用户名: 密码: 验证码:
后注浆群桩基础沉降性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基后注浆包括桩端压力注浆和桩侧压力注浆。该项技术是土体加固技术和桩基工程技术的有机结合,它既克服了灌注桩成孔工艺的固有缺陷,又加固了桩端和桩侧附近的土体,从而大幅度提高了单桩承载力。大量工程实践表明,该技术具有承载力高、适用范围广、施工方法灵活、效益显著和便于普及的特点,是一项提高桩基竖向承载力和减小不均匀沉降的有效技术。
     本文依托铁道部科技研究开发计划重大课题(2008G032-3):《京沪高速铁路桥梁桩基后注浆技术试验研究》开展研究。京沪高速铁路沿线大部为软土地区,表层第四系土层厚度20~75m,地质情况极为复杂。如何控制桩基的工后沉降量及沉降特性,保证桩基的承载力成为保证整个工程质量的控制因素。因此,进行桩基后注浆技术来减小桩基础沉降量以及缩短沉降稳定时间的研究非常必要。由于桩基后注浆技术的机理仍不明朗,尤其是关于注浆减小群桩沉降方面的研究更为鲜见。因此,进行桩基后注浆技术来减小群桩基础沉降量以及缩短沉降稳定时间的研究不仅具有重要的理论意义,还具有重要的工程应用价值。故本文针对后注浆群桩基础沉降性状这一课题展开相关研究工作。
     本文的主要研究工作及相关结论如下:开展了大规模的桥梁长大群桩后注浆现场试验,积累了丰富的实测数据资料,并对实测数据进行了分析研究,得出桩侧注浆与桩端注浆对群桩基础的沉降均起到明显的减小和控制作用,对于缩短固结沉降的时间方面,桩端压力注浆的效果更为稳定;基于现场试验数据,探讨了后注浆对群桩沉降性状的影响机理,运用Vesic理论,探讨了深厚软土层中后注浆桩的浆液对土体产生的影响,提出在深厚软土层中,桩侧注浆对桩周土体的影响较小,桩端注浆能更有效地加固桩周土体,对于长大群桩基础,桩端注浆控制沉降效果良好,甚至可以优于桩侧注浆;结合现场试验,提出了利用注浆后的单桩静载试验结果反推土的参数,然后运用剪切变形传递法计算注浆后群桩基础的沉降量这一方法,并结合当前规范进行了验证;使用FLAC3D程序,开展了后注浆群桩基础三维数值模拟静载试验研究,研究了深厚软土层中注浆后的群桩基础在设计荷载作用内的荷载-沉降规律,以及由注浆引起的桩侧与桩端条件的改变对群桩基础沉降量的影响,得出对于位于深厚软土层中的长大群桩基础,桩侧注浆与桩端注浆均可减小其在正常使用状态下的沉降量,桩端注浆效果更佳的结论;桩端注浆引起的群桩沉降量减小缘于桩端形成的注浆加固体有效地加固了桩端下卧层,同时由于高压浆液沿桩侧桩-土界面上涌,改善了桩端以上一定范围的桩侧界面条件,以及对桩侧土起到了一定的固化作用;采用非参数时间序列模型和多维核函数估计法对深厚软土层中的后注浆与未注浆群桩基础的沉降-时间数据进行了建模与沉降预测,并对时间序列模型进行了适用性分析;分析与预测结果表明,非参数时间序列模型预测效果良好,与传统参数时间序列模型相比,更具工程实用性。
Pile foundation post grouting includes both pile end pressure grouting and pile side pressure grouting. This technique is an organic combination of the soil reinforcement technique and the pile foundation engineering techniques, which overcomes the inherent faults of pile foundation hole-making and reinforces the soil mass nearby pile end and pile side so as to substantially raise the pile bearing capacity. A great number of project practices show that this technique is featured by its high bearing capacity, wide application scope, flexible construction methods, significant benefits and easy popularization. It has been proved in practice that it is an effective technique to raise the vertical bearing capacity of bored pile and reduce the pile group differential settlement.
