用户名: 密码: 验证码:
钛合金表面织构与等离子渗氮处理及其生物摩擦特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金以其优异的生物相容性,耐腐蚀性以及力学适应性成为最常用的生物医用金属材料,但耐磨性较差。改善钛合金的耐磨性可以从提高其表面力学性能和改善润滑状态两方面入手。离子渗氮能够提高钛合金表面硬度,而表面织构化则能通过改变润滑膜厚度来改善润滑性能。
     在不同的温度和保温时间条件下,对Ti6Al4V合金进行表面等离子渗氮处理,制备了高硬度渗氮层。通过X射线衍射仪(XRD)对渗氮层表面进行物相分析,用金相显微镜观察渗层厚度,用显微硬度计和纳米压痕仪测试渗层的硬度和模量,并用划痕仪测试化合物层与基体的结合力,经过性能对比获得最佳渗氮工艺参数。通过Nd:YAG脉冲激光器在钛合金表面形成不同密度的织构化微孔,研究微孔密度对钛合金摩擦学性能的影响。最后在最佳渗氮工艺参数条件下对织构化钛合金进行表面渗氮处理,研究织构化/渗氮两步处理对钛合金摩擦学性能的影响。
     对渗氮层的分析结果表明,700℃,6h的渗氮样品扩散层组织细小,厚度较大,脆性化合物层最薄,划痕实验的临界载荷达到40N,硬度和弹性模量值较基体均有大幅提高。对三种工艺表面改性样品的生物摩擦学性能评价结果表明,在小牛血清润滑条件下与硬质Al_2O_3陶瓷对磨时,钛合金表面渗氮能够大幅降低摩擦系数和自身的磨损率;而与软质的超高分子量聚乙烯(UHMWPE)对磨时,表面织构化钛合金则能有效降低配副UHMWPE销的磨损率及其摩擦系数。实验结果表明,表面织构化的最佳孔密度为6.4%,此密度下,配副材料UHMWPE的磨损率和摩擦系数降到最低。表面织构化/渗氮钛合金则结合两者的优势,在Al_2O_3陶瓷、UHMWPE两种配副情况下,摩擦系数、磨损率均较低,有效地改善了钛合金与不同材料配副时的摩擦磨损性能。
Titanium and its alloys are widely usually used as metallic bio-material for their excellent biocompatibility and corrosion-resistance.However,they were limited by their poor wear-resistance.Two approaches are usually used to reduce wear,one is to improve their mechanical properties such as hardness,the other is to improve their lubrication condition. The Surface hardness of titanium alloys can be enhanced by plasma nitriding while the lubrication condition can be improved by surface texturing in the form of changing the thickness of lubricating film.
     Several kinds of nitrding layers were prepared by plasma nitriding in various temperatures and keeping time.Surface phases of nitriding layer were analyzed by XRD and the microstructure and the thickness of nitride layers were observed by optical microscope. The hardness and modulus were obtained by nano-indentation tester and micro-hardness tester. The bonding strength between TiN compound layer and matrix was measured by the scratch tester.A set of optimal parameters of nitriding was obtained.Surface texturing with different dimple densities was achieved by pulse laser.The effect of dimple density on friction properties was investigated.At last,plasma nitriding was performed on the textured Ti6Al4V samples with optimal nitriding parameters and the tribological properties of texturing/nitriding samples were tested.
     The analysis results of nitriding layer show that the nitride layer with finer microstructure and high thickness value was obtained under the condition of 700℃,6h and its brittle compound layer is the thinnest.The critical scratch load of compound layer has reached 40N and its hardness,elastic modulus are all improved.After bio-tribological and wear property testing,the result shows the friction coefficient and wear rates of Ti6A14V was reduced by plasma nitriding in the counter pair of nitride Ti6Al4V/Al_2O_3,while the wear rate of UHMWPE pin and the friction coefficient in the wear couple of Ti6Al4V/UHMWPE was reduced by laser texturing.Furthermore,the optimal dimple density is 6.4%,where the wear rate of UHMWPE and the friction coefficient is reduced to the lowest.In the case of textured/nitride Ti6Al4V,all the friction coefficients and wear rates are lower in both counter pairs,which suggest that texturing/nitriding treatment can improve the tribological and wear properties in different counter pairs.
引文
[1]黄传辉.人工髋关节的磨损行为及磨粒形态研究[D].徐州:中国矿业大学,2004.
    [2]张亚平,高家诚,王勇.人工关节材料的研究与展望[J].世界科技研究与发展,2000,22(1):47-50.
