.Gosman. Multidimensional of Cold Flow andTurbu-lence in Reciprocating Engine. SAE paper,850334
    [80]林杰伦.内燃机工作过程数值计算.西安交大出版社.1988:12-95页
    [81]梁会峰.船舶推进柴油机控制系统的优化及其仿真.上海海运学院硕士学位论文.2003:1-12页
    [82]孙建波,郭晨.大型船舶动力装置的建模与仿真研究.大连海事大学学报.2007,19(3):465-469页
    [83]Reipert P, Voigt M.Simulation of the Piston/Cylinder Behavior for Diesel Engines[R]. SAE Technical Paper 2001-01-0563,2001
    [84]Reitz R D, Rutland C J.3-D Modeling of Diesel Engine Intake Flow[R]. Combustion and Emissions.SAE 911789
    [85]翁史烈.船舶动力装置仿真技术[M].上海交通大学出版社,1991:255-293页
    [86]Tesis DYNAware en-DYNA 2.0 Preprocessing Tutorial,2007:138-165页
    [87]段军.机车柴油机数字式电子调速系统智能PID控制理论和技术的研究.大连理工大学博士学位论文.2000:1-17页
    [88]鲁铁伟.船舶主机遥控的逻辑控制和转速的遗传算法PID控制.大连海事大学硕士学位论文.2006:31-47页
    [89]CHEN Qing-Geng, Wang Ning HUANG Shao-Feng. The Distribution Population-based Genetic Algorithm for Parameter Optimization PID Contrller ACTA AUTOMATICA SINICA.2005
    [90]苏岩,刘忠长等.基于PID对柴油机怠速稳定性控制的研究与优化.内燃机工程,2008,29(3):20-24页
    [91]袁银南,朱磊等.实现柴油机全程电子调速PID参数整定的仿真研究.内燃机工程,2006,27(1):23-28页
    [92]杭勇.柴油柴油机控制模型及控制算法的设计与仿真研究.江苏理工大学博士学位论文.2002:1-83页
    [93]王保华,罗永革.柴油机电控喷油泵位置PID控制试验研究.汽车科技,2005,3:39-41页
    [94]滕万庆.柴油机调速新技术.哈尔滨工程大学出版社[M],2000:129-159
    [95]陆平.电站柴油机数字调速技术研究.哈尔滨船舶工程学院博士学位论文.1992:1-74页
    [96]王芝秋,陆平等.采用动稳态模式分离PID调速算法进一步改进柴油 机调速性能.内燃机工程.1993:19(1)23-26页
    [97]Daniel C, Garvey. A Digial Control Algorithm for Diesel Engine Governing. Electronic Controls of Diesel Engines, SAE paper 850174
    [98]段军.机车柴油机数字式电子调速器系统智能PID控制理论和技术的研究.大连理工大学博士学位论文.2000:1-102页
    [99]Hai-yan, ZHANGJun-dong,REN.Guang, etc. Modeling and Dynamic Simulation of Large Marine Diesel Engine[J]. Journal of System Simulation.2006,18(9):2638-2641P
    [100]孟长江,褚全红等.柴油机起动、加速冒黑烟控制策略研究.现代车用动力.2007(3):38-41页
    [101]肖文雍,冒晓建等.GD-1高压共轨式电控柴油机的起动控制策略研究.内燃机学报.2003,21(2):97-100
    [102]Masahiko Miyaki, Hideya Fujisawa. Development of New Electronically Controlled Fuel Injection System ECD_U2 for Diesel Engines[C]. SAE Paper 910252,1991
    [103]Lu Ping, Wang Zhiqiu, Zhang Zhihua, Sun Jun. Design and Experiments of a Digital Governing System for Diesel-Generator Sets. Neiranji Xue bao/Transactions of CSICE, v 10, n3,1992, P.227,1000-0909P
    [104]Makoto Shiozaki. Development of a Fully Capable Electronic Control System for Diesel Engine. SAE paper 850172
    [105]梁桂森,沈勇等.船用柴油机相继增压系统性能研究.柴油机.1999(6):10-14页
    [106]王贺春,聂志斌等.采用相继增压技术改善柴油机低负荷性能的试验研究.哈尔滨工程大学学报.2007:28(8)870-874P
    [107]HUANG Jianhua, WANG Yingyan etc. Calculation and analysis of a marine V type high-speed diesel engine using STC[J]. Ship Engineering, 2005,27(2):5-9P
    [108]钱人一.INA(依纳)可切换液压挺杆和柴油机分缸断油电子控制.汽 车与配件.2003(40):24-26页
    [109]Getting Started with Stateflow (Version 6) For Use with Simulink. The Math Works, Inc.2005:10-102P
    [110]陆平.电站柴油机数字调速技术研究.哈尔滨船舶工程学院博士学位论文.1992:1-74页