     The research of this paper is conducted under the Experimental Study of Bridge Pile Foundation Post Grouting Techniques of Beijing-Shanghai High-speed Railway, which is a major subject of science and technology R&D program of China's Ministry of Railways (2008G032-3). Most areas along the Beijing-Shanghai High-speed Railway are of soft soil; the Quaternary System soil layer at the surface is 20 to 75m thick, with quite complicated geological conditions. It is a controlling factor for guaranteeing the entire project quality to control the settlement after construction and settlement characteristics of pile foundation and to guarantee the pile foundation bearing capacity. Therefore, it is necessary to conduct the research and study of pile foundation post grouting techniques to reduce the pile foundation settlement and shorten the settlement stability time. The mechanism of pile foundation post grouting techniques is still unclear, and the study of the grouting for reducing pile group settlement, in particular, is rare. Therefore, it is of important theoretical values as well as important project application values to conduct the research and study of pile foundation post grouting techniques to reduce the pile group foundation settlement and shorten the settlement stability time. Therefore, researches of the subject of post grouting pile group foundation settlement characteristics are conducted for this paper.
     The main research work and conclusions of this paper are as follows:a large-scale post grouting field test of long and large pile group has been conducted; abundant measurement data and documents have been accumulated, and measurement data have been analyzed and researched to come to the conclusion that the pile side grouting and pile end grouting have obviously reduction and controlling effects on the settlement of pile group foundation; the effect of pile end pressure grouting on shortening the consolidation settlement is more stable. Based on the field test data, the mechanism of the influence of post grouting on the pile group settlement characteristics is explored; adopting the Vesic theory, the influence of post grouting pile grout on the deep soft soil layer is expounded; it is proposed that the effect of pile side grouting on the soil around pile in deep soft soil layer is small, and the pile end grouting may more effectively reinforce the soil around pile; the effect of pile end grouting in controlling the settlement of long and large pile group is good, even better than the pile side grouting. With consideration given to the field test, it is proposed than soil parameters may be inverted from the results of single pile static load test after grouting, and then the settlement amount of pile group foundation after grouting may be calculated with the shear displacement method, which is verified according to the prevailing technical code. With the FLAC3D program, the research of the three-dimensional numerical simulation static load test of post grouting pile group foundation is conducted; the load-settlement regularities of the pile group foundation in the deep soft soil layer after grouting within the design load, and the influence of the changes of pile side and pile end conditions caused by grouting on the pile group foundation settlement are studied, and it is concluded that, as for the long and large pile group foundation in the deep soft soil layer, the pile side grouting and the pile end grouting may reduce its settlement during normal use conditions, and the pile end grouting is with better effects. The reduction of the pile group settlement caused by the pile end grouting is due to the effective reinforcement of pile end substratum by the grouting strengthening body formed at the pile end; moreover, the upward flow of high pressure grouting along the interface between pile and soil at the pile side improves the pile side interface conditions within a certain scope above the pile end and somewhat solidifies the pile side soil. Time series modeling and settlement prediction are conducted for the settlement-time data of the post grouting and non-grouting pile group foundation in the deep soft soil layer, based on nonparamatic time series model and multi-variate kernel function estimation. Applicability of time-series models is also analyzed. The analysis and results show that:the nonparametric time series model can achieve good prediction results, and is more practicable in engineering by contrast with the conventional parametric time series models.
引文
[1]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995.
    [2]中华人民共和国住房和城乡建设部.建筑桩基技术规范JGJ 94-2008[S].北京:中国建筑工业出版社,2008.
    [3]中华人民共和国铁道部.铁路桥涵地基和基础设计规范TB 10002.5-2005[S].北京:中国铁道出版社,2007.
    [4]Randolph M F, Wroth C P. Analysis of deformation of vertically load piles[J]. Journal of Geotechnical Engineering,1978,104(12):1465~1488.