    [3]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000:6-10.
    [4]M.Long,H.J.Rack.Titanium alloys in total joint replacement-a materials science perspective[J].Biomaterials,1998,19:1621.
    [5]Jacobs,Joshua.J.S,Anastasia.K,et al.3-year prospective study of serum titanium levels in patients with primary total hip replacements[J].ASTM Special Technical Publication,1996,1272(5):400-408.
    [6]金红.医用钛合金及其表面改性技术的研究现状[J].稀有金属,2003,27(6):794-798.
    [7]M.Textor,C.Sittig,V.Frauchiger,et.al.Titanium in Medicine[J].Berlin:Springer,2001,171-230.
    [8]Lausmaa J,Kasemo B.Multi-Technique Surface Characterization of Oxide Films on Electropolished and Anodically Oxidized Titanium[J].Applied Surface Science,1990,45:189-200.
    [9]Hanawa T,Ota M.Characterization of Surface Film Formed on Titanium in Electrolyte Using XPS[J].Applied Surface Science,1992,55:269-276.
    [10]Xuanyong Liu,Paul K.Chu,Chuanxian Ding.Surface modification of titanium,titanium alloys,and related materials for biomedical applications[J].Materials Science and Engineering,2004,47:49-121.
    [11]Illustrated.Encyclopedia and Dictionary of Dental Science[M].Tokyo:Ishiyaku Publishers,1989:1800.
    [12]Teo′filo.M.de Souza,Ne′lia F.Leite.Studies on CVD-diamond on Ti6Al4V alloy surface using hot filament assisted technique[J].Thin Solid Films,1997,308-309:254-257.
    [13]A.D.Wilson,A.Leyland,A.Matthews.A comparative study of the influence of plasma treatments,PVD coatings and ion implantation on the tribological performance of Ti-6Al-4V[J].Surface and Coatings Technology,1999,114:70-80.
    [14]C.Liu,Q.Bi,A.Matthews.Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti-6Al-4V artificial hip joints[J].Surface and Coatings Technology,2003,163-164:597-604.
    [15]D.Nolan,S.W.Huang,V.Leskovsek.Sliding wear of titanium nitride thin films deposited on Ti-6Al-4V alloy by PVD and plasma nitriding processes[J].Surface & Coatings Technology,2006,200:5698-5705.
    [16]A.Loinaz,M.Rinner.Effects of plasma immersion ion implantation of oxygen on mechanical properties and microstructure of Ti6Al4V[J].Surface and Coating Technology.1998,103-104:262-267.
    [17]H.C.Man,Z.D.Cui,T.M.Yue.Cavitation erosion behavior of laser gas nitrided Ti and Ti6Al4V Alloy[J].Materials Science and Engineering,2003,A355:167-173.
    [18]H.C.Man,Z.D.Cui,X.J.Yang.Analysis of laser gas nitrided titanium by X-ray photoelectron spectroscopy[J].Applied Surface Science,2002,199:293-302.
    [19]孙荣禄,杨贤金.TC4钛合金激光熔覆TiC+M涂层组织和耐磨性能研究[J].材料热处理学报,2006,27(1):96-99.
    [20]Zhong Xu.Double glow surface alloying process.Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing[C],Hawaii,1998,6:1969-1978.
    [21]贺志勇,高原.球墨铸铁的辉光离子渗金属[J].兵工学报,1995,3:69-72.
    [22]池成忠,高原.碳素工具钢表面低温双辉等离子渗铬硬化的研究[J].机械工程材料,2003,27(11):30-32.
    [23]李秀燕,唐宾.Ti6Al4V无氢离子渗氮摩擦学性能的研究.稀有金属材料与工程[J],2003,32(7):506-509.
    [24]秦林,唐宾.钛合金Ti6Al4V表面Mo-N改性层的摩擦性能研究[J].稀有金属材料与工程,2005,34(9):1465-1468.
    [25]Piran S,Eric J,Tobin L.Surface treatment of biomaterials by ion beam processes[J].Surface coating and Technology,1996,83:175-182.
    [26]Tengvall P,Lundstrom I.Physico-chemical considerations of titanium as a biomaterial[J].Clin.Mater.,1992,9:115-120.
    [27]Perry A.Ion implantation of titanium alloys for biomaterial and other applications[J].Surf Eng.,1987,3:154-159.
    [28]Rostlund T,Thomsen P,Bjursten L,et al.Difference in tissue response to nitrogen-ion-implanted titanium and c.p.titanium in the abdominal wall of the rat[J].Biomed Mater.Res.,1990,24:847-852.