    [111]Lu Ping, Wang Zhiqiu, Zhang Zhihua, Sun Jun. Design and Experiments of a Digital Governing System for Diesel-Generator Sets. Neiranji Xue bao/Transactions of CSICE, v 10, n3,1992, P.227,1000-0909P
    [112]David J McGowan,D John Morrow, Brendan Fox. Integrated Governor Control for a Diesel-Generating Set[J]. IEEE Trans.on Energy Conversion(S0885-8969),2006,21(2):176-484P
    [113]ControlDesk 2.0 The Next Dimension of Experimenting 2001:1-15P
    [114]花力平,钱人一等.电站柴油机转速的数字式PID控制.柴油机,2001(1):34-36页
    [115]于明进,程勇等.试验确定柴油机转动惯量的一种新方法.农业机械学报.2005,36(5):34-37页
    [116]Zhang L.M. Diagnosis of the working unevenness of each cylinder by the transient crankshaft speed. SAE Paper 960463,1996
    [117]吴波,于明进等.内燃机转动惯量试验推算方法的研究.内燃机学报.2000,18(4):443~446页
    [118]赵英勋.柴油机当量转动惯量的测定.汽车运输.1989(10):50~54页
    [119]L.Guzzella and A.Amstutz. Control of Diesel Engines. IEEE Control Systems Magazine, No.4,1998
    [120]G.Hong and N.Collings. Application of Self-Tuning Control. SAE SP, No.819,1990
    [121]M.Kao and J.J.Moskwa. Engine Load and Equivalence Ratio Estimation for Control and Diagnostics via Nonlinear Sliding Observer. Proc.1994 American Control Conf. Vol.2,1994
    [122]周德俭.智能控制.重庆大学出版社,2005:32-125页
    [123]李国勇.智能控制与MATLAB在电控柴油机中的应用.电子工业出版社,2007:108-148页
    [124]郭江华,胡大斌等.柴油机转速模糊控制系统设计.湖北工学院学报,2002,17(2):137-139页
    [125]王珂,李丹.车用柴油机电子调速器的模糊控制研究.内燃机学报.1999,17(3):219-222页
    [126]Maurizio Abate and Norberto Dosi. Use of Fuzzy Logic for Engine Idle Speed Control.SAE Paper 90055
    [127]Geoge Vachtsevanos, Shehu S. Farinwata and Dimitrios K.Pirovolou.Fuzzy Logic Control of and Automotive Engine. IEEE Control Systems, June 1993
    [128]刘金琨.先进PID控制MATLAB仿真.第二版.电子工业出版社,2006:10-71页
    [129]甘伟,曹丹.神经网络在船舶柴油机调速中的应用研究.内燃机学报.1999,17(3):219-222页
    [130]甘伟,曹丹.神经网络在船舶柴油机调速中的应用.机电设备.2007(5):28-31页
    [131]白广来.船舶柴油机智能监测与智能诊断的研究.大连海事大学博士学位论文.2003:66-100页
    [132]Samanta B, Al-Balushi K R. Use of time domain features for the neural network based fault diagnosis of a machine tool coolant system. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering,2001215(3):199-207P
    [133]王丹,朱绍庐.船舶电站柴油机微机调速系统的设计.大连海事大学学报,1997,23(2):70-72页
    [134]李颖,朱伯立等.Simulink动态系统建模与仿真基础.西安电子科技大学出版社,2004:53-230页
    [135]恒润科技.实时快速原型及硬件在回路仿真的一体化解决途径.恒润科技有限公司.2005:1-12页
    [136]杜剑维.基于dSPACE的相继增压柴油机硬件在环仿真.哈尔滨工程大学硕士学位论文.2007:53-60页
    [137]杭勇,刘学瑜.快速原型工具在高压共轨柴油机控制系统开发中的应用.现代车用动力,2004(2):22-25页
    [138]石琦文,孙晓民.基于MATLAB的车用快速控制原型软件平台的研究与实现.计算机工程与应用.2005(13)108-110页
    [139]朱辉,王丽清.柴油机电控单元硬件在环仿真系统研究.内燃机学报,1998:V16 No.4
    [140]谭文春,唐航波等.柴油机高压共轨供油系统硬件在环仿真的设计.上海交通大学学报.2004,38(10):1647-1655页
    [141]朱辉.柴油机硬件在环仿真研究.北京理工大学博士学位论文.1997:34-56页
    [142]赵国光.船舶动力装置自动化.上海交通大学出版社,1993:254-266页
    [143]孙鸿,欧阳明高等.电控柴油机时实控制仿真系统的试验验证与应用.内燃机工程.2000,21(3):29-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700