    [5]Randolph M F, Wroth C P. An analysis of vertical deformation of pile groups[J]. Geotechnique, 1979,29(4):157~166.
    [6]Chow Y K. Analysis of vertically loaded pile groups [J]. International Journal for Numerical and Analytical Mechanics,1986,10(1):59~72.
    [7]Guo W D, Randolph M F. An efficient approach for settlement of piles groups[J]. Geotechnique, 1999,49(2):161~179.
    [8]Guo W D. Vertically loaded single pile in Gibson soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(2):189~193.
    [9]Chow Y K, Chin J T, Kog Y C. et al. Settlement analysis of socketed pile groups [J]. Journal Geotechnical Engineering,1990,116(8):1171~1184.
    [10]Poulos H G. Analysis of the settlement of pile groups[J]. Geotechnique,1968,18:449~471.
    [11]Bruce D A. Enhancing the performance of large diameter piles by grouting(Ⅰ) [J]. Ground Engineering,1986, (5):9~15.
    [12]Bruce D A. Enhancing the performance of large diameter piles by grouting(II) [J].Ground Engineering,1986, (7):11~19.
    [13]Fleming W G K. The improvement-of pile performance by base grouting[J]. Proc Instn Civ Engineering,1993, (97):88~93.
    [14]Pecez J Y, Davidson R R, LacRoix Y. Chemical grouting test program for Mississippi river lock and dam[J]. Geotechnique,1982,32(3):34~40.
    [15]Geddes J D.Stresses in foundation soils due to vertical subsurface load[J]. Geotechnique,1980, 16:231~255.
    [16]King G J W, Dickin E A, Lyndonandm A,et al. The influence of rate of loading on the behavior of continuous flight auger bored piles in soft clay[J]. Geotechnical and Geological Engineering, 2000,139(18):139~153.
    [17]Ting W H. An instrumented bored pile with soil improvement for increased shaft resistance [J]. Proc of the 11th Int Conf on Soil Mech and Foundation Engineering,1985,13(8):1483~1488.
    [18]Poulos H G, Davis E H. Pile Foundation Analysis and Design[M]. New York:John Wiley and Sons,1980.
    [19]傅旭东.钻孔灌注桩桩底压力灌浆的工艺、效果及机理[J].桥梁建设,1999,1:52~55.
    [20]沈保汉,孙维萍,兰岚.灌注桩后压浆技术[J].建筑业10项新技术讲座,2001.
    [21]陈小明,林山.泥浆护壁灌注桩桩底后压浆技术及其单桩竖向承载力的估算方法[J].探矿工程,1999,3:17~20.
    [22]张忠苗,包风,陈云敏.考虑材料应变软化的球(柱)孔扩张理论在桩底注浆中的研究[J].岩土工程学报,2000,22(2):243~246.
    [23]张忠苗,吴世明,包风.钻孔灌注桩桩底后注浆机理与应用研究[J].岩土工程学报,1999,21(6):681~686.
    [24]王志辉,刘斌,庄平辉.大直径桩端压力注浆灌注桩的承载性状试验[J].东北大学学报(自然科学版),2002,23(2):160~163.
    [25]张伟民.桩端压力注浆在基桩加固中的应用[J].有色冶金设计与研究,2008,29(2):21~23.
    [26]李小青.竖向荷载下后压浆桩承载性状的数值分析[J].探矿工程,2000,6:9~11.
    [27]邓友生,龚维明,袁爱民.超长大直径群桩沉降计算方法探讨[J].铁道学报,2007,29(4):87~90.
    [28]杨嵘昌,宰金珉.广义剪切位移法分析桩-土-承台非线性共同作用原理[J].岩土工程学报,1994,16(6):103~116.
    [29]郗宏庆,桥梁群桩基础沉降性状分析[J].中国水运,2008,8(5):172~173.
    [30]Butterfield R.& Banerjee P. K. The elastic analysis of compressible piles and pile groups[J]. Geotechnique,1971,21(1):43~60.