    [29]黄锡森.金属真空表面强化的原理与应用[M].上海:上海交通大学出版社,1987.
    [30]D.P.Shashkov,Effect of Nitriding on Mechanical Properties and Wear Resistance of Titanium Alloys[J].Material Science and heat treatment,2001,43(5-6):233-237.
    [31]F.Galliano,E.Galvanetto,S.Mischler,et al.Tribocorrosion behavior of plasma nitrided Ti-6Al-4V alloy in neutral NaC1 solution[J].Surf.Coat.Technol.,2001,145:121-126.
    [32]K.T.Rie,T.H.Lampe.Thermomechanical surface treatment of titanium and titanium alloy Ti-6Al-4V by low energy ion bombardment[J].Mater.Sci.Eng.,1985,69(2):473-479.
    [33]A.Zhecheva,S.Malinov,W.Sha,et al.Surface gas nitriding of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloys[J].Metallk.,2003,94:19-27.
    [34]A.Molinari,G.Straffelini,B.Tesi,T.Bacci.Dry sliding wear mechanisms of the Ti-6Al-4V alloy[J].Wear,1997,208:105-112.
    [35]杨建恒,张永振,邱明,等.Ti6Al4V高速干滑动摩擦磨损特性研究[J].材料工程,2006,增刊1:35-38.
    [36]Bekir S.Yilbas,Ahmed Z.et al.Plasma nitriding of Ti-6Al-4V alloy to improve some tribological properties[J].Surface and Coating Technology,1996,80:287-292.
    [37]D.Nolan,S.W.Huang,V.Leskovsek,et al.Sliding wear of titanium nitride thin films deposited on Ti-6Al-4V alloy by PVD and plasma nitriding processes[J].Surface &Coatings Technology,2006,200:5698-5705.
    [38]I.Etsion.Improving tribological performance of mechanical components by laser surface texturing[J].Tribology Letters,2004,17(4):733-737.
    [39]Schreck S,Zum Gahr K H.Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties[J].Applied Surface Science,2005,247:616-622.
    [40]P.Andersson,J.Koskinen,S.Varjus,et al.Microlubrication effect by laser-textured steel surfaces[J].Wear,2007,262:369-379.
    [41]Ulrika Pettersson,Staffan Jacobson.Influence of surface texture on boundary lubricated sliding contacts[J].Tribology International,2003,36:857-864.
    [42]宋起飞,周宏,李跃,等.仿生非光滑表面铸铁材料的常温摩擦磨损性能[J].摩擦学报,2006,26(1):24-26.
    [43]G.Dumitru,V.Romano,H.P.Weber,et al.Laser microstructuring of steel surfaces for tribological applications[J].Appl.Phys.2000,70:485-487.
    [44]云腾.纯氮离子渗氮工艺及机理研究[J].金属热处理,2003,28(4):68-72.
    [45]S.Malinov,A.Zhecheva,W.Sha.Proceedings of the 1st International Surface Engineering Congress and the 13th IFHTSE Congress[C],ASM International,Materials Park,OH,2003:44-49.
    [46]J.L.Murray,Phase Diagrams in Binary Titanium Alloys[J].SM International,Materials Park,OH,1990:76-82.
    [47]H P Evans,R W Snidle.Wildhaber-Novikov Circular ArcGears:Elastohydrodynamics[J].Journal of Tribology,1993,115:487-92.
    [48]刘福林,唐照民.高速单圆弧齿轮等温弹性流体动力润滑数值解[J].齿轮,1987,11(5):25-28.
    [49]V Smi on.Elastohydrodynamic Lubrication of Hypoid Gears[J].ASME Journal of Mechanical Design,1981,103:195-203.
    [50]郭文渊,王茂才,张晓兵.镍基超合金激光打孔再铸层及其控制研究进展[J].激光杂志,2003,24(4):1-3.
    [51]J.M.Mansour,V.C.Mow.On The Natural Lubrication of Synovial Joints:Normal and Degenerate[J].ASME Jnl.Technol.,1977,99:63-173.
    [52]Lo SW,Horng TC.Lubricant permeation from micro oil pits under intimate contact condition[J].Journal of Tribology.,1999,121(10):633-638.
    [53]Unsworth A.Recent developments in the tribology of artificial joints[J].Tribology International,1995,28(7):485-492.
    [54]王野平,王成焘.天然关节及人工关节的润滑机理探讨[J].生物医学工程杂志,2001,18(4):603-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700