用户名: 密码: 验证码:
Ti-25Nb-2Zr合金表面微孔结构的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用阳极氧化的方法,在Ti-25Nb-2Zr合金表面构建了微孔结构,在1.5倍模拟体液中考察了其生物活性。采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FT-IR)以及X射线光电子能谱(XPS)对合金表面的多孔氧化膜结构和仿生生长后表面的Ca-P层进行了表征。
     结果表明:微孔的形貌随电解液成分变化而改变,当电解液为硫酸时,微孔呈沟槽状,而当电解液改为1mol/L H_3PO_4(200ml)+2g NH_4F时,所形成的微孔为纳米级的排列整齐的圆形小孔;在电解液为1mol/L H_3PO_4(200ml)+2g NH_4F的体系中,电压和时间共同影响微孔的形貌,同一电压(时间)下,随着时间(电压)的增大,微孔逐渐由孔洞状向管状转变,且其直径也随之增大;Ti-25Nb-2Zr合金表面的多孔氧化膜结构是由TiO_2+Nb_2O_5+ZrO_2组成的;Ti-25Nb-2Zr合金经过阳极氧化处理后,所得到多孔结构能够诱导磷灰石的沉积,而且随着仿生生长时间的延长,表面Ca-P层厚度增加,结晶度也随之提高;仿生生长后所得到的钙磷层为是含有CO_3~(2-)的羟基磷灰石,即类骨磷灰石。
The porous films were prepared by anodic oxidation on the surface of Ti-25Nb-2Zr alloy. In order to validate the bioactivity of the porous films , the biomimetic growth experiments was carried out in the 1.5 SBF (Simulated Body Fluid). The characteristics of the porous films and the Ca-P coatings prepared by biominmetic growth experiments were investigated by using SEM, XRD, IR, XPS.
     The results indicated that the morphology of the porous films were different by using different electrolytes. When sulphuric acid used, the morphology of the porous films was like the shape of channel. Mass of nano-porous films were obtained, when the electrolyte was 1mol/L H_3PO_4(200ml)+2g NH_4F. In the anodic oxidation, the morphology of the porous films were influenced by the voltage and time together. Along with the time (voltage) increasing, the morphology of the porous films gradually changed to nanotube from micropore after the same voltage (time), with the diameter increasing too, The porous films on the surface of Ti-25Nb-2Zr alloy were composed of TiO_2+Nb_2O_5+ZrO_2, Ti-25Nb-2Zr alloy after anodic oxidation had the ability to induce the deposition of the apatite on the surface, and the Ca-P coating went thicker and the crystallinity was enhanced along with the time increasing. The Ca-P coating gained by biomimetic growth in the 1.5 SBF was hydroxyapatite that contained CO_3~(2-), namely the bone-like apatite.
引文
[1]余耀庭,张兴栋,生物医用材料,天津:天津大学出版社,2000,1~5
    [2]王迎军,刘康时,生物医学材料,天津科技翻译出版公司,1993
    [3]张兴栋,生物医用材料国际市场走势,新材料产业,2000年11、12月合刊,第12期:78~81
    [4]黄汉生译,人工骨的现状与未来,现代科技译丛,2001年第3期:5~6
    [5]吴全兴,新的人工关节的开发及应用,钛工业进展,2001年第2期:33~35
    [6]张亚平,高家诚,人工关节材料的研究与进展,科技前沿与学术评论,2000,22(1):47~51
    [7]王静梅,姚松年,生物材料及其仿生学的研究进展与展望,材料研究学报,2000,14(4):337~343
    [8]张志清,生物医学材料发展近况,中国医疗器械信息,1998,4(6):21~22
    [9]李玉宝,生物医学材料,天津:化学工业出版社,2003,5~8
    [10]俞耀庭,张兴栋,生物医用材料,天津:天津大学出版社,2000,13~126
    [11]Okazaki Y., Ito Y., et al, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, 1998, 19 (13): 1197~1215
    [12]姚滨南,人工关节基本原理与材料,哈尔滨医学,2004(1):42~44
    [13]Marc Long, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials, 1998, 16(19): 1621~1639
    [14]Semlitsch M.F., Weber H.,Streicher R.M., et al, Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials, 1992, 13(3):781~788
    [15]何宝明,生物医用钛合金及其合金的开发应用、市场状况及问题分析,先进材料产业,2003,12(7):23~27
    [16]Okazaki Y., Nishimura E., Effect of Metal Released from Ti alloy Wear Powder on Cell Viability, Materials Transactions, JIM, 2000, 41(9): 1247~1255