    [31]Butterfield R.& Banerjee P. K. Pile Problem of Pile Group-Pile Cap Interaction[J]. Geotechnique, 1971,21(2):135~142.
    [32]Butterfield R.& Banerjee P. K. Development in soil mechanics and foundation engineering[M]. John Wiley and Sons, Inc.1981.
    [33]Cooke, R. W. Price, G.& Tarr, K. Jacked Piles in London Clay-Interaction and Group Behavious under Working Conditions[J]. Geotechnique,1980,30(2):97~136.
    [34]吴兴序,于志强,王旭.压力灌浆法用于灌注桩的试验研究[J].西南交通大学学报,1997,32(4):382~387.
    [35]吴兴序.桩的端阻和侧摩阻的相互作用及其工程应用价值[J].西南交通大学学报,1997,32(3):313~318.
    [36]胡德贵.轴向荷载作用下群桩基础的沉降研究[D].西南交通大学博士学位论文,2001.
    [37]吴鹏.超大群桩基础竖向承载性能及设计理论研究[D].东南大学博士学位论文,2006.
    [38]程晔.超长大直径钻孔灌注桩承载性能研究[D].东南大学博士学位论文,2005.
    [39]张忠苗 主编.桩基工程[M].北京:中国建筑工业出版社,2007.
    [40]刘利民,舒翔,熊巨华编著.桩基工程的理论进展与工程实践[M].北京:中国建材工业出版社,2002.
    [41]Skempton A. W., Bjerum L. A. Contribution to the Settlement Analysis of Foundation on Clay[J]. Geotechnique,1975,7(4):168~178
    [42]周景星 编著.基础工程(第二版)[M].北京:清华大学出版社,2007.
    [43]刘金砺 编著.桩基础设计与计算[M].北京:中国建筑工业出版社,1990.
    [44]Bolognesi,A. J. L., Moretto,O. Stage grouting preloading of large piles on sand[C]. Ptoc.8th ICSME, Moscow,1973:19~25
    [45]赵明华 编著.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [46]伊晓东,李保平主编.变形监测技术及应用[M].郑州:黄河水利出版社,2007.
    [47]Gouvenot, D.&Gabaix, J. C. A new foundation technique using piles sealed by cement grout under high pressure[C]. Proc.7 Ann. Offshore Tech. Conf, Houston,1975
    [48]钟闻华,刘松玉.桥梁桩基础沉降简化计算[J].公路交通科技,2004,21(2):62~64.
    [49]石名磊,战高峰.群桩荷载位移特性研究[J].岩土力学,2005,26(10):1607~1611.
    [50]Lambe T. W. Methods of estimating settlement[C]. Soil Mech. And Found. Div, ASCE,1964, 90(5):43~37
    [51]吴兴序.灌注桩的轴向阻抗特性及压力灌浆技术研究[D].西南交通大学博士学位论文,2001.
    [52]罗书学.桥梁桩基础沉降计算方法探讨[J].西藏大学学报,2003,18(4):63-74.
    [53]张晓炜,黄生根.钻孔灌注桩后压浆技术理论与应用[M].武汉:中国地质大学出版社,2007.
    [54]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [55]黄生根,龚维明.大直径超长桩压浆后承载性能的试验研究及有限元分析[J].岩土力学,2007,28(2):297~301.
    [56]刘涛,孙学先.桩底后压浆钻孔灌注桩侧阻力变化对竖向承载力影响的讨论[J].交通标准化,2008,(5):45~48.
    [57]黄生根,曹辉.软土地基中应用后压浆技术的机理研究[J].岩土工程技术,2002, (1):36~39.
    [58]李广信主编.高等土力学[M].北京:清华大学出版社,2004.
    [59]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [60]龚晓南编著.复合地基理论及工程应用(第二版)[M].北京:中国建筑工业出版社,2007.
    [61]史宇,郭丰永,毛毳,王雪松.FLAC3D在土体固结模拟中的应用[J].天津城市建设学院学报,2006,12(1):18~22.
    [62]Itasca Consulting Group, Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User Manuals, Version 2.1[Z]. Minneapolis, Minnesota,2002.6
    [63]Cundall, P. A. A computer model for simulating progressive large scale movement in blocky systems. In Proc. Symp. Int. Soci. Rock Mech., Vol.1, paper on.1~8, Nancy, France,1971.
    [64]刘金砺,黄强,李华,高文生.竖向荷载下群桩变形性状及沉降计算[J].岩土工程学报,1995,17(6):1~13.
    [65]史佩栋等编著.深基础工程特殊技术问题[M].北京:人民交通出版社,2004.
    [66]温世游,陈云敏,李夕兵,陈仁朋.饱和粘性土中平均塑性体积应变对压密注浆的影响[J].中国有色金属学报,2002,12(1):161~164.
    [67]张在明.等效变形模量的非线性特征分析[J].岩土工程学报,1997,19(5):56~59.
    [68]赖琼华.岩土变形模量取值研究[J].岩石力学与工程学报,2001,20(增刊):1750~1754.
    [69]Mesri, G. and choi, Y. K. Settlement analysis of embankment on soft clays[J]. ASCE,1985, 111(4):441~464
    [70]Carter J. P., Booker J. R., Yenny S. K. Cavity Expansion in Cohesive Frictional Soils[J]. Geotech-nique36,1986(3):348~349
    [71]Ratmond D Mindlin. Force at a point in the interior of a semi-infinite soil[J]. Physics,1936(7): 195~202
    [72]Zhang Zuomei, Xue Tao, Jiang Guocheng. Geotechnical Grouting Application in China[R]. In:Proc. of the Second International Conference on Ground Improvement Geosystens. Tokyo,1996
    [73]周红波.桩侧泥皮和桩底沉渣对钻孔桩承载力影响的数值模拟[J].岩土力学,2007,28(5):956~960.
    [74]张忠苗,张广兴,吴庆勇,辛公锋.钻孔桩泥皮土与桩间土性状试验研究[J].岩土工程学报,2006,28(6):695~699.
    [75]张治军,饶锡保,丁红顺,吴良平.不同含水率泥皮对接触面力学特性影响的试验研究[J].长江科学院院报,2007,24(5):60~67.
    [76]陈仁朋,周万欢,曹卫平,陈云敏.改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J].岩土工程学报,2007,29(6):824~830.
    [77]柳和气,鄂德军,何富强.考虑桩土接触特性的群桩P-S曲线的数值分析[J].华中科技大学学报(城市科学版),2004,21(4):57~60.
    [78]段文峰,廖雄华,金菊顺,王幼青.桩土界面的数值模拟与单桩Q-S曲线的数值分析[J].哈尔滨建筑大学学报,2001,34(5):34~38.
    [79]李波.孔扩张理论研究及其在静力触探技术中的应用[D].大连理工大学博士学位论文,2006.
    [80]樊良本,朱国元.桩侧土应力状态的圆柱孔扩张理论试验研究[J].浙江大学学报,1998,32(2):228~235.
    [81]闫静雅,张子新,黄宏伟,龚维明.大直径超长钻孔灌注桩荷载传递分析[J].同济大学学报(自然科学版),2007,35(5):592~596.
    [82]Fleming W. G. The improvement of pile performance by base grouting[J]. Civil Engineering, 1993(5)
    [83]M. Bustance. Grouting:A Method Improving the Bearing Capacity of Deep Foundation[C]. The Eighth European Conference on Soil Mechanics and Foundation Engineering,1983,5
    [84]折学森.软土地基沉降计算[M].北京:人民交通出版社,1998.
    [85]吴兴序 主编.基础工程[M].成都:西南交通大学出版社,2007.
    [86]高广运,时刚,冯世进编著.软土地基与深基础工程[M].上海:同济大学出版社,2008.
    [87]《工程地质手册》编写委员会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007.
    [88]楼晓明,洪毓康,陈强华.群桩基础地基中的竖向附加应力性状研究[J].岩土工程学报,1996,18(4):20~26.