    [17]Iijima D., Yomeyama T., Doi H., Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses, Biomaterials, 2003, 24(8):1519~1524
    [18]Ankem S., Greene C.A., Recent developments in microstructure/property relationships of beta titanium alloys. Materials Science and Engineering, 1999, A263: 127~131
    [19]宁聪琴,周玉,医用钛合金的发展及研究现状,材料科学与工艺,2002,10(1):100~106
    [20]Yoshimitu, Okazaki, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, 1998, 19(13): 1197~1215
    [21]Wang K.K., Gustavson L.J., Dumbleton J.H., The characterization of Ti-12Mo-6Zr-2Fe A new alloy developed for surgical implants, Beta Titanium Alloy in the 1990’s, TMS of AIME, 1993: 49~60
    [22]Wang K.K., Gustavson L.J., Dumbleton J.H., Microstructure and properties of a new beta titanium alloy-Ti-12Mo-6Zr-2Fe developed for surgical implants, Symp. on Medical Applications of Titanium and Its Alloys, The Material and Biological Issues, 1994, 11(5): 15~16
    [23]Zardiackas L.D., Mitchell D.W., Disegi J.A., Characterization of Ti-15Mo beta titanium alloy for orthopedic implant applications, ASTM Symp, The Material and Biological Issues, 1994, 11: 15~16
    [24]Ho W.F., Ju C.P., Chern Lin J.H., Structure and properties of cast binary Ti-Mo alloys, Biomaterials, 1999, 20(22): 2115~2122
    [25]张玉梅,钛及钛合金在口腔应用的研究方向,生物医学工程学杂志,2000,17(2):206~208
    [26]李佐臣,周廉,李军,外科植入物用第三代新型医用钛合金研究,钛工业进展,2001,5(20):4~5
    [27]劳金海,生物体用型Ti-29Nb-13Ta-4.6Zr合金的热处理工艺和疲劳特性,上海钢研,2003,12(2):60
    [28]Pentti Tengvall, Ingemar Lundstr?m, Physico-chemical considerations of titanium as biomaterials, Clinical Materials, 1992, 9(2): 115~134
    [29]李玉宝,生物医学材料,天津:化学工业出版社,2003,5~8
    [30]俞耀庭,张兴栋,生物医用材料,天津:天津大学出版社,2000,13~126
    [31]Okazaki Y., Ito Y., et al, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, 1998, 19 (13): 1197~1215
    [32]Eisenbarth E., Velten D., et al, Biocompatibility ofβ-stabilizing elements of titanium alloys, Biomaterials, 2004, 25 (26): 5705~5713
    [33]Matsuno H., Yokoyama A., et al, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials, 2001, 22 (11): 1253~1262
    [34]Oh I.K., Nomura N., Masahashi N., et al, Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 2003, 49 (12): 1197~1202
    [35] Weinans H., Sumner D.R., et al, Sensitivity of periprosthetic stress-shielding to load and the bone density–modulus relationship in subject-specific finite element models, Journal of Biomechanics, 2000, 33 (7): 809~817
    [36]冯颖芳,钛及钛合金人工关节植入材料,稀有金属快报,2002年第6期:15~19
    [37]Rieu J., Pichat A., Structural modifications induced by ion implantation in metals and polymers used for orthopaedic prostheses, Materials Science and Technology, 1992, 7(8):589~593
    [38]李青,生物体用金属材料,金属功能材料,2000,7(4):8~14
    [39]冯颖芳,康浩方,张震,钛合金医用植入物材料的研究及应用,稀有金属,2001,25(5):349~354
    [40]袁启明,钛及其合金在医学上的应用,稀有金属材料与工程,1998,22(3):32~34
    [41]金自宜,牙科用钛及钛合金的开发应用,稀有金属材料与工程,1991,2:42~50
    [42]张新平,于思荣,夏连杰,何镇明,钛及钛合金在牙科领域中的研究现状,稀有金属材料与工程,2002,31(4):246~251
    [43]Cheal E., Spector M., Whayes, Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty[J], J Orthop Res, 1992, 10(3): 405~422
    [44]Huiskes R., Weinans H., Riebrgen B., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials[J]. Clin Orthop Relate Res, 1992, 274(22):124~134
    [45]Sumner D., Gatante J., Determinants of stress shielding: design versus materials versus interface[J], Clin orthop Relat Res, 1992, 274(12): 202~212
    [46]王迎军,赵子衷等,生物活性全髋关节涂层的界面设计与研究,中国陶瓷,1997,33(4):1~2,18
    [47]Zhang Yumei, Zhao Yimmin, Surface energy analysis of treated titanium and effects on cell adhesion, Rare Metal Materials and Engineering, 2004, 33(5): 518~521
    [48]Yu Yaoting, Zhang Xingdong, Biomedical Materials[M], Tianjin: Tianjin University, 2000: 131
    [49]Zyman Z., Weng J., Liu X., Amorphous phase and morphological structure of hydroxyapatite plasma coatings, Biomaterials, 1993, 14(3): 225~228
    [50]Lind M., Overgaard S., Bunger C., Improved bone anchorage of hydroxyapatite coated implants compared with tricalcium-phosphate coated implants in trabecular bone in dogs, Biomaterials, 1999, 20(9): 803~808
    [51]Kim H.M., Miyaji F., Bonding strength of bonelike apatite layer to Ti metalsubstrate, Journal of biomedical Materials Research, 1997, 38(2): 121~127
    [52]Casaletto M.P., Ingo G.M., et al, Surface studies of in vitro biocompatibility of titanium oxide coatings, Applied Surface Science, 2001, 172 (1-2): 167~177
    [53]Liu J.X., Yang D.Z., et al, Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement, Thin Solid Films, 2003, 429 (1-2): 225~230
    [54]Yan W.Q., Nakamura T., Kobayashi, Bonding of chemically treated titanium implants to bone. Journal of biomedical materials research, 1997, 37(2): 267~275
    [55]Kim H.M., Miyaji F., Kokubo T., Preparation of bioactive Ti and its alloys via simple chemical surface treatment, Journal of biomedical materials research, 1996, 32(30): 409~417
    [56]Wen H.B., Wolke J.G.C., Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments, Biomaterials, 1997, 18(22): 1471~1478
    [57]Wen H.B., Wijin D.e., Cui F.Z., Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry, Journal of biomedical materials research, 1998, 41(2): 227~236
    [58]De Groot, Wen H.B., Liu Y.L., Biomimetic coatings on orthopedic implants, Mineralization in natural and synthetic biomaterials, 2000, 599(2): 109~116
    [59]Shirkhanzadeh M, Nanoporous alkoxy-derived titanium oxide coating a reactive overlayer for functionalizing titanium surface, 1998, 9(6): 355~36
    [60]Ban S., Marumo S., Hydrothermal-electrochemical deposition of hydroxyapatite, Journal of biomedical materials research, 1998, 42(30): 387~395
    [61]Han Y., Xu K., Morphology and composition of hydroxyapatite coatings prepared by hydrothermal treatment on electrodeposited brushite coatings, Journal of materials science-materials in medicine, 1999, 10(4): 243~248
    [62]Wei M., Ruys A.J., et al, Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition, Journal of biomedical materials research, 1999, 45(1): 11~19
    [63]Gottlander M., Johansson C.B., et al, Bone tissue reactions to an electrophoretically applied calcium phosphate coating, Biomaterials, 1997, 18(7): 551~557
    [64]Dasarathy H., Riley C., et al, Hydroxyapatite/metal composite coatings formed by electrodeposition, Journal of biomedical materials research, 1996, 31(1): 81~89