    [89]阎澍旺.二维及三维太沙基固结方程的解法[J].岩土工程学报,1984,6(3):86~94.
    [90]刘加才,施建勇.用最小二乘法确定竖井地基平均固结度[J].长江科学院院报,2004,21(4):28-31.
    [91]王军.结构性软土地基的固结沉降及稳定性研究[D].浙江大学博士学位论文,2002.
    [92]Vesic A. C. Expansion of Cavity in Infinite Soil Mass[J]. Joural of Soil Mechanics and Foundation Division. ASCE,1972,98(3):265-289
    [93]Vesic A. C. Principles of pile foundation design[J]. Lecture Series on Deep Foundation. Boston Society CE, ASCE,1975
    [94]陈瑞生,蔡荣坤.水泥土无侧限抗压强度的影响因素分析[J].中外公路,2005,25(2):140~142.
    [95]陈建,何国松.土的可塑性对水泥土无侧限抗压强度的影响浅析[J].西部探矿工程,2006,(5):8~10.
    [96]储诚富,洪振舜,刘松玉,许婷.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学,2005,26(4):645~649.
    [97]胡庆立,张克绪.桩底压浆桩在轴向荷载作用下的有限元分析[J].哈尔滨建筑大学学报,2002,35(1):48~52.
    [98]郭全全,李珠.扩底后注浆桩的现场试验研究与分析[J].岩土力学,2003,24(5):804~808.
    [99]M. Stocker. The Influence of Post-Grouting on the Load-Bearing Capacity of Bored Piles[C]. The Eighth European Conference on Soil Mechanics and Foundation Engineering,1983,5
    [100]黄生根,王辉,张晓炜,龚维明,慕红勋.超长大直径桥桩的压浆效果研究[J].公路交通科技,2004,(5):70~73.
    [101]李庆扬,王能超,易大义编.数值分析(第四版)[M].北京:清华大学出版社,2001.
    [102]金治明,李永乐.概率论与数理统计[M].北京:科学出版社,2008.
    [103]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解(第二版) [M].北京:清华大学出版社,2008.
    [104]Jianqing Fan, Qiwei Yao. Nonlinear Time Series:Nonparametric and Parametric Methods [M]. Springer Publisher,2002.
    [105]Zhi Li, Hong Ma, Yongbing Mei. A Unifying Method for Outlier and Change Detection from Data Streams Based on Local Polynomial Fitting[J]. LNAI,4426:150~161,2007.
    [106]Jianqing Fan, Gijbels, I. Local Polynomial Modelling and Its Applications[M]. Great Britain:St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk.1996.
    [107]何书元 编著.应用时间序列分析[M].北京:北京大学出版社,2003.
    [108]杨叔子,吴雅 等著.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991.
    [109]Yongdao Zhou, Hong Ma, Huiqi Wang, Wangyong Lv. Local polynomial estimator for narrowband interference suppression in TH-UWB systems[J]. Wireless Personal Communications, 2007,43(4):1379~1388.
    [110]龙永清,吴琳,陈建兵,李天文.高层建筑物沉降监测数据综合分析的几种方法[J].西北大学学报(自然科学版),2007,37(4):670~674.
    [111]王坚,高井祥,郑南山.基于小波理论的沉降监测数据序列分析[J].大地测量与地球动力学,2005,25(4):91~95.
    [112]兰孝奇,杨永平,黄庆,严红萍.建筑物沉降的时间序列分析与预报[J].河海大学学报(自然科学版),2006,34(4):426~429.
    [113]刘志强,黄张裕.建筑物沉降监测时序分析方法与预测应用[J].勘察科学技术,2006,(6):52~54.
    [114]陆立,胡晓丽,王春华.用时间序列分析法进行建筑物沉降观测数据处理的研究[J].测绘科学,2004,29(6):76~78.
    [115]茆诗松,王静龙,濮晓龙.高等数理统计[M].北京:高等教育出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700