    [65]Yang B.C., Uchida M., et al, Increasing of corrosion resistance of the Ti-6Al-4V alloy by high thicksness anodic oxidation, Journal of Materials Science: Mater. Med, 1992, 3(12): 408~412
    [66]Buser D., Schenk R.K., et al, influence of surface characteristics on bone integration of titanium implants-A histomorphometric study in miniature pigs,1991, 25(7): 889~902
    [67]Takebe J., itoh S., et al, Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeleton morphology of rat bone marrow stromal cells in vitro, ournal of biomedical materials research, 2000, 51(3): 398~407
    [68]Liu X.Y., Chu P.K, et al, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering R, 2004, 47 (3-4): 49~121
    [69]张志清,生物医学材料发展近况,中国医疗器械信息,1998,4(6):21~22
    [70]Resende C.X., Dille J., et al, Characterization of coating produced on titanium surface by a designed solution containing calcium and phosphate ions, Materials Chemistry and Physics, 2008, 109 (2-3): 429~435
    [71]卢晓英,张兴栋,大孔孔径对含碳酸根双相HA/β-TCP多孔陶瓷表面类骨羟基磷灰石形成的影响,功能材料,2004,35(4):517~526
    [72]余家国,赵修建,多孔TiO2光催化纳米薄膜的制备和微观结构研究,无机材料学报,2000,15(2):347~355
    [73]Zwilling V., et al, Structure and physicochemistry of Anodic Oxide Films on Titanium and Ti-6Al-4V alloy[J], Surf Interface Anal, 1999, 27: 629~637
    [74]Velten D., Biehl V., et al, Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization, Journal of Biomedical Materials Research, 2002, 59 (1): 18~28
    [75]高阳,高勃等,低弹性模量钛铌锆锡合金阳极氧化膜的性能研究,口腔医学研究,2007,23(3):267~269
    [76]Zorn G., Lesman A., et al, Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation, Surface and Coatings Technology, 2006, 201 (3-4): 612~618
    [77]王炜,陶杰,阳极氧化法制备TiO2多孔膜,钛工业进展,2005,22(2):30~33
    [78]王周成,黄龙门,唐毅,钛表面制备多孔氧化膜的研究,厦门大学学报,2006,45(5):677~682
    [79]唐光昕,颜永年,复合氧化法制备多孔氧化钛梯度薄膜,稀有金属,2004,28(4):790~793
    [80]Bangcheng Yang, Masaiki Uchida, et al, Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials, 2004, 25(3): 1003~1010
    [81]Fathy M. Bayoumi, et al, Formation of self-organized titania nano-tubes by dealloying and anodic oxidation, Electrochemistry communications, 2006, 8: 38~44
    [82]Masahashi N., Mizukoshi Y., et al, Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte, Applied catalysis B: environmental, 2009, 33(2): 1~7
    [83]Kim H.M., Kim Y., et al, Thin film of low-crystalline calcium phosphate apatite formed at low temperature, Biomaterials, 2000, 21(11): 1129~1134
    [84]Ho-Jun Song, Seong-Hwan Park, Kim H.M., et al, Surface characteristics and bioactivity of oxide films by anodic spark oxidation on titanium in different electrolytes, Journal of Materials Processing Technology, 2009, 209(2): 864~870
    [85]张招贤,钛电极工学[M],北京:冶金工业出版社,2003:112
    [86]张果金,刘文来等,钛合金阳极氧化膜的生长规律,南京化工大学学报,2000,22(5):86~89
    [87]高云震,任继嘉,宁福元编译,铝合金表面处理[M],北京:冶金工业出版社,1991,16~47
    [88]Moulder J. F., Stickle W. E., Sobol P. E., et al, Handbook of X-ray photoelectron spectroscopy, Published by Perkin-Elmer Corporation, USA
    [89]Masaki Uchida, Hyun-Min Kim, et al, Apatite formation on zir conium metal treated with aqueous NaoH, Biomaterials, 2002, 23(1): 313~317